1
|
Albert T, Kumar A, Caranto J, Moënne-Loccoz P. Vibrational analyses of the reaction of oxymyoglobin with NO using a photolabile caged NO donor at cryogenic temperatures. J Inorg Biochem 2024; 258:112633. [PMID: 38852292 PMCID: PMC11216511 DOI: 10.1016/j.jinorgbio.2024.112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
The NO dioxygenation reaction catalyzed by heme-containing globin proteins is a crucial aerobic detoxification pathway. Accordingly, the second order reaction of NO with oxymyoglobin and oxyhemoglobin has been the focus of a large number of kinetic and spectroscopic studies. Stopped-flow and rapid-freeze-quench (RFQ) measurements have provided evidence for the formation of a Fe(III)-nitrato complex with millisecond lifetime prior to release of the nitrate product, but the temporal resolution of these techniques is insufficient for the characterization of precursor species. Most mechanistic models assume the formation of an initial Fe(III)-peroxynitrite species prior to homolytic cleavage of the OO bond and recombination of the resulting NO2 and Fe(IV)=O species. Here we report vibrational spectroscopy measurements for the reaction of oxymyoglobin with a photolabile caged NO donor at cryogenic temperatures. We show that this approach offers efficient formation and trapping of the Fe(III)-nitrato, enzyme-product, complex at 180 K. Resonance Raman spectra of the Fe(III)-nitrato complex trapped via RFQ in the liquid phase and photolabile NO release at cryogenic temperatures are indistinguishable, demonstrating the complementarity of these approaches. Caged NO is released by irradiation <180 K but diffusion into the heme pocket is fully inhibited. Our data provide no evidence for Fe(III)-peroxynitrite of Fe(IV)=O species, supporting low activation energies for the NO to nitrate conversion at the oxymyoglobin reaction site. Photorelease of NO at cryogenic temperatures allows monitoring of the reaction by transmittance FTIR which provides valuable quantitative information and promising prospects for the detection of protein sidechain reorganization events in NO-reacting metalloenzymes.
Collapse
Affiliation(s)
- Therese Albert
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Arun Kumar
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA
| | - Jonathan Caranto
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
| |
Collapse
|
2
|
Turilli-Ghisolfi ES, Lualdi M, Fasano M. Ligand-Based Regulation of Dynamics and Reactivity of Hemoproteins. Biomolecules 2023; 13:683. [PMID: 37189430 PMCID: PMC10135655 DOI: 10.3390/biom13040683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Hemoproteins include several heme-binding proteins with distinct structure and function. The presence of the heme group confers specific reactivity and spectroscopic properties to hemoproteins. In this review, we provide an overview of five families of hemoproteins in terms of dynamics and reactivity. First, we describe how ligands modulate cooperativity and reactivity in globins, such as myoglobin and hemoglobin. Second, we move on to another family of hemoproteins devoted to electron transport, such as cytochromes. Later, we consider heme-based reactivity in hemopexin, the main heme-scavenging protein. Then, we focus on heme-albumin, a chronosteric hemoprotein with peculiar spectroscopic and enzymatic properties. Eventually, we analyze the reactivity and dynamics of the most recently discovered family of hemoproteins, i.e., nitrobindins.
Collapse
Affiliation(s)
| | | | - Mauro Fasano
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy
| |
Collapse
|
3
|
Maghsoud Y, Vázquez-Montelongo EA, Yang X, Liu C, Jing Z, Lee J, Harger M, Smith AK, Espinoza M, Guo HF, Kurie JM, Dalby KN, Ren P, Cisneros GA. Computational Investigation of a Series of Small Molecules as Potential Compounds for Lysyl Hydroxylase-2 (LH2) Inhibition. J Chem Inf Model 2023; 63:986-1001. [PMID: 36779232 PMCID: PMC10233724 DOI: 10.1021/acs.jcim.2c01448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The catalytic function of lysyl hydroxylase-2 (LH2), a member of the Fe(II)/αKG-dependent oxygenase superfamily, is to catalyze the hydroxylation of lysine to hydroxylysine in collagen, resulting in stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs). Reports show that high amounts of LH2 lead to the accumulation of HLCCs, causing fibrosis and specific types of cancer metastasis. Some members of the Fe(II)/αKG-dependent family have also been reported to have intramolecular O2 tunnels, which aid in transporting one of the required cosubstrates into the active site. While LH2 can be a promising target to combat these diseases, efficacious inhibitors are still lacking. We have used computational simulations to investigate a series of 44 small molecules as lead compounds for LH2 inhibition. Tunneling analyses indicate the existence of several intramolecular tunnels. The lengths of the calculated O2-transporting tunnels in holoenzymes are relatively longer than those in the apoenzyme, suggesting that the ligands may affect the enzyme's structure and possibly block (at least partially) the tunnels. The sequence alignment analysis between LH enzymes from different organisms shows that all of the amino acid residues with the highest occurrence rate in the oxygen tunnels are conserved. Our results suggest that the enolate form of diketone compounds establishes stronger interactions with the Fe(II) in the active site. Branching the enolate compounds with functional groups such as phenyl and pyridinyl enhances the interaction with various residues around the active site. Our results provide information about possible leads for further LH2 inhibition design and development.
Collapse
Affiliation(s)
- Yazdan Maghsoud
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Erik Antonio Vázquez-Montelongo
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Xudong Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhifeng Jing
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Juhoon Lee
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matthew Harger
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ally K Smith
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Miguel Espinoza
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Hou-Fu Guo
- Department of Molecular and Cellular Biochemistry, College of Medicine, The University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77005, United States
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
4
|
De Simone G, Sbardella D, Oddone F, Pesce A, Coletta M, Ascenzi P. Structural and (Pseudo-)Enzymatic Properties of Neuroglobin: Its Possible Role in Neuroprotection. Cells 2021; 10:cells10123366. [PMID: 34943874 PMCID: PMC8699588 DOI: 10.3390/cells10123366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroglobin (Ngb), the third member of the globin family, was discovered in human and murine brains in 2000. This monomeric globin is structurally similar to myoglobin (Mb) and hemoglobin (Hb) α and β subunits, but it hosts a bis-histidyl six-coordinated heme-Fe atom. Therefore, the heme-based reactivity of Ngb is modulated by the dissociation of the distal HisE7-heme-Fe bond, which reflects in turn the redox state of the cell. The high Ngb levels (~100–200 μM) present in the retinal ganglion cell layer and in the optic nerve facilitate the O2 buffer and delivery. In contrast, the very low levels of Ngb (~1 μM) in most tissues and organs support (pseudo-)enzymatic properties including NO/O2 metabolism, peroxynitrite and free radical scavenging, nitrite, hydroxylamine, hydrogen sulfide reduction, and the nitration of aromatic compounds. Here, structural and (pseudo-)enzymatic properties of Ngb, which are at the root of tissue and organ protection, are reviewed, envisaging a possible role in the protection from neuronal degeneration of the retina and the optic nerve.
Collapse
Affiliation(s)
- Giovanna De Simone
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Roma, Italy;
| | | | | | - Alessandra Pesce
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16100 Genova, Italy;
| | - Massimo Coletta
- IRCCS Fondazione Bietti, 00198 Roma, Italy; (D.S.); (F.O.)
- Dipartmento di Scienze Cliniche e Medicina Traslazionale, Università di Roma “Tor Vergata”, Via Montpellier 1, 00133 Roma, Italy
- Correspondence: (M.C.); (P.A.); Tel.: +39-06-72596365 (M.C.); +39-06-57336321 (P.A.)
| | - Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Roma, Italy;
- Accademia Nazionale dei Lincei, Via della Lungara 10, 00165 Roma, Italy
- Unità di Neuroendocrinologia, Metabolismo e Neurofarmacologia, IRCSS Fondazione Santa Lucia, 00179 Roma, Italy
- Correspondence: (M.C.); (P.A.); Tel.: +39-06-72596365 (M.C.); +39-06-57336321 (P.A.)
| |
Collapse
|
5
|
Olson JS. Kinetic mechanisms for O 2 binding to myoglobins and hemoglobins. Mol Aspects Med 2021; 84:101024. [PMID: 34544605 DOI: 10.1016/j.mam.2021.101024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 11/29/2022]
Abstract
Antonini and Brunori's 1971 book "Hemoglobin and Myoglobin in Their Reactions with Ligands" was a truly remarkable publication that summarized almost 100 years of research on O2 binding to these globins. Over the ensuing 50 years, ultra-fast laser photolysis techniques, high-resolution and time resolved X-ray crystallography, molecular dynamics simulations, and libraries of recombinant myoglobin (Mb) and hemoglobin (Hb) variants have provided structural interpretations of O2 binding to these proteins. The resultant mechanisms provide quantitative descriptions of the stereochemical factors that govern overall affinity, including proximal and distal steric restrictions that affect iron reactivity and favorable positive electrostatic interactions that preferentially stabilize bound O2. The pathway for O2 uptake and release by Mb and subunits of Hb has been mapped by screening libraries of site-directed mutants in laser photolysis experiments. O2 enters mammalian Mb and the α and β subunits of human HbA through a channel created by upward and outward rotation of the distal His at the E7 helical position, is non-covalently captured in the interior of the distal cavity, and then internally forms a bond with the heme Fe(II) atom. O2 dissociation is governed by disruption of hydrogen bonding interactions with His (E7), breakage of the Fe(II)-O2 bond, and then competition between rebinding and escape through the E7-gate. The structural features that govern the rates of both the individual steps and overall reactions have been determined and provide the framework for: (1) defining the physiological functions of specific globins and their evolution; (2) understanding the clinical features of hemoglobinopathies; and (3) designing safer and more efficient acellular hemoglobin-based oxygen carriers (HBOCs) for transfusion therapy, organ preservation, and other commercially relevant O2 transport and storage processes.
