1
|
Pablos M, Casanueva-Álvarez E, González-Casimiro CM, Merino B, Perdomo G, Cózar-Castellano I. Primary Cilia in Pancreatic β- and α-Cells: Time to Revisit the Role of Insulin-Degrading Enzyme. Front Endocrinol (Lausanne) 2022; 13:922825. [PMID: 35832432 PMCID: PMC9271624 DOI: 10.3389/fendo.2022.922825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/24/2022] [Indexed: 12/25/2022] Open
Abstract
The primary cilium is a narrow organelle located at the surface of the cell in contact with the extracellular environment. Once underappreciated, now is thought to efficiently sense external environmental cues and mediate cell-to-cell communication, because many receptors, ion channels, and signaling molecules are highly or differentially expressed in primary cilium. Rare genetic disorders that affect cilia integrity and function, such as Bardet-Biedl syndrome and Alström syndrome, have awoken interest in studying the biology of cilium. In this review, we discuss recent evidence suggesting emerging roles of primary cilium and cilia-mediated signaling pathways in the regulation of pancreatic β- and α-cell functions, and its implications in regulating glucose homeostasis.
Collapse
Affiliation(s)
- Marta Pablos
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, University of Valladolid, Valladolid, Spain
- *Correspondence: Marta Pablos,
| | - Elena Casanueva-Álvarez
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carlos M. González-Casimiro
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Beatriz Merino
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Germán Perdomo
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Irene Cózar-Castellano
- Department of Biochemistry, Molecular Biology and Physiology, School of Medicine, University of Valladolid, Valladolid, Spain
- Unidad de Excelencia Instituto de Biología y Genética Molecular, University of Valladolid Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
2
|
Wensel TG, Potter VL, Moye A, Zhang Z, Robichaux MA. Structure and dynamics of photoreceptor sensory cilia. Pflugers Arch 2021; 473:1517-1537. [PMID: 34050409 PMCID: PMC11216635 DOI: 10.1007/s00424-021-02564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The rod and cone photoreceptor cells of the vertebrate retina have highly specialized structures that enable them to carry out their function of light detection over a broad range of illumination intensities with optimized spatial and temporal resolution. Most prominent are their unusually large sensory cilia, consisting of outer segments packed with photosensitive disc membranes, a connecting cilium with many features reminiscent of the primary cilium transition zone, and a pair of centrioles forming a basal body which serves as the platform upon which the ciliary axoneme is assembled. These structures form a highway through which an enormous flux of material moves on a daily basis to sustain the continual turnover of outer segment discs and the energetic demands of phototransduction. After decades of study, the details of the fine structure and distribution of molecular components of these structures are still incompletely understood, but recent advances in cellular imaging techniques and animal models of inherited ciliary defects are yielding important new insights. This knowledge informs our understanding both of the mechanisms of trafficking and assembly and of the pathophysiological mechanisms of human blinding ciliopathies.
Collapse
Affiliation(s)
- Theodore G Wensel
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology and Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Valencia L Potter
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology and Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program (MSTP), Baylor College of Medicine, Houston, TX, 77030, USA
| | - Abigail Moye
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhixian Zhang
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael A Robichaux
- Departments of Ophthalmology and Biochemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
3
|
Conkar D, Firat-Karalar EN. Microtubule-associated proteins and emerging links to primary cilium structure, assembly, maintenance, and disassembly. FEBS J 2020; 288:786-798. [PMID: 32627332 DOI: 10.1111/febs.15473] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022]
Abstract
The primary cilium is a microtubule-based structure that protrudes from the cell surface in diverse eukaryotic organisms. It functions as a key signaling center that decodes a variety of mechanical and chemical stimuli and plays fundamental roles in development and homeostasis. Accordingly, structural and functional defects of the primary cilium have profound effects on the physiology of multiple organ systems including kidney, retina, and central nervous system. At the core of the primary cilium is the microtubule-based axoneme, which supports the cilium shape and acts as the scaffold for bidirectional transport of cargoes into and out of cilium. Advances in imaging, proteomics, and structural biology have revealed new insights into the ultrastructural organization and composition of the primary cilium, the mechanisms that underlie its biogenesis and functions, and the pathologies that result from their deregulation termed ciliopathies. In this viewpoint, we first discuss the recent studies that identified the three-dimensional native architecture of the ciliary axoneme and revealed that it is considerably different from the well-known '9 + 0' paradigm. Moving forward, we explore emerging themes in the assembly and maintenance of the axoneme, with a focus on how microtubule-associated proteins regulate its structure, length, and stability. This far more complex picture of the primary cilium structure and composition, as well as the recent technological advances, open up new avenues for future research.