Collapse
Affiliation(s)
- John S Olson
- Department of Biosciences, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
6
|
Olson JS. Lessons Learned from 50 Years of Hemoglobin Research: Unstirred and Cell-Free Layers, Electrostatics, Baseball Gloves, and Molten Globules. Antioxid Redox Signal 2020; 32:228-246. [PMID: 31530172 PMCID: PMC6948003 DOI: 10.1089/ars.2019.7876] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significance: Over the past 50 years, the mechanisms for O2 storage and transport have been determined quantitatively on distance scales from millimeters to tenths of nanometers and timescales from seconds to picoseconds. Recent Advances: In this review, I have described four key conclusions from work done by my group and our close colleagues. (i) O2 uptake by mammalian red cells is limited by diffusion through unstirred water layers adjacent to the cell surface and across cell-free layers adjacent to vessel walls. (ii) In most vertebrates, hemoglobins (Hbs) and myoglobins (Mbs), the distal histidine at the E7 helical position donates a strong hydrogen bond to bound O2, which selectively enhances O2 affinity, prevents carbon monoxide poisoning, and markedly slows autoxidation. (iii) O2 binding to mammalian Hbs and Mbs occurs by migration of the ligand through a channel created by upward rotation of the His(E7) side chain, capture in the empty space of the distal pocket, and then coordination with the ferroprotoporphyrin IX (heme) iron atom. (iv) The assembly of Mbs and Hbs occurs by formation of molten globule intermediates, in which the N- and C-terminal helices have almost fully formed secondary structures, but the heme pockets are disordered and followed by high-affinity binding of heme. Critical Issues: These conclusions indicate that there are often compromises between O2 transport function, holoprotein stability, and the efficiency of assembly. Future Directions: However, the biochemical mechanisms underlying these conclusions provide the framework for understanding globin evolution in greater detail and for engineering more efficient and stable globins.
Collapse
Affiliation(s)
- John S Olson
- BioSciences Department, Rice University, Houston, Texas
| |
Collapse
|
7
|
Abstract
This chapter reviews how allosteric (heterotrophic) effectors and natural mutations impact hemoglobin (Hb) primary physiological function of oxygen binding and transport. First, an introduction about the structure of Hb is provided, including the ensemble of tense and relaxed Hb states and the dynamic equilibrium of Hb multistate. This is followed by a brief review of Hb variants with altered Hb structure and oxygen binding properties. Finally, a review of different endogenous and exogenous allosteric effectors of Hb is presented with particular emphasis on the atomic interactions of synthetic ligands with altered allosteric function of Hb that could potentially be harnessed for the treatment of diseases.
Collapse
Affiliation(s)
- Mostafa H Ahmed
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Mohini S Ghatge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23219, USA.,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23219, USA. .,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, 23219, USA.
| |
Collapse
|
8
|
Monet D, Desdouits N, Nilges M, Blondel A. mkgridXf: Consistent Identification of Plausible Binding Sites Despite the Elusive Nature of Cavities and Grooves in Protein Dynamics. J Chem Inf Model 2019; 59:3506-3518. [DOI: 10.1021/acs.jcim.9b00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Damien Monet
- Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, CNRS-USR 3756, Institut Pasteur, 28 rue du Dr. Roux, 75015 Paris, France
- Sorbonne Université, Collège doctoral, ED515 - Complexité du Vivant, 75005 Paris, France
| | - Nathan Desdouits
- Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, CNRS-USR 3756, Institut Pasteur, 28 rue du Dr. Roux, 75015 Paris, France
- Sorbonne Université, Collège doctoral, ED515 - Complexité du Vivant, 75005 Paris, France
| | - Michael Nilges
- Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, CNRS-USR 3756, Institut Pasteur, 28 rue du Dr. Roux, 75015 Paris, France
| | - Arnaud Blondel
- Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, CNRS-UMR 3528, CNRS-USR 3756, Institut Pasteur, 28 rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
9
|
Aharoni R, Tobi D. Dynamical comparison between myoglobin and hemoglobin. Proteins 2018; 86:1176-1183. [PMID: 30183107 DOI: 10.1002/prot.25598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 01/29/2023]
Abstract
Myoglobin and hemoglobin are globular hemeproteins, when the former is a monomer and the latter a heterotetramer. Despite the structural similarity of myoglobin to α and β subunits of hemoglobin, there is a functional difference between the two proteins, owing to the quaternary structure of hemoglobin. The effect of the quaternary structure of hemoglobin on the intrinsic dynamics of its subunits is explored by dynamical comparison of the two proteins. Anisotropic Network Model modes of motion were calculated for hemoglobin and myoglobin. Dynamical comparison between the proteins was performed using global and local Anisotropic Network Model mode alignment algorithms based on the algorithms of Smith-Waterman and Needleman-Wunsch for sequence comparison. The results indicate that the quaternary structure of hemoglobin substantially alters the intrinsic dynamics of its subunits, an effect that may contribute to the functional difference between the two proteins. Local dynamics similarity between the proteins is still observed at the major exit route of the ligand.
Collapse
Affiliation(s)
- Rotem Aharoni
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Dror Tobi
- Department of Molecular Biology, Ariel University, Ariel, Israel.,Department of Computer Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
10
|
Boubeta FM, Bieza SA, Bringas M, Estrin DA, Boechi L, Bari SE. Mechanism of Sulfide Binding by Ferric Hemeproteins. Inorg Chem 2018; 57:7591-7600. [DOI: 10.1021/acs.inorgchem.8b00478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fernando M. Boubeta
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET and Universidad de Buenos Aires, Buenos Aires 1053, Argentina
| | - Silvina A. Bieza
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET and Universidad de Buenos Aires, Buenos Aires 1053, Argentina
| | - Mauro Bringas
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET and Universidad de Buenos Aires, Buenos Aires 1053, Argentina
| | - Darío A. Estrin
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET and Universidad de Buenos Aires, Buenos Aires 1053, Argentina
| | | | - Sara E. Bari
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET and Universidad de Buenos Aires, Buenos Aires 1053, Argentina
| |
Collapse
|
11
|
Mondal J, Ahalawat N, Pandit S, Kay LE, Vallurupalli P. Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme. PLoS Comput Biol 2018; 14:e1006180. [PMID: 29775455 PMCID: PMC5979041 DOI: 10.1371/journal.pcbi.1006180] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/31/2018] [Accepted: 05/06/2018] [Indexed: 12/22/2022] Open
Abstract
Ligand binding sites in proteins are often localized to deeply buried cavities, inaccessible to bulk solvent. Yet, in many cases binding of cognate ligands occurs rapidly. An intriguing system is presented by the L99A cavity mutant of T4 Lysozyme (T4L L99A) that rapidly binds benzene (~106 M-1s-1). Although the protein has long served as a model system for protein thermodynamics and crystal structures of both free and benzene-bound T4L L99A are available, the kinetic pathways by which benzene reaches its solvent-inaccessible binding cavity remain elusive. The current work, using extensive molecular dynamics simulation, achieves this by capturing the complete process of spontaneous recognition of benzene by T4L L99A at atomistic resolution. A series of multi-microsecond unbiased molecular dynamics simulation trajectories unequivocally reveal how benzene, starting in bulk solvent, diffuses to the protein and spontaneously reaches the solvent inaccessible cavity of T4L L99A. The simulated and high-resolution X-ray derived bound structures are in excellent agreement. A robust four-state Markov model, developed using cumulative 60 μs trajectories, identifies and quantifies multiple ligand binding pathways with low activation barriers. Interestingly, none of these identified binding pathways required large conformational changes for ligand access to the buried cavity. Rather, these involve transient but crucial opening of a channel to the cavity via subtle displacements in the positions of key helices (helix4/helix6, helix7/helix9) leading to rapid binding. Free energy simulations further elucidate that these channel-opening events would have been unfavorable in wild type T4L. Taken together and via integrating with results from experiments, these simulations provide unprecedented mechanistic insights into the complete ligand recognition process in a buried cavity. By illustrating the power of subtle helix movements in opening up multiple pathways for ligand access, this work offers an alternate view of ligand recognition in a solvent-inaccessible cavity, contrary to the common perception of a single dominant pathway for ligand binding.