Collapse
Affiliation(s)
- Deniz Conkar
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | | |
Collapse
|
4
|
Ota S, Oshima K, Yamazaki T, Takeshita T, Bišová K, Zachleder V, Hattori M, Kawano S. The Parachlorella Genome and Transcriptome Endorse Active RWP-RK, Meiosis and Flagellar Genes in Trebouxiophycean Algae. CYTOLOGIA 2019. [DOI: 10.1508/cytologia.84.323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shuhei Ota
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
- Japan Science and Technology Agency, CREST/START
| | - Kenshiro Oshima
- Laboratory of Metagenomics, Graduate School of Frontier Sciences, The University of Tokyo
- Center for Omics and Bioinformatics, Graduate School of Frontier Sciences, The University of Tokyo
| | - Tomokazu Yamazaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
- Japan Science and Technology Agency, CREST/START
| | - Tsuyoshi Takeshita
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
- Japan Science and Technology Agency, CREST/START
- Future Center Initiative, The University of Tokyo
| | - Kateřina Bišová
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae
| | - Vilém Zachleder
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae
| | - Masahira Hattori
- Center for Omics and Bioinformatics, Graduate School of Frontier Sciences, The University of Tokyo
- Graduate School of Advanced Science and Engineering, Waseda University
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
- Japan Science and Technology Agency, CREST/START
- Future Center Initiative, The University of Tokyo
| |
Collapse
|
5
|
Zabeo D, Croft JT, Höög JL. Axonemal doublet microtubules can split into two complete singlets in human sperm flagellum tips. FEBS Lett 2019; 593:892-902. [PMID: 30959570 PMCID: PMC6594080 DOI: 10.1002/1873-3468.13379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
Motile flagella are crucial for human fertility and embryonic development. The distal tip of the flagellum is where growth and intra-flagellar transport are coordinated. In most model organisms, but not all, the distal tip includes a 'singlet region', where axonemal doublet microtubules (dMT) terminate and only complete A-tubules extend as singlet microtubules (sMT) to the tip. How a human flagellar tip is structured is unknown. Here, the flagellar tip structure of human spermatozoa was investigated by cryo-electron tomography, revealing the formation of a complete sMT from both the A-tubule and B-tubule of dMTs. This different tip arrangement in human spermatozoa shows the need to investigate human flagella directly in order to understand their role in health and disease.
Collapse
Affiliation(s)
- Davide Zabeo
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jacob T Croft
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Abstract
We report a complete 3D structural model of typical epithelial primary cilia based on structural maps of full-length primary cilia obtained by serial section electron tomography. Our data demonstrate the architecture of primary cilia differs extensively from the commonly acknowledged 9+0 paradigm. The axoneme structure is relatively stable but gradually evolves from base to tip with a decreasing number of microtubule complexes (MtCs) and a reducing diameter. The axonemal MtCs are cross-linked by previously unrecognized fibrous protein networks. Such an architecture explains why primary cilia can elastically withstand liquid flow for mechanosensing. The nine axonemal MtCs in a cilium are found to differ significantly in length indicating intraflagellar transport processes in primary cilia may be more complicated than that reported for motile cilia. The 3D maps of microtubule doublet-singlet transitions generally display longitudinal gaps at the inner junction between the A- and B-tubules, which indicates the inner junction protein is a major player in doublet-singlet transitions. In addition, vesicles releasing from kidney primary cilia were observed in the structural maps, supporting that ciliary vesicles budding may serve as ectosomes for cell-cell communication.