Collapse
Affiliation(s)
| | | | | | - Lewis E. Kay
- Departments of Molecular Genetics, Biochemistry and Chemistry, University of Toronto, Toronto, Ontario, Canada
- Hospital for Sick Children Program in Molecular Medicine, Toronto, Ontario, Canada
| | | |
Collapse
|
12
|
Rydzewski J, Nowak W. Photoinduced transport in an H64Q neuroglobin antidote for carbon monoxide poisoning. J Chem Phys 2018; 148:115101. [DOI: 10.1063/1.5013659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- J. Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - W. Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|
13
|
Dravecz G, Jánosi TZ, Beke D, Major DÁ, Károlyházy G, Erostyák J, Kamarás K, Gali Á. Identification of the binding site between bovine serum albumin and ultrasmall SiC fluorescent biomarkers. Phys Chem Chem Phys 2018; 20:13419-13429. [DOI: 10.1039/c8cp02144a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Combined experimental and theoretical studies propose a delayed diffusion model for describing the interaction between ultrasmall NPs and proteins.
Collapse
Affiliation(s)
- Gabriella Dravecz
- Institute for Solid State Physics and Optics
- Wigner Research Centre for Physics
- Hungarian Academy of Sciences
- H-1525 Budapest
- Hungary
| | - Tibor Z. Jánosi
- MTA-PTE High-Field Terahertz Research Group
- University of Pécs
- H-7624 Pécs
- Hungary
- University of Pécs
| | - Dávid Beke
- Institute for Solid State Physics and Optics
- Wigner Research Centre for Physics
- Hungarian Academy of Sciences
- H-1525 Budapest
- Hungary
| | - Dániel Á. Major
- Faculty of Chemical Technology and Biotechnology
- Budapest University of Technology and Economics
- H-1111 Budapest
- Hungary
| | - Gyula Károlyházy
- Institute for Solid State Physics and Optics
- Wigner Research Centre for Physics
- Hungarian Academy of Sciences
- H-1525 Budapest
- Hungary
| | - János Erostyák
- University of Pécs
- Szentágothai Research Centre
- Spectroscopy Research Group
- H-7624 Pécs
- Hungary
| | - Katalin Kamarás
- Institute for Solid State Physics and Optics
- Wigner Research Centre for Physics
- Hungarian Academy of Sciences
- H-1525 Budapest
- Hungary
| | - Ádám Gali
- Institute for Solid State Physics and Optics
- Wigner Research Centre for Physics
- Hungarian Academy of Sciences
- H-1525 Budapest
- Hungary
| |
Collapse
|
14
|
Rare-event sampling in ligand diffusion. Phys Life Rev 2017; 22-23:85-87. [DOI: 10.1016/j.plrev.2017.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 08/27/2017] [Indexed: 01/06/2023]
|
15
|
Torabifard H, Cisneros GA. Computational investigation of O 2 diffusion through an intra-molecular tunnel in AlkB; influence of polarization on O 2 transport. Chem Sci 2017; 8:6230-6238. [PMID: 28989656 PMCID: PMC5628400 DOI: 10.1039/c7sc00997f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022] Open
Abstract
E. Coli AlkB catalyzes the direct dealkylation of various alkylated bases in damaged DNA. The diffusion of molecular oxygen to the active site in AlkB is an essential step for the oxidative dealkylation activity. Despite detailed studies on the stepwise oxidation mechanism of AlkB, there is no conclusive picture of how O2 molecules reach the active site of the protein. Yu et al. (Nature, 439, 879) proposed the existence of an intra-molecular tunnel based on their initial crystal structures of AlkB. We have employed computational simulations to investigate possible migration pathways inside AlkB for O2 molecules. Extensive molecular dynamics (MD) simulations, including explicit ligand sampling and potential of mean force (PMF) calculations, have been performed to provide a microscopic description of the O2 delivery pathway in AlkB. Analysis of intra-molecular tunnels using the CAVER software indicates two possible pathways for O2 to diffuse into the AlkB active site. Explicit ligand sampling simulations suggests that only one of these tunnels provides a viable route. The free energy path for an oxygen molecule to travel along each of these tunnels has been determined with AMBER and AMOEBA. Both PMFs indicate passive transport of O2 from the surface of the protein. However, the inclusion of explicit polarization shows a very large barrier for diffusion of the co-substrate out of the active site, compared with the non-polarizable potential. In addition, our results suggest that the mutation of a conserved residue along the tunnel, Y178, has dramatic effects on the dynamics of AlkB and on the transport of O2 along the tunnel.
Collapse
Affiliation(s)
- Hedieh Torabifard
- Department of Chemistry , Wayne State University , Detroit , MI 48202 , USA
| | - G Andrés Cisneros
- Department of Chemistry , University of North Texas , Denton , TX 76203 , USA .
| |
Collapse
|
16
|
Kuczera K. Finding optimal paths through biomolecular mazes: Comment on: "Ligand diffusion in proteins via enhanced sampling in molecular dynamics" by J. Rydzewski and W. Nowak. Phys Life Rev 2017; 22-23:77-78. [PMID: 28797667 DOI: 10.1016/j.plrev.2017.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Krzysztof Kuczera
- Department of Chemistry and Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, United States.
| |
Collapse
|
17
|
Thermodynamics of camphor migration in cytochrome P450cam by atomistic simulations. Sci Rep 2017; 7:7736. [PMID: 28798338 PMCID: PMC5552751 DOI: 10.1038/s41598-017-07993-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/05/2017] [Indexed: 01/12/2023] Open
Abstract
Understanding the mechanisms of ligand binding to enzymes is of paramount importance for the design of new drugs. Here, we report on the use of a novel biased molecular dynamics (MD) methodology to study the mechanism of camphor binding to cytochrome P450cam. Microsecond-long MD simulations allowed us to observe reaction coordinates characterizing ligand diffusion from the active site of cytochrome P450cam to solvent via three egress routes. These atomistic simulations were used to estimate thermodynamic quantities along the reaction coordinates and indicate diverse binding configurations. The results suggest that the diffusion of camphor along the pathway near the substrate recognition site (SRS) is thermodynamically preferred. In addition, we show that the diffusion near the SRS is triggered by a transition from a heterogeneous collection of closed ligand-bound conformers to the basin comprising the open conformations of cytochrome P450cam. The conformational change accompanying this switch is characterized by the retraction of the F and G helices and the disorder of the B' helix. These results are corroborated by experimental studies and provide detailed insight into ligand binding and conformational behavior of the cytochrome family. The presented methodology is general and can be applied to other ligand-protein systems.
Collapse
|
18
|
Toward more efficient simulations of slow processes in large biomolecular systems: Comment on "Ligand diffusion in proteins via enhanced sampling in molecular dynamics" by Jakub Rydzewski and Wieslaw Nowak. Phys Life Rev 2017; 22-23:75-76. [PMID: 28781239 DOI: 10.1016/j.plrev.2017.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/28/2017] [Indexed: 12/31/2022]
|
19
|
Abstract
This Perspective delineates how redox signaling affects the activity of specific enzyme isoforms and how this property may be harnessed for rational drug design. Covalent drugs have resurged in recent years and several reports have extolled the general virtues of developing irreversible inhibitors. Indeed, many modern pharmaceuticals contain electrophilic appendages. Several invoke a warhead that hijacks active-site nucleophiles whereas others take advantage of spectator nucleophilic side chains that do not participate in enzymatic chemistry, but are poised to bind/react with electrophiles. The latest data suggest that innate electrophile sensing-which enables rapid reaction with an endogenous signaling electrophile-is a quintessential resource for the development of covalent drugs. For instance, based on recent work documenting isoform-specific electrophile sensing, isozyme non-specific drugs may be converted to isozyme-specific analogs by hijacking privileged first-responder electrophile-sensing cysteines. Because this approach targets functionally relevant cysteines, we can simultaneously harness previously untapped moonlighting roles of enzymes linked to redox sensing.