Collapse
|
7
|
Avidor-Reiss T, Turner K. The Evolution of Centriole Structure: Heterochrony, Neoteny, and Hypermorphosis. Results Probl Cell Differ 2019; 67:3-15. [PMID: 31435789 DOI: 10.1007/978-3-030-23173-6_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Centrioles are subcellular organelles that were present in the last eukaryotic common ancestor, where the centriole's ancestral role was to form cilia. Centrioles have maintained a remarkably conserved structure in eukaryotes that have cilia, while groups that lack cilia have lost their centrioles, highlighting the structure-function relationship that exists between the centriole and the cilium. In contrast, animal sperm cells, a ciliated cell, exhibit remarkable structural diversity in the centriole. Understanding how this structural diversity evolved may provide insight into centriole assembly and function, as well as their unique role in sperm. Here, we apply concepts used in the study of the evolution of animal morphology to gain insight into the evolution of centriole structure. We propose that centrioles with an atypical structure form because of changes in the timing of centriole assembly events, which can be described as centriolar "heterochrony." Atypical centrioles of insects and mammals appear to have evolved through different types of heterochrony. Here, we discuss two particular types of heterochrony: neoteny and hypermorphosis. The centriole assembly of insect sperm cells exhibits the retention of "juvenile" centriole structure, which can be described as centriolar "neoteny." Mammalian sperm cells have an extended centriole assembly program through the addition of novel steps such as centrosome reduction and centriole remodeling to form atypical centrioles, a form of centriole "hypermorphosis." Overall, centriole heterochrony appears to be a common mechanism for the development of the atypical centriole during the evolution of centriole assembly of various animals' sperm.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA.
| | - Katerina Turner
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
8
|
Reynolds MJ, Phetruen T, Fisher RL, Chen K, Pentecost BT, Gomez G, Ounjai P, Sui H. The Developmental Process of the Growing Motile Ciliary Tip Region. Sci Rep 2018; 8:7977. [PMID: 29789632 PMCID: PMC5964098 DOI: 10.1038/s41598-018-26111-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/01/2018] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic motile cilia/flagella play vital roles in various physiological processes in mammals and some protists. Defects in cilia formation underlie multiple human disorders, known as ciliopathies. The detailed processes of cilia growth and development are still far from clear despite extensive studies. In this study, we characterized the process of cilium formation (ciliogenesis) by investigating the newly developed motile cilia of deciliated protists using complementary techniques in electron microscopy and image analysis. Our results demonstrated that the distal tip region of motile cilia exhibit progressive morphological changes as cilia develop. This developmental process is time-dependent and continues after growing cilia reach their full lengths. The structural analysis of growing ciliary tips revealed that B-tubules of axonemal microtubule doublets terminate far away from the tip end, which is led by the flagellar tip complex (FTC), demonstrating that the FTC might not directly mediate the fast turnover of intraflagellar transport (IFT).
Collapse
Affiliation(s)
- Matthew J Reynolds
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
- Biology Department, University of Scranton, Scranton, PA, 18510, USA
| | - Tanaporn Phetruen
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Rebecca L Fisher
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
| | - Ke Chen
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
| | - Brian T Pentecost
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
| | - George Gomez
- Biology Department, University of Scranton, Scranton, PA, 18510, USA
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Haixin Sui
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA.
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, 12201, USA.
| |
Collapse
|
9
|
Basal body multipotency and axonemal remodelling are two pathways to a 9+0 flagellum. Nat Commun 2015; 6:8964. [PMID: 26667778 PMCID: PMC4682162 DOI: 10.1038/ncomms9964] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/21/2015] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cilia/flagella exhibit two characteristic ultrastructures reflecting two main functions; a 9+2 axoneme for motility and a 9+0 axoneme for sensation and signalling. Whether, and if so how, they interconvert is unclear. Here we analyse flagellum length, structure and molecular composition changes in the unicellular eukaryotic parasite Leishmania during the transformation of a life cycle stage with a 9+2 axoneme (the promastigote) to one with a 9+0 axoneme (the amastigote). We show 9+0 axonemes can be generated by two pathways: by de novo formation and by restructuring of existing 9+2 axonemes associated with decreased intraflagellar transport. Furthermore, pro-basal bodies formed under conditions conducive for 9+2 axoneme formation can form a 9+0 axoneme de novo. We conclude that pro-centrioles/pro-basal bodies are multipotent and not committed to form either a 9+2 or 9+0 axoneme. In an alternative pathway structures can also be removed from existing 9+2 axonemes to convert them to 9+0. Whether basal bodies are pre-committed to form 9+2 motile or 9+0 sensory axonemes and whether interconversion occurs between the two types of axonemes is not clear. Here, the authors used the unicellular eukaryote Leishmania as a model system to demonstrate that 9+0 axonemes can be formed de novo or by restructuring of 9+2 axonemes.