Collapse
Affiliation(s)
| | - Yimon Aye
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14850, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
20
|
Rydzewski J, Nowak W. Ligand diffusion in proteins via enhanced sampling in molecular dynamics. Phys Life Rev 2017; 22-23:58-74. [PMID: 28410930 DOI: 10.1016/j.plrev.2017.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/28/2016] [Accepted: 03/28/2017] [Indexed: 01/17/2023]
Abstract
Computational simulations in biophysics describe the dynamics and functions of biological macromolecules at the atomic level. Among motions particularly important for life are the transport processes in heterogeneous media. The process of ligand diffusion inside proteins is an example of a complex rare event that can be modeled using molecular dynamics simulations. The study of physical interactions between a ligand and its biological target is of paramount importance for the design of novel drugs and enzymes. Unfortunately, the process of ligand diffusion is difficult to study experimentally. The need for identifying the ligand egress pathways and understanding how ligands migrate through protein tunnels has spurred the development of several methodological approaches to this problem. The complex topology of protein channels and the transient nature of the ligand passage pose difficulties in the modeling of the ligand entry/escape pathways by canonical molecular dynamics simulations. In this review, we report a methodology involving a reconstruction of the ligand diffusion reaction coordinates and the free-energy profiles along these reaction coordinates using enhanced sampling of conformational space. We illustrate the above methods on several ligand-protein systems, including cytochromes and G-protein-coupled receptors. The methods are general and may be adopted to other transport processes in living matter.
Collapse
Affiliation(s)
- J Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland.
| | - W Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
21
|
Westberg M, Bregnhøj M, Etzerodt M, Ogilby PR. Temperature Sensitive Singlet Oxygen Photosensitization by LOV-Derived Fluorescent Flavoproteins. J Phys Chem B 2017; 121:2561-2574. [PMID: 28257211 DOI: 10.1021/acs.jpcb.7b00561] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Optogenetic sensitizers that selectively produce a given reactive oxygen species (ROS) constitute a promising tool for studying cell signaling processes with high levels of spatiotemporal control. However, to harness the full potential of this tool for live cell studies, the photophysics of currently available systems need to be explored further and optimized. Of particular interest in this regard, are the flavoproteins miniSOG and SOPP, both of which (1) contain the chromophore flavin mononucleotide, FMN, in a LOV-derived protein enclosure, and (2) photosensitize the production of singlet oxygen, O2(a1Δg). Here we present an extensive experimental study of the singlet and triplet state photophysics of FMN in SOPP and miniSOG over a physiologically relevant temperature range. Although changes in temperature only affect the singlet excited state photophysics slightly, the processes that influence the deactivation of the triplet excited state are more sensitive to temperature. Most notably, for both proteins, the rate constant for quenching of 3FMN by ground state oxygen, O2(X3Σg-), increases ∼10-fold upon increasing the temperature from 10 to 43 °C, while the oxygen-independent channels of triplet state deactivation are less affected. As a consequence, this increase in temperature results in higher yields of O2(a1Δg) formation for both SOPP and miniSOG. We also show that the quantum yields of O2(a1Δg) production by both miniSOG and SOPP are mainly limited by the fraction of FMN triplet states quenched by O2(X3Σg-). The results presented herein provide a much-needed quantitative framework that will facilitate the future development of optogenetic ROS sensitizers.
Collapse
Affiliation(s)
- Michael Westberg
- Department of Chemistry, Aarhus University , DK-8000 Aarhus, Denmark
| | - Mikkel Bregnhøj
- Department of Chemistry, Aarhus University , DK-8000 Aarhus, Denmark
| | - Michael Etzerodt
- Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University , DK-8000 Aarhus, Denmark
| |
Collapse
|
22
|
Li Y, Li X, Dong Z. Exploration of gated ligand binding recognizes an allosteric site for blocking FABP4-protein interaction. Phys Chem Chem Phys 2016; 17:32257-67. [PMID: 26580122 DOI: 10.1039/c5cp04784f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fatty acid binding protein 4 (FABP4), reversibly binding to fatty acids and other lipids with high affinities, is a potential target for treatment of cancers. The binding site of FABP4 is buried in an interior cavity and thereby ligand binding/unbinding is coupled with opening/closing of FABP4. It is a difficult task both experimentally and computationally to illuminate the entry or exit pathway, especially with the conformational gating. In this report we combine extensive computer simulations, clustering analysis, and the Markov state model to investigate the binding mechanism of FABP4 and troglitazone. Our simulations capture spontaneous binding and unbinding events as well as the conformational transition of FABP4 between the open and closed states. An allosteric binding site on the protein surface is recognized for the development of novel FABP4 inhibitors. The binding affinity is calculated and compared with the experimental value. The kinetic analysis suggests that ligand residence on the protein surface may delay the binding process. Overall, our results provide a comprehensive picture of ligand diffusion on the protein surface, ligand migration into the buried cavity, and the conformational change of FABP4 at an atomic level.
Collapse
Affiliation(s)
- Yan Li
- The Hormel Institute, University of Minnesota, Austin Minnesota 55912, USA.
| | - Xiang Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001 Zhengzhou, Henan, China
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin Minnesota 55912, USA.
| |
Collapse
|
23
|
Arbelo-Lopez HD, Simakov NA, Smith JC, Lopez-Garriga J, Wymore T. Homolytic Cleavage of Both Heme-Bound Hydrogen Peroxide and Hydrogen Sulfide Leads to the Formation of Sulfheme. J Phys Chem B 2016; 120:7319-31. [DOI: 10.1021/acs.jpcb.6b02839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hector D. Arbelo-Lopez
- Chemistry
Department, University of Puerto Rico, Mayagüez Campus, Mayagüez 00681, Puerto Rico
| | - Nikolay A. Simakov
- Center
for Computational Research, University of Buffalo, Buffalo, New York 14203, United States
| | - Jeremy C. Smith
- UT/ORNL
Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Juan Lopez-Garriga
- Chemistry
Department, University of Puerto Rico, Mayagüez Campus, Mayagüez 00681, Puerto Rico
| | - Troy Wymore
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
24
|
Abstract
If life without heme-Fe were at all possible, it would definitely be different. Indeed this complex and versatile iron-porphyrin macrocycle upon binding to different “globins” yields hemeproteins crucial to sustain a variety of vital functions, generally classified, for convenience, in a limited number of functional families. Over-and-above the array of functions briefly outlined below, the spectacular progress in molecular genetics seen over the last 30 years led to the discovery of many hitherto unknown novel hemeproteins in prokaryotes and eukaryotes. Here, we highlight a few basic aspects of the chemistry of the hemeprotein universe, in particular those that are relevant to the control of heme-Fe reactivity and specialization, as sculpted by a variety of interactions with the protein moiety.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy
| | - Maurizio Brunori
- Dipartimento di Scienze Biochimiche “Alessandro Rossi Fanelli” and Istituto Pasteur — Fondazione Cenci, Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| |
Collapse
|
25
|
Rydzewski J, Nowak W. Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam. J Chem Theory Comput 2016; 12:2110-20. [DOI: 10.1021/acs.jctc.6b00212] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. Rydzewski
- Institute of Physics, Faculty
of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - W. Nowak
- Institute of Physics, Faculty
of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|
26
|
Shadrina MS, English AM, Peslherbe GH. Benchmarking Rapid TLES Simulations of Gas Diffusion in Proteins: Mapping O2 Migration and Escape in Myoglobin as a Case Study. J Chem Theory Comput 2016; 12:2038-46. [PMID: 26938707 DOI: 10.1021/acs.jctc.5b01132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Standard molecular dynamics (MD) simulations of gas diffusion consume considerable computational time and resources even for small proteins. To combat this, temperature-controlled locally enhanced sampling (TLES) examines multiple diffusion trajectories per simulation by accommodating multiple noninteracting copies of a gas molecule that diffuse independently, while the protein and water molecules experience an average interaction from all copies. Furthermore, gas migration within a protein matrix can be accelerated without altering protein dynamics by increasing the effective temperature of the TLES copies. These features of TLES enable rapid simulations of gas diffusion within a protein matrix at significantly reduced (∼98%) computational cost. However, the results of TLES and standard MD simulations have not been systematically compared, which limits the adoption of the TLES approach. We address this drawback here by benchmarking TLES against standard MD in the simulation of O2 diffusion in myoglobin (Mb) as a case study since this model system has been extensively characterized. We find that 2 ns TLES and 108 ns standard simulations map the same network of diffusion tunnels in Mb and uncover the same docking sites, barriers, and escape portals. We further discuss the influence of simulation time as well as the number of independent simulations on the O2 population density within the diffusion tunnels and on the sampling of Mb's conformational space as revealed by principal component analysis. Overall, our comprehensive benchmarking reveals that TLES is an appropriate and robust tool for the rapid mapping of gas diffusion in proteins when the kinetic data provided by standard MD are not required. Furthermore, TLES provides explicit ligand diffusion pathways, unlike most rapid methods.
Collapse
Affiliation(s)
- Maria S Shadrina
- Centre for Research in Molecular Modeling (CERMM) and Department of Chemistry and Biochemistry, Concordia University , 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
| | - Ann M English
- Centre for Research in Molecular Modeling (CERMM) and Department of Chemistry and Biochemistry, Concordia University , 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
| | - Gilles H Peslherbe
- Centre for Research in Molecular Modeling (CERMM) and Department of Chemistry and Biochemistry, Concordia University , 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
| |
Collapse
|
27
|
Bustamante JP, Szretter ME, Sued M, Martí MA, Estrin DA, Boechi L. A quantitative model for oxygen uptake and release in a family of hemeproteins. Bioinformatics 2016; 32:1805-13. [PMID: 27153569 DOI: 10.1093/bioinformatics/btw083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/30/2016] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Hemeproteins have many diverse functions that largely depend on the rate at which they uptake or release small ligands, like oxygen. These proteins have been extensively studied using either simulations or experiments, albeit only qualitatively and one or two proteins at a time. RESULTS We present a physical-chemical model, which uses data obtained exclusively from computer simulations, to describe the uptake and release of oxygen in a family of hemeproteins, called truncated hemoglobins (trHbs). Through a rigorous statistical analysis we demonstrate that our model successfully recaptures all the reported experimental oxygen association and dissociation kinetic rate constants, thus allowing us to establish the key factors that determine the rates at which these hemeproteins uptake and release oxygen. We found that internal tunnels as well as the distal site water molecules control ligand uptake, whereas oxygen stabilization by distal site residues controls ligand release. Because these rates largely determine the functions of these hemeproteins, these approaches will also be important tools in characterizing the trHbs members with unknown functions. CONTACT lboechi@ic.fcen.uba.ar SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Juan P Bustamante
- Departamento de Química Inorgánica, Analítica Y Química Física, INQUIMAE-CONICET, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires
| | - María E Szretter
- Instituto De Cálculo, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires Departamento De Matemática, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires
| | - Mariela Sued
- Instituto De Cálculo, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires
| | - Marcelo A Martí
- Departamento De Química Biológica E Instituto De Química Biológica De La Facultad De Ciencias Exactas Y Naturales (IQUIBICEN), Universidad De Buenos Aires, Buenos Aires, Argentina
| | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica Y Química Física, INQUIMAE-CONICET, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires
| | - Leonardo Boechi
- Instituto De Cálculo, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires
| |
Collapse
|
28
|
Computation of Rate Constants for Diffusion of Small Ligands to and from Buried Protein Active Sites. Methods Enzymol 2016; 578:299-326. [DOI: 10.1016/bs.mie.2016.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
29
|
Enhanced heme accessibility in horse heart mini-myoglobin: Insights from molecular modelling and reactivity studies. Arch Biochem Biophys 2015; 585:1-9. [DOI: 10.1016/j.abb.2015.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/01/2015] [Accepted: 09/06/2015] [Indexed: 11/22/2022]
|
30
|
Shadrina MS, Peslherbe GH, English AM. Quaternary-Linked Changes in Structure and Dynamics That Modulate O2 Migration within Hemoglobin’s Gas Diffusion Tunnels. Biochemistry 2015; 54:5268-78. [DOI: 10.1021/acs.biochem.5b00368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria S. Shadrina
- Department of Chemistry and
Biochemistry, Centre for Research in Molecular Modeling and PROTEO, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Gilles H. Peslherbe
- Department of Chemistry and
Biochemistry, Centre for Research in Molecular Modeling and PROTEO, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Ann M. English
- Department of Chemistry and
Biochemistry, Centre for Research in Molecular Modeling and PROTEO, Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
31
|
Di Russo NV, Condurso HL, Li K, Bruner SD, Roitberg AE. Oxygen diffusion pathways in a cofactor-independent dioxygenase. Chem Sci 2015; 6:6341-6348. [PMID: 26508997 PMCID: PMC4618494 DOI: 10.1039/c5sc01638j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A combination of experimental and computational studies reveals the main O2 diffusion pathways, providing insight into how cofactor-independent oxygenases control stereospecificity and prevent oxidative inactivation.
Molecular oxygen plays an important role in a wide variety of enzymatic reactions. Through recent research efforts combining computational and experimental methods a new view of O2 diffusion is emerging, where specific channels guide O2 to the active site. The focus of this work is DpgC, a cofactor-independent oxygenase. Molecular dynamics simulations, together with mutagenesis experiments and xenon-binding data, reveal that O2 reaches the active site of this enzyme using three main pathways and four different access points. These pathways connect a series of dynamic hydrophobic pockets, concentrating O2 at a specific face of the enzyme substrate. Extensive molecular dynamics simulations provide information about which pathways are more frequently used. This data is consistent with the results of kinetic measurements on mutants and is difficult to obtain using computational cavity-location methods. Taken together, our results reveal that although DpgC is rare in its ability of activating O2 in the absence of cofactors or metals, the way O2 reaches the active site is similar to that reported for other O2-using proteins: multiple access channels are available, and the architecture of the pathway network can provide regio- and stereoselectivity. Our results point to the existence of common themes in O2 access that are conserved among very different types of proteins.
Collapse
Affiliation(s)
- Natali V Di Russo
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Heather L Condurso
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Kunhua Li
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| |
Collapse
|
32
|
Gee LB, Leontyev I, Stuchebrukhov A, Scott AD, Pelmenschikov V, Cramer SP. Docking and migration of carbon monoxide in nitrogenase: the case for gated pockets from infrared spectroscopy and molecular dynamics. Biochemistry 2015; 54:3314-9. [PMID: 25919807 DOI: 10.1021/acs.biochem.5b00216] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Evidence of a CO docking site near the FeMo cofactor in nitrogenase has been obtained by Fourier transform infrared spectroscopy-monitored low-temperature photolysis. We investigated the possible migration paths for CO from this docking site using molecular dynamics calculations. The simulations support the notion of a gas channel with multiple internal pockets from the active site to the protein exterior. Travel between pockets is gated by the motion of protein residues. Implications for the mechanism of nitrogenase reactions with CO and N2 are discussed.
Collapse
Affiliation(s)
- Leland B Gee
- †Department of Chemistry, University of California, Davis, California 95616, United States
| | - Igor Leontyev
- §InterX Inc., Berkeley, California 94710, United States
| | - Alexei Stuchebrukhov
- †Department of Chemistry, University of California, Davis, California 95616, United States
| | - Aubrey D Scott
- †Department of Chemistry, University of California, Davis, California 95616, United States
| | | | - Stephen P Cramer
- †Department of Chemistry, University of California, Davis, California 95616, United States.,‡Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
33
|
De Sancho D, Kubas A, Wang PH, Blumberger J, Best RB. Identification of Mutational Hot Spots for Substrate Diffusion: Application to Myoglobin. J Chem Theory Comput 2015; 11:1919-27. [PMID: 26574395 PMCID: PMC6132223 DOI: 10.1021/ct5011455] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pathways by which small molecules (substrates or inhibitors) access active sites are a key aspect of the function of enzymes and other proteins. A key problem in designing or altering such proteins is to identify sites for mutation that will have the desired effect on the substrate transport properties. While specific access channels have been invoked in the past, molecular simulations suggest that multiple routes are possible, complicating the analysis. This complexity, however, can be captured by a Markov State Model (MSM) of the ligand diffusion process. We have developed a sensitivity analysis of the resulting rate matrix, which identifies the locations where mutations should have the largest effect on the diffusive on rate. We apply this method to myoglobin, which is the best characterized example both from experiment and simulation. We validate the approach by translating the sensitivity parameter obtained from this method into the CO binding rates in myoglobin upon mutation, resulting in a semi-quantitative correlation with experiments. The model is further validated against an explicit simulation for one of the experimental mutants.