Collapse
|
10
|
Abstract
Sperm motility is driven by motile cytoskeletal elements in the tail, called axonemes. The structure of axonemes consists of 9 + 2 microtubules, molecular motors (dyneins), and their regulatory structures. Axonemes are well conserved in motile cilia and flagella through eukaryotic evolution. Deficiency in the axonemal structure causes defects in sperm motility, and often leads to male infertility. It has been known since the 1970s that, in some cases, male infertility is linked with other symptoms or diseases such as Kartagener syndrome. Given that these links are mostly caused by deficiencies in the common components of cilia and flagella, they are called "immotile cilia syndrome" or "primary ciliary dyskinesia," or more recently, "ciliopathy," which includes deficiencies in primary and sensory cilia. Here, we review the structure of the sperm flagellum and epithelial cilia in the human body, and discuss how male fertility is linked to ciliopathy.
Collapse
|
11
|
Ciliary subcompartments and cysto-proteins. Anat Sci Int 2015; 92:207-214. [DOI: 10.1007/s12565-015-0302-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/14/2015] [Indexed: 11/26/2022]
|
12
|
Gemmell BJ, Jiang H, Buskey EJ. A tale of the ciliate tail: investigation into the adaptive significance of this sub-cellular structure. Proc Biol Sci 2015; 282:20150770. [PMID: 26180066 DOI: 10.1098/rspb.2015.0770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ciliates can form an important link between the microbial loop and higher trophic levels primarily through consumption by copepods. This high predation pressure has resulted in a number of ciliate species developing rapid escape swimming behaviour. Several species of these escaping ciliates also possess a long contractile tail for which the functionality remains unresolved. We use high-speed video, specialized optics and novel fluid visualization tools to evaluate the role of this contractile appendage in two free-swimming ciliates, Pseudotontonia sp. and Tontonia sp., and compare the performance to escape swimming behaviour of a non-tailed species, Strobilidium sp. Here, we show that 'tailed' species respond to hydrodynamic disturbances with extremely short response latencies (less than or equal to 0.89 ms) by rapidly contracting the tail which carries the cell body 2-4 cell diameters within a few milliseconds. This provides an advantage over non-tailed species during the critical first 10-30 ms of an escape. Two small, short-lived vortex rings are created during contraction of the tail. The flow imposed by the ciliate jumping can be described as two well-separated impulsive Stokeslets and the overall flow attenuates spatially as r(-3). The high initial velocities and spatio-temporal arrangement of vortices created by tail contractions appear to provide a means for rapid escape as well as hydrodynamic 'camouflage' against fast striking, mechanoreceptive predators such as copepods.
Collapse
Affiliation(s)
- Brad J Gemmell
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Houshuo Jiang
- Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Edward J Buskey
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
13
|
Ke YN, Yang WX. Primary cilium: an elaborate structure that blocks cell division? Gene 2014; 547:175-85. [PMID: 24971504 DOI: 10.1016/j.gene.2014.06.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/07/2014] [Accepted: 06/23/2014] [Indexed: 11/25/2022]
Abstract
A primary cilium is a microtubule-based membranous protrusion found in almost all cell types. A primary cilium has a "9+0" axoneme that distinguishes this ancient organelle from the canonical motile "9+2" cilium. A primary cilium is the sensory center of the cell that regulates cell proliferation and embryonic development. The primary ciliary pocket is a specialized endocytic membrane domain in the basal region. The basal body of a primary cilium exists as a form of the centriole during interphase of the cell cycle. Although conventional thinking suggests that the cell cycle regulates centrosomal changes, recent studies suggest the opposite, that is, centrosomal changes regulate the cell cycle. In this regard, centrosomal kinase Aurora kinase A (AurA), Polo-like kinase 1 (Plk1), and NIMA related Kinase (Nek or Nrk) propel cell cycle progression by promoting primary cilia disassembly which indicates a non-mitotic function. However, the persistence of primary cilia during spermatocyte division challenges the dominate idea of the incompatibility of primary cilia and cell division. In this review, we demonstrate the detailed structure of primary cilia and discuss the relationship between primary cilia disassembly and cell cycle progression on the background of various mitotic kinases.
Collapse
Affiliation(s)
- Yi-Ni Ke
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Dzyuba V, Cosson J. Motility of fish spermatozoa: from external signaling to flagella response. Reprod Biol 2014; 14:165-75. [PMID: 25152513 DOI: 10.1016/j.repbio.2013.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
Abstract
For successful fertilization, spermatozoa must access, bind, and penetrate an egg, processes for which activation of spermatozoa motility is a prerequisite. Fish spermatozoa are stored in seminal plasma where they are immotile during transit through the genital tract of most externally fertilizing teleosts and chondrosteans. Under natural conditions, motility is induced immediately following release of spermatozoa from the male genital tract into the aqueous environment. The nature of an external trigger for the initiation of motility is highly dependent on the aquatic environment (fresh or salt water) and the species' reproductive behavior. Triggering signals include osmotic pressure, ionic and gaseous components of external media and, in some cases, egg-derived substances. Extensive study of environmental factors influencing fish spermatozoa motility has led to the proposal of several mechanisms of activation in freshwater and marine fish. However, the signal transduction pathways initiated by these mechanisms remain clear. This review presents the current knowledge with respect to (1) membrane reception of the activation signal and its transduction through the spermatozoa plasma membrane via the external membrane components, ion channels, and aquaporins; (2) cytoplasmic trafficking of the activation signal; (3) final steps of the signaling, including signal transduction to the axonemal machinery, and activation of axonemal dyneins and regulation of their activity; and (4) pathways supplying energy for flagellar motility.
Collapse
Affiliation(s)
- Viktoriya Dzyuba
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czech Republic; V.N. Karazin Kharkiv National University, Kharkiv, Ukraine.
| | - Jacky Cosson
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czech Republic
| |
Collapse
|
15
|
Hoey DA, Downs ME, Jacobs CR. The mechanics of the primary cilium: an intricate structure with complex function. J Biomech 2011; 45:17-26. [PMID: 21899847 DOI: 10.1016/j.jbiomech.2011.08.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
Abstract
The primary cilium is a non-motile singular cellular structure that extends from the surface of nearly every cell in the body. The cilium has been shown to play numerous roles in maintaining tissue homeostasis, through regulating signaling pathways and sensing both biophysical and biochemical changes in the extracellular environment. The structural performance of the cilium is paramount to its function as defective cilia have been linked to numerous pathologies. In particular, the cilium has demonstrated a mechanosensory role in tissues such as the kidney, liver, endothelium and bone, where cilium deflection under mechanical loading triggers a cellular response. Understanding of how cilium structure and subsequent mechanical behavior contributes to the roles that cilium plays in regulating cellular behavior is a compelling question, yet is a relatively untouched research area. Recent advances in biophysical measurements have demonstrated the cilium to be a structurally intricate organelle containing an array of load bearing proteins. Furthermore advances in modeling of this organelle have revealed the importance of these proteins at regulating the cilium's mechanosensitivity. Remarkably, the cilium is capable of adapting its mechanical state, altering its length and possibly it's bending resistance, to regulate its mechanosensitivity demonstrating the importance of cilium mechanics in cellular responses. In this review, we introduce the cilium as a mechanosensor; discuss the advances in the mechanical modeling of cilia; explore the structural features of the cilium, which contribute to its mechanics and finish with possible mechanisms in which alteration in structure may affect ciliary mechanics, consequently affecting ciliary based mechanosensing.