Collapse
Affiliation(s)
- David De Sancho
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
- CIC nanoGUNE , Tolosa Hiribidea 76, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science , Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Adam Kubas
- Department of Physics and Astronomy, University College London , Gower Street, London WC1E 6BT, United Kingdom
| | - Po-Hung Wang
- Department of Physics and Astronomy, University College London , Gower Street, London WC1E 6BT, United Kingdom
- Theoretical Molecular Science Laboratory , 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Jochen Blumberger
- Department of Physics and Astronomy, University College London , Gower Street, London WC1E 6BT, United Kingdom
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
34
|
Trujillo K, Papagiannopoulos T, Olsen KW. Effects of mutations on the molecular dynamics of oxygen escape from the dimeric hemoglobin of Scapharca inaequivalvis. F1000Res 2015; 4:65. [PMID: 25866622 PMCID: PMC4376171 DOI: 10.12688/f1000research.6127.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 12/15/2022] Open
Abstract
Like many hemoglobins, the structure of the dimeric hemoglobin from the clam
Scapharca inaequivalvis is a “closed bottle” since there is no direct tunnel from the oxygen binding site on the heme to the solvent. The proximal histidine faces the dimer interface, which consists of the E and F helicies. This is significantly different from tetrameric vertebrate hemoglobins and brings the heme groups near the subunit interface. The subunit interface is also characterized by an immobile, hydrogen-bonded network of water molecules. Although there is data which is consistent with the histidine gate pathway for ligand escape, these aspects of the structure would seem to make that pathway less likely. Locally enhanced sampling molecular dynamics are used here to suggest alternative pathways in the wild-type and six mutant proteins. In most cases the point mutations change the selection of exit routes observed in the simulations. Exit via the histidine gate is rarely seem although oxygen molecules do occasionally cross over the interface from one subunit to the other. The results suggest that changes in flexibility and, in some cases, creation of new cavities can explain the effects of the mutations on ligand exit paths.
Collapse
Affiliation(s)
- Kevin Trujillo
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Tasso Papagiannopoulos
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Kenneth W Olsen
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, 60660, USA
| |
Collapse
|
35
|
Yu TQ, Lapelosa M, Vanden-Eijnden E, Abrams CF. Full kinetics of CO entry, internal diffusion, and exit in myoglobin from transition-path theory simulations. J Am Chem Soc 2015; 137:3041-50. [PMID: 25664858 PMCID: PMC5508993 DOI: 10.1021/ja512484q] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We use Markovian milestoning molecular dynamics (MD) simulations on a tessellation of the collective variable space for CO localization in myoglobin to estimate the kinetics of entry, exit, and internal site-hopping. The tessellation is determined by analysis of the free-energy surface in that space using transition-path theory (TPT), which provides criteria for defining optimal milestones, allowing short, independent, cell-constrained MD simulations to provide properly weighted kinetic data. We coarse grain the resulting kinetic model at two levels: first, using crystallographically relevant internal cavities and their predicted interconnections and solvent portals; and second, as a three-state side-path scheme inspired by similar models developed from geminate recombination experiments. We show semiquantitative agreement with experiment on entry and exit rates and in the identification of the so-called "histidine gate" at position 64 through which ≈90% of flux between solvent and the distal pocket passes. We also show with six-dimensional calculations that the minimum free-energy pathway of escape through the histidine gate is a "knock-on" mechanism in which motion of the ligand and the gate are sequential and interdependent. In total, these results suggest that such TPT simulations are indeed a promising approach to overcome the practical time-scale limitations of MD to allow reliable estimation of transition mechanisms and rates among metastable states.
Collapse
Affiliation(s)
- Tang-Qing Yu
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States
| | - Mauro Lapelosa
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Eric Vanden-Eijnden
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States
| | - Cameron F. Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
36
|
Boron I, Bustamante JP, Davidge KS, Singh S, Bowman LAH, Tinajero-Trejo M, Carballal S, Radi R, Poole RK, Dikshit K, Estrin DA, Marti MA, Boechi L. Ligand uptake in Mycobacterium tuberculosis truncated hemoglobins is controlled by both internal tunnels and active site water molecules. F1000Res 2015; 4:22. [PMID: 26478812 PMCID: PMC4591903 DOI: 10.12688/f1000research.5921.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2015] [Indexed: 11/23/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of human tuberculosis, has two proteins belonging to the truncated hemoglobin (trHb) family. Mt-trHbN presents well-defined internal hydrophobic tunnels that allow O 2 and •NO to migrate easily from the solvent to the active site, whereas Mt-trHbO possesses tunnels interrupted by a few bulky residues, particularly a tryptophan at position G8. Differential ligand migration rates allow Mt-trHbN to detoxify •NO, a crucial step for pathogen survival once under attack by the immune system, much more efficiently than Mt-trHbO. In order to investigate the differences between these proteins, we performed experimental kinetic measurements, •NO decomposition, as well as molecular dynamics simulations of the wild type Mt-trHbN and two mutants, VG8F and VG8W. These mutations affect both the tunnels accessibility as well as the affinity of distal site water molecules, thus modifying the ligand access to the iron. We found that a single mutation allows Mt-trHbN to acquire ligand migration rates comparable to those observed for Mt-trHbO, confirming that ligand migration is regulated by the internal tunnel architecture as well as by water molecules stabilized in the active site.
Collapse
Affiliation(s)
- Ignacio Boron
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Juan Pablo Bustamante
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Kelly S Davidge
- Centre for Biomolecular Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Sandip Singh
- Institute of Microbial Technology, CSIR, Chandigarh, 160036, India
| | - Lesley AH Bowman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Mariana Tinajero-Trejo
- Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Sebastián Carballal
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, 11100, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, 11100, Uruguay
| | - Robert K Poole
- Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Kanak Dikshit
- Institute of Microbial Technology, CSIR, Chandigarh, 160036, India
| | - Dario A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Marcelo A Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Leonardo Boechi
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| |
Collapse
|
37
|
Boron I, Bustamante JP, Davidge KS, Singh S, Bowman LAH, Tinajero-Trejo M, Carballal S, Radi R, Poole RK, Dikshit K, Estrin DA, Marti MA, Boechi L. Ligand uptake in Mycobacterium tuberculosis truncated hemoglobins is controlled by both internal tunnels and active site water molecules. F1000Res 2015; 4:22. [PMID: 26478812 PMCID: PMC4591903 DOI: 10.12688/f1000research.5921.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 06/04/2024] Open
Abstract
Mycobacterium tuberculosis, the causative agent of human tuberculosis, has two proteins belonging to the truncated hemoglobin (trHb) family. Mt-trHbN presents well-defined internal hydrophobic tunnels that allow O 2 and (•)NO to migrate easily from the solvent to the active site, whereas Mt-trHbO possesses tunnels that are partially blocked by a few bulky residues, particularly a tryptophan at position G8. Differential ligand migration rates allow Mt-trHbN to detoxify (•)NO, a crucial step for pathogen survival once under attack by the immune system, much more efficiently than Mt-trHbO. In order to investigate the differences between these proteins, we performed experimental kinetic measurements, (•)NO decomposition, as well as molecular dynamics simulations of the wild type Mt-trHbN and two mutants, VG8F and VG8W. These mutations introduce modifications in both tunnel topologies and affect the incoming ligand capacity to displace retained water molecules at the active site. We found that a single mutation allows Mt-trHbN to acquire ligand migration rates comparable to those observed for Mt-trHbO, confirming that ligand migration is regulated by the internal tunnel architecture as well as by water molecules stabilized in the active site.
Collapse
Affiliation(s)
- Ignacio Boron
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Juan Pablo Bustamante
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Kelly S Davidge
- Centre for Biomolecular Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Sandip Singh
- Institute of Microbial Technology, CSIR, Chandigarh, 160036, India
| | - Lesley AH Bowman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Mariana Tinajero-Trejo
- Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Sebastián Carballal
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, 11100, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, 11100, Uruguay
| | - Robert K Poole
- Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Kanak Dikshit
- Institute of Microbial Technology, CSIR, Chandigarh, 160036, India
| | - Dario A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Marcelo A Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Leonardo Boechi
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| |
Collapse
|
38
|
Howes BD, Boechi L, Boffi A, Estrin DE, Smulevich G. Bridging Theory and Experiment to Address Structural Properties of Truncated Haemoglobins: Insights from Thermobifida fusca HbO. Adv Microb Physiol 2015; 67:85-126. [PMID: 26616516 DOI: 10.1016/bs.ampbs.2015.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this chapter, we will discuss the paradigmatic case of Thermobifida fusca (Tf-trHb) HbO in its ferrous and ferric states and its behaviour towards a battery of possible ligands. This choice was dictated by the fact that it has been one of the most extensively studied truncated haemoglobins, both in terms of spectroscopic and molecular dynamics studies. Tf-trHb typifies the structural properties of group II trHbs, as the active site is characterized by a highly polar distal environment in which TrpG8, TyrCD1, and TyrB10 provide three potential H-bond donors in the distal cavity capable of stabilizing the incoming ligands. The role of these residues in key topological positions, and their interplay with the iron-bound ligands, has been addressed in studies carried out on the CO, F(-), OH(-), CN(-), and HS(-) adducts formed with the wild-type protein and a combinatorial set of mutants, in which the distal polar residues, TrpG8, TyrCD1, and TyrB10, have been singly, doubly, or triply replaced by a Phe residue. In this context, such a complete analysis provides an excellent benchmark for the investigation of the relationship between protein structure and function, allowing one to translate physicochemical properties of the active site into the observed functional behaviour. Tf-trHb will be compared with other members of the group II trHbs and, more generally, with members of the other trHb subgroups.