Collapse
Affiliation(s)
- David A Hoey
- Department of Biomedical Engineering, Columbia University in the City of New York, NY, USA.
| | | | | |
Collapse
|
16
|
Guan J, Ekwurtzel E, Kvist U, Hultenby K, Yuan L. DNAJB13 is a radial spoke protein of mouse '9+2' axoneme. Reprod Domest Anim 2011; 45:992-6. [PMID: 19919626 DOI: 10.1111/j.1439-0531.2009.01473.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has been shown that DNAJB13, a type II heat shock protein 40, is highly expressed in the testis and is an axonemal component of mouse mature spermatozoa. By multi-tissue reverse transcription polymerase chain reaction, we found that Dnajb13 gene was expressed not only in the testis but also in several other ciliated cell-containing tissues like brain, lung and oviduct. Immunohistochemistry on mouse trachea and oviduct sections shown that DNAJB13 was present in the motile cilia of those tissues. To define further its localization in the axoneme, immunoelectron microscopy of mouse sperm flagella was performed and shown that DNAJB13 was localized to radial spokes of the axoneme. Taken together, our data indicate that DNAJB13 is a radial spoke protein of the mouse '9+2' axoneme.
Collapse
Affiliation(s)
- J Guan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
17
|
Aylett CH, Löwe J, Amos LA. New Insights into the Mechanisms of Cytomotive Actin and Tubulin Filaments. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 292:1-71. [DOI: 10.1016/b978-0-12-386033-0.00001-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
|
19
|
Sui H, Downing KH. Structural basis of interprotofilament interaction and lateral deformation of microtubules. Structure 2010; 18:1022-31. [PMID: 20696402 PMCID: PMC2976607 DOI: 10.1016/j.str.2010.05.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/30/2010] [Accepted: 05/11/2010] [Indexed: 11/20/2022]
Abstract
The diverse functions of microtubules require stiff structures possessing sufficient lateral flexibility to enable bending with high curvature. We used cryo-electron microscopy to investigate the molecular basis for these critical mechanical properties. High-quality structural maps were used to build pseudoatomic models of microtubules containing 11-16 protofilaments, representing a wide range of lateral curvature. Protofilaments in all these microtubules were connected primarily via interprotofilament interactions between the M loops, and the H1'-S2 and H2-S3 loops. We postulate that the tolerance of the loop-loop interactions to lateral deformation provides the capacity for high-curvature bending without breaking. On the other hand, the local molecular architecture that surrounds these connecting loops contributes to the overall rigidity. Interprotofilament interactions in the seam region are similar to those in the normal helical regions, suggesting that the existence of the seam does not significantly affect the mechanical properties of microtubules.
Collapse
Affiliation(s)
- Haixin Sui
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | |
Collapse
|
20
|
Bending of the "9+2" axoneme analyzed by the finite element method. J Theor Biol 2010; 264:1089-101. [PMID: 20380841 DOI: 10.1016/j.jtbi.2010.03.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 11/21/2022]
Abstract
Many data demonstrate that the regulation of the bending polarity of the "9+2" axoneme is supported by the curvature itself, making the internal constraints central in this process, adjusting either the physical characteristics of the machinery or the activity of the enzymes involved in different pathways. Among them, the very integrated Geometric Clutch model founds this regulation on the convenient adjustments of the probability of interaction between the dynein arms and the beta-tubulin monomers of the outer doublet pairs on which they walk. Taking into consideration (i) the deviated bending of the outer doublets pairs (Cibert, C., Heck, J.-V., 2004. Cell Motil. Cytoskeleton 59, 153-168), (ii) the internal tensions of the radial spokes and the tangential links (nexin links, dynein arms), (iii) a theoretical 5 microm long proximal segment of the axoneme and (iv) the short proximal segment of the axoneme, we have reevaluated the adjustments of these intervals using a finite element approach. The movements we have calculated within the axonemal cylinder are consistent with the basic hypothesis that found the Geometric Clutch model, except that the axonemal side where the dynein arms are active increases the intervals between the two neighbor outer doublet pairs. This result allows us to propose a mechanism of bending reversion of the axoneme, involving the concerted ignition of the molecular engines along the two opposite sides of the axoneme delineated by the bending plane.