Collapse
Affiliation(s)
- Barry D Howes
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentino, Italy
| | - Leonardo Boechi
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Alberto Boffi
- Dipartimento di Scienze Biochimiche, Università "Sapienza", Rome, Italy
| | - Dario E Estrin
- Departamento de Química Inorgánica, Analítica y Química Física and Inquimae-Conicet, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentino, Italy.
| |
Collapse
|
39
|
Principal Component Analysis reveals correlation of cavities evolution and functional motions in proteins. J Mol Graph Model 2014; 55:13-24. [PMID: 25424655 DOI: 10.1016/j.jmgm.2014.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/16/2014] [Accepted: 10/18/2014] [Indexed: 11/24/2022]
Abstract
Protein conformation has been recognized as the key feature determining biological function, as it determines the position of the essential groups specifically interacting with substrates. Hence, the shape of the cavities or grooves at the protein surface appears to drive those functions. However, only a few studies describe the geometrical evolution of protein cavities during molecular dynamics simulations (MD), usually with a crude representation. To unveil the dynamics of cavity geometry evolution, we developed an approach combining cavity detection and Principal Component Analysis (PCA). This approach was applied to four systems subjected to MD (lysozyme, sperm whale myoglobin, Dengue envelope protein and EF-CaM complex). PCA on cavities allows us to perform efficient analysis and classification of the geometry diversity explored by a cavity. Additionally, it reveals correlations between the evolutions of the cavities and structures, and can even suggest how to modify the protein conformation to induce a given cavity geometry. It also helps to perform fast and consensual clustering of conformations according to cavity geometry. Finally, using this approach, we show that both carbon monoxide (CO) location and transfer among the different xenon sites of myoglobin are correlated with few cavity evolution modes of high amplitude. This correlation illustrates the link between ligand diffusion and the dynamic network of internal cavities.
Collapse
|
40
|
Lynch GC, Perkyns JS, Nguyen BL, Pettitt BM. Solvation and cavity occupation in biomolecules. Biochim Biophys Acta Gen Subj 2014; 1850:923-931. [PMID: 25261777 DOI: 10.1016/j.bbagen.2014.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Solvation density locations are important for protein dynamics and structure. Knowledge of the preferred hydration sites at biomolecular interfaces and those in the interior of cavities can enhance understanding of structure and function. While advanced X-ray diffraction methods can provide accurate atomic structures for proteins, that technique is challenged when it comes to providing accurate hydration structures, especially for interfacial and cavity bound solvent molecules. METHODS Advances in integral equation theories which include more accurate methods for calculating the long-ranged Coulomb interaction contributions to the three-dimensional distribution functions make it possible to calculate angle dependent average solvent structure, accurately, around and inside irregular molecular conformations. The proximal radial distribution method provides another approximate method to determine average solvent structures for biomolecular systems based on a proximal or near neighbor solvent distribution that can be constructed from previously collected solvent distributions. These two approximate methods, along with all-atom molecular dynamics simulations are used to determine the solvent density inside the myoglobin heme cavity. DISCUSSION AND RESULTS Myoglobin is a good test system for these methods because the cavities are many and one is large, tens of Å(3), but is shown to have only four hydration sites. These sites are not near neighbors which implies that the large cavity must have more than one way in and out. CONCLUSIONS Our results show that main solvation sites are well reproduced by all three methods. The techniques also produce a clearly identifiable solvent pathway into the interior of the protein. GENERAL SIGNIFICANCE The agreement between molecular dynamics and less computationally demanding approximate methods is encouraging. This article is part of a Special Issue entitled Recent developments of molecular dynamics.
Collapse
Affiliation(s)
- Gillian C Lynch
- Sealy Center for Structural Biology and Molecular Biophysics, Departments of Biochemistry and Molecular Biology and Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX 77555-0304, USA.
| | - John S Perkyns
- Sealy Center for Structural Biology and Molecular Biophysics, Departments of Biochemistry and Molecular Biology and Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX 77555-0304, USA
| | - Bao Linh Nguyen
- Sealy Center for Structural Biology and Molecular Biophysics, Departments of Biochemistry and Molecular Biology and Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX 77555-0304, USA
| | - B Montgomery Pettitt
- Sealy Center for Structural Biology and Molecular Biophysics, Departments of Biochemistry and Molecular Biology and Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX 77555-0304, USA.
| |
Collapse
|
41
|
Abstract
![]()
Myoglobin
(Mb) binds diatomic ligands, like O2, CO,
and NO, in a cavity that is only transiently accessible. Crystallography
and molecular simulations show that the ligands can migrate through
an extensive network of transiently connected cavities but disagree
on the locations and occupancy of internal hydration sites. Here,
we use water 2H and 17O magnetic relaxation
dispersion (MRD) to characterize the internal water molecules in Mb
under physiological conditions. We find that equine carbonmonoxy Mb
contains 4.5 ± 1.0 ordered internal water molecules with a mean
survival time of 5.6 ± 0.5 μs at 25 °C. The likely
locations of these water molecules are the four polar hydration sites,
including one of the xenon-binding cavities, that are fully occupied
in all high-resolution crystal structures of equine Mb. The finding
that water escapes from these sites, located 17–31 Å apart
in the protein, on the same μs time scale suggests a global
exchange mechanism. We propose that this mechanism involves transient
penetration of the protein by H-bonded water chains. Such a mechanism
could play a functional role by eliminating trapped ligands. In addition,
the MRD results indicate that 2 or 3 of the 11 histidine residues
of equine Mb undergo intramolecular hydrogen exchange on a μs
time scale.
Collapse
Affiliation(s)
- Shuji Kaieda
- Department of Biophysical Chemistry, Lund University , P.O. Box 124, SE-22100 Lund, Sweden
| | | |
Collapse
|
42
|
Zhao J, Srajer V, Franzen S. Functional consequences of the open distal pocket of dehaloperoxidase-hemoglobin observed by time-resolved X-ray crystallography. Biochemistry 2013; 52:7943-50. [PMID: 24116924 DOI: 10.1021/bi401118q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using time-resolved X-ray crystallography, we contrast a bifunctional dehaloperoxidase-hemoglobin (DHP) with previously studied examples of myoglobin and hemoglobin to understand the functional role of the distal pocket of globins. One key functional difference between DHP and other globins is the requirement that H2O2 enter the distal pocket of oxyferrous DHP to displace O2 from the heme Fe atom and thereby activate the heme for the peroxidase function. The open architecture of DHP permits more than one molecule to simultaneously enter the distal pocket of the protein above the heme to facilitate the unique peroxidase cycle starting from the oxyferrous state. The time-resolved X-ray data show that the distal pocket of DHP lacks a protein valve found in the two other globins that have been studied previously. The photolyzed CO ligand trajectory in DHP does not have a docking site; rather, the CO moves immediately to the Xe-binding site. From there, CO can escape but can also recombine an order of magnitude more rapidly than in other globins. The contrast with DHP dynamics and function more precisely defines the functional role of the multiple conformational states of myoglobin. Taken together with the high reduction potential of DHP, the open distal site helps to explain how a globin can also function as a peroxidase.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | |
Collapse
|
43
|
Wang PH, Bruschi M, De Gioia L, Blumberger J. Uncovering a dynamically formed substrate access tunnel in carbon monoxide dehydrogenase/acetyl-CoA synthase. J Am Chem Soc 2013; 135:9493-502. [PMID: 23713976 DOI: 10.1021/ja403110s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The transport of small ligands to active sites of proteins is the basis of vital processes in biology such as enzymatic catalysis and cell signaling, but also of more destructive ones including enzyme inhibition and oxidative damage. Here, we show how a diffusion-reaction model solved by means of molecular dynamics and density functional theory calculations provides novel insight into the transport of small ligands in proteins. In particular, we unravel the existence of an elusive, dynamically formed gas channel, which CO2 takes to diffuse from the solvent to the active site (C-cluster) of the bifunctional multisubunit enzyme complex carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS). Two cavities forming this channel are temporarily created by protein fluctuations and are not apparent in the X-ray structures. The ligand transport is controlled by two residues at the end of this tunnel, His113 and His116, and occurs on the same time scale on which chemical binding to the active site takes place (0.1-1 ms), resulting in an overall binding rate on the second time scale. We find that upon reduction of CO2 to CO, the newly formed Fe-hydroxy ligand greatly strengthens the hydrogen-bond network, preventing CO from exiting the protein through the same way that CO2 takes to enter the protein. This is the basis for directional transport of CO from the production site (C-cluster of CODH subunit) to the utilization site (A-cluster of ACS subunit). In view of these results, a general picture emerges of how large proteins guide small ligands toward their active sites.
Collapse
Affiliation(s)
- Po-hung Wang
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
44
|
Abbruzzetti S, Spyrakis F, Bidon-Chanal A, Luque FJ, Viappiani C. Ligand migration through hemeprotein cavities: insights from laser flash photolysis and molecular dynamics simulations. Phys Chem Chem Phys 2013; 15:10686-701. [PMID: 23733145 DOI: 10.1039/c3cp51149a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The presence of cavities and tunnels in the interior of proteins, in conjunction with the structural plasticity arising from the coupling to the thermal fluctuations of the protein scaffold, has profound consequences on the pathways followed by ligands moving through the protein matrix. In this perspective we discuss how quantitative analysis of experimental rebinding kinetics from laser flash photolysis, trapping of unstable conformational states by embedding proteins within the nanopores of silica gels, and molecular simulations can synergistically converge to gain insight into the migration mechanism of ligands. We show how the evaluation of the free energy landscape for ligand diffusion based on the outcome of computational techniques can assist the definition of sound reaction schemes, leading to a comprehensive understanding of the broad range of chemical events and time scales that encompass the transport of small ligands in hemeproteins.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Parma, viale delle Scienze 7A, 43124, Parma, Italy
| | | | | | | | | |
Collapse
|
45
|
Scorciapino MA, Spiga E, Vezzoli A, Mrakic-Sposta S, Russo R, Fink B, Casu M, Gussoni M, Ceccarelli M. Structure–Function Paradigm in Human Myoglobin: How a Single-Residue Substitution Affects NO Reactivity at Low pO2. J Am Chem Soc 2013; 135:7534-44. [DOI: 10.1021/ja400213t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | - Alessandra Vezzoli
- Institute for Bioimaging and
Molecular Physiology, Consiglio Nazionale delle Ricerche (CNR), Segrate (MI), Italy
| | - Simona Mrakic-Sposta
- Department of Pathophysiology
and Transplantation−Physiology Section, University of Milan, Milan, Italy
| | - Rosaria Russo
- Department of Pathophysiology
and Transplantation−Physiology Section, University of Milan, Milan, Italy
| | - Bruno Fink
- Noxygen Science Transfer and Diagnostics GmbH, Elzach, Germany
| | | | - Maristella Gussoni
- Department of Pathophysiology
and Transplantation−Physiology Section, University of Milan, Milan, Italy
- Institute for Macromolecular
Studies, CNR, Milan, Italy
| | - Matteo Ceccarelli
- Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), UOS, Cagliari, Italy
| |
Collapse
|
46
|
Takayanagi M, Kurisaki I, Nagaoka M. Oxygen Entry through Multiple Pathways in T-State Human Hemoglobin. J Phys Chem B 2013; 117:6082-91. [DOI: 10.1021/jp401459b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masayoshi Takayanagi
- Core
Research for Evolutional
Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan
| | - Ikuo Kurisaki
- Core
Research for Evolutional
Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan
| | - Masataka Nagaoka
- Core
Research for Evolutional
Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan
| |
Collapse
|
47
|
Krokhotin A, Niemi AJ, Peng X. On the role of thermal backbone fluctuations in myoglobin ligand gate dynamics. J Chem Phys 2013; 138:175101. [PMID: 23656161 DOI: 10.1063/1.4801330] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We construct an energy function that describes the crystallographic structure of sperm whale myoglobin backbone. As a model in our construction, we use the Protein Data Bank entry 1ABS that has been measured at liquid helium temperature. Consequently, the thermal B-factor fluctuations are very small, which is an advantage in our construction. The energy function that we utilize resembles that of the discrete nonlinear Schrödinger equation. Likewise, ours supports topological solitons as local minimum energy configurations. We describe the 1ABS backbone in terms of topological solitons with a precision that deviates from 1ABS by an average root-mean-square distance, which is less than the experimentally observed Debye-Waller B-factor fluctuation distance. We then subject the topological multi-soliton solution to extensive numerical heating and cooling experiments, over a very wide range of temperatures. We concentrate in particular to temperatures above 300 K and below the Θ-point unfolding temperature, which is around 348 K. We confirm that the behavior of the topological multi-soliton is fully consistent with Anfinsen's thermodynamic principle, up to very high temperatures. We observe that the structure responds to an increase of temperature consistently in a very similar manner. This enables us to characterize the onset of thermally induced conformational changes in terms of three distinct backbone ligand gates. One of the gates is made of the helix F and the helix E. The two other gates are chosen similarly, when open they provide a direct access route for a ligand to reach the heme. We find that out of the three gates we investigate, the one which is formed by helices B and G is the most sensitive to thermally induced conformational changes. Our approach provides a novel perspective to the important problem of ligand entry and exit.
Collapse
Affiliation(s)
- Andrey Krokhotin
- Department of Physics and Astronomy and Science for Life Laboratory, Uppsala University, P.O. Box 803, S-75108 Uppsala, Sweden.
| | | | | |
Collapse
|
48
|
Spyrakis F, Lucas F, Bidon-Chanal A, Viappiani C, Guallar V, Luque FJ. Comparative analysis of inner cavities and ligand migration in non-symbiotic AHb1 and AHb2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1957-67. [PMID: 23583621 DOI: 10.1016/j.bbapap.2013.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/30/2013] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
Abstract
This study reports a comparative analysis of the topological properties of inner cavities and the intrinsic dynamics of non-symbiotic hemoglobins AHb1 and AHb2 from Arabidopsis thaliana. The two proteins belong to the 3/3 globin fold and have a sequence identity of about 60%. However, it is widely assumed that they have distinct physiological roles. In order to investigate the structure-function relationships in these proteins, we have examined the bis-histidyl and ligand-bound hexacoordinated states by atomistic simulations using in silico structural models. The results allow us to identify two main pathways to the distal cavity in the bis-histidyl hexacoordinated proteins. Nevertheless, a larger accessibility to small gaseous molecules is found in AHb2. This effect can be attributed to three factors: the mutation Leu35(AHb1)→Phe32(AHb2), the enhanced flexibility of helix B, and the more favorable energetic profile for ligand migration to the distal cavity. The net effect of these factors would be to facilitate the access of ligands, thus compensating the preference for the fully hexacoordination of AHb2, in contrast to the equilibrium between hexa- and pentacoordinated species in AHb1. On the other hand, binding of the exogenous ligand introduces distinct structural changes in the two proteins. A well-defined tunnel is formed in AHb1, which might be relevant to accomplish the proposed NO detoxification reaction. In contrast, no similar tunnel is found in AHb2, which can be ascribed to the reduced flexibility of helix E imposed by the larger number of salt bridges compared to AHb1. This feature would thus support the storage and transport functions proposed for AHb2. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parma, Italy.
| | | | | | | | | | | |
Collapse
|
49
|
Small ligand-globin interactions: reviewing lessons derived from computer simulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1722-38. [PMID: 23470499 DOI: 10.1016/j.bbapap.2013.02.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 11/24/2022]
Abstract
In this work we review the application of classical and quantum-mechanical atomistic computer simulation tools to the investigation of small ligand interaction with globins. In the first part, studies of ligand migration, with its connection to kinetic association rate constants (kon), are presented. In the second part, we review studies for a variety of ligands such as O2, NO, CO, HS(-), F(-), and NO2(-) showing how the heme structure, proximal effects, and the interactions with the distal amino acids can modulate protein ligand binding. The review presents mainly results derived from our previous works on the subject, in the context of other theoretical and experimental studies performed by others. The variety and extent of the presented data yield a clear example of how computer simulation tools have, in the last decade, contributed to our deeper understanding of small ligand interactions with globins. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
|
50
|
Newhouse EI, Newhouse JS, Alam M. Molecular dynamics study of hell's gate globin I (HGbI) from a methanotrophic extremophile: oxygen migration through a large cavity. J Mol Model 2013; 19:2265-71. [PMID: 23377896 DOI: 10.1007/s00894-012-1739-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 12/14/2012] [Indexed: 11/24/2022]
Abstract
Hell's gate globin I (HGbI), a heme-containing protein from the extremophile Methylacidiphilum infernorum, has fast oxygen-binding/slow release characteristics due to its distal residues Gln and Tyr. The combination of Gln/Tyr distal iron coordination, adaptation to extreme environmental conditions, and lack of a D helix suggests that ligand migration in HGbI differs from other previously studied globins. Locally enhanced molecular dynamics trajectories of oxygen migration indicate a large internal cavity. This may increase the tendency of oxygen to exit from portals other than the most direct exit from the space near the heme. Oxygen may reside transiently in shallow surface depressions around the exits. Such surface trapping may enhance both oxygen uptake by increasing contact time between molecules, and decrease release by increasing the probability of oxygen reentry from the vicinity of the portal.
Collapse
|