Collapse
|
21
|
Daher W, Pierrot C, Kalamou H, Pinder JC, Margos G, Dive D, Franke-Fayard B, Janse CJ, Khalife J. Plasmodium falciparum dynein light chain 1 interacts with actin/myosin during blood stage development. J Biol Chem 2010; 285:20180-91. [PMID: 20421304 DOI: 10.1074/jbc.m110.102806] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Dynein light chain 1 (LC1), a member of the leucine-rich repeat protein family, has been shown to be engaged in controlling flagellar motility in Chlamydomonas reinhardtii and Trypanosoma brucei via its interaction with the dynein gamma heavy chain. In Plasmodium falciparum, we have identified the LC1 ortholog, designated Pfdlc1. Negative attempts to disrupt the dlc1 gene by reverse genetic approaches in both P. falciparum and P. berghei suggest either its essentiality for parasite survival or the inaccessibility of its locus. Expression studies revealed high levels of DLC1 protein in late trophozoites and schizonts, pointing to an unexpected role of this protein in blood-stage parasites as they do not have flagella. Interactions studies and co-immunoprecipitation experiments revealed that PfDLC1 was able to bind to P. falciparum myosin A and actin 1. The PfDLC1 interacting domains present in P. falciparum myosin A and actin 1 were mapped to sequences containing SDIE and/or EEMKT motifs present in the upper 50-kDa segment of the myosin A head domain and in the subdomain IV of actin 1, respectively. Detection of PfDLC1 by fluorescence tagging and immunofluorescence staining using specific antibodies showed a cytoplasmic location similar to actin and immunofluorescence studies showed a co-localization of PfDLC1 and myosin A. Taken together, these findings suggest that PfDLC1 might play an important role in P. falciparum erythrocytic stages by its interaction with myosin A and actin 1, known to be essential for parasite development.
Collapse
Affiliation(s)
- Wassim Daher
- Unité INSERM 547 and Center for Infection and Immunity of Lille INSERM U1019, CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, 1 rue du Prof. Calmette, 59019 Lille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Microtubules are intrinsically dynamic structures. In the cellular environment many proteins and protein complexes are associated with microtubules that influence or functionalize microtubule dynamics. Therefore, investigation of the structure and dynamics of microtubules with their associated complexes inside the cellular environment lies at the heart of fully understanding their function. Cryo electron microscopy has been essential in structural microtubule research since the atomic structure of tubulin and the structure of microtubules were unraveled using this technique. Furthermore, the specific structures at the microtubule ends linked to the growing or shrinking states were also detected by cryo electron microscopy. Electron microscopy studies on microtubules were mainly performed in vitro but microtubules can also be investigated inside cells, using cryo electron tomography. Cryo electron tomography is an important tool in structural biology research because it enables visualization of single and unique protein complexes in a cellular environment and at a molecular resolution. Cryo electron tomography is a three-dimensional (3D) imaging technique in which electron microscopy tomographic imaging is performed on cryogenically cooled, vitrified specimens after which the object is computationally reconstructed. Here, I describe the materials and methods for cryo electron tomography of microtubules and in whole cells, describing cell growth, specimen vitrification, localization of microtubules, cryo electron tomography recording, tomographic image reconstruction, and 3D visualization techniques.
Collapse
Affiliation(s)
- Roman I Koning
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
23
|
Ginger ML, Portman N, McKean PG. Swimming with protists: perception, motility and flagellum assembly. Nat Rev Microbiol 2008; 6:838-50. [PMID: 18923411 DOI: 10.1038/nrmicro2009] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In unicellular and multicellular eukaryotes, fast cell motility and rapid movement of material over cell surfaces are often mediated by ciliary or flagellar beating. The conserved defining structure in most motile cilia and flagella is the '9+2' microtubule axoneme. Our general understanding of flagellum assembly and the regulation of flagellar motility has been led by results from seminal studies of flagellate protozoa and algae. Here we review recent work relating to various aspects of protist physiology and cell biology. In particular, we discuss energy metabolism in eukaryotic flagella, modifications to the canonical assembly pathway and flagellum function in parasite virulence.
Collapse
Affiliation(s)
- Michael L Ginger
- School of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | |
Collapse
|