1
|
Bukhari ZA, Frasch WD. Catalytic dwell oscillations complete the F 1-ATPase mechanism. Commun Chem 2025; 8:52. [PMID: 39984644 PMCID: PMC11845608 DOI: 10.1038/s42004-025-01443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/04/2025] [Indexed: 02/23/2025] Open
Abstract
The F1-ATPase molecular motor rotates subunit-γ in 120° power strokes within its ring of three catalytic sites separated by catalytic dwells for ATP hydrolysis and Pi release. By monitoring rotary position of subunit-γ in E. coli F1 every 5 μs, we resolved Stage-1 catalytic dwell oscillations that extend from -13° to 13° centered at 0° consistent with F1 structures containing transition state inhibitors, which decay by a first order process consistent with ATP hydrolysis. During Stage-2, 80% of the oscillations extend from 3° and 25° centered at 14°, while 20% are centered at 33° and can extend to 27°-44° comparable to the ATP binding position. Remarkably, in Stage-3 subunit-γ returns to 0° to end the catalytic dwell, which keeps the start of power strokes in phase for consecutive rotational events. These newly observed states fit with F1 structures that were inconsistent with the canonical mechanism, and indicate that catalytic dwell oscillations must persist until the correct occupancy of substrates and products occurs at all three catalytic sites. When that condition is met, F1 can proceed to the next power stroke. Understanding the basis of these catalytic dwell oscillations completes the F1-ATPase rotary mechanism.
Collapse
Affiliation(s)
- Zain A Bukhari
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Wayne D Frasch
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
2
|
Xue J, Ruan J, Hakobyan K, Xu J, Liang K. Regenerative Biomimetic Photosynthesis by Covalent-Organic Framework-Based Nanobiohybrids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414216. [PMID: 39726083 DOI: 10.1002/adma.202414216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Biomimetic photosynthesis, which leverages nanomaterials with light-responsive capabilities, represents an innovative approach for replicating natural photosynthetic processes for green and sustainable energy conversion. In this study, a covalent-organic framework (COF)-based artificial photosynthesis system is realized through the co-assembly of adenosine triphosphate (ATP) synthase and a light-responsive proton generator onto an imine-based COF, RT-COF-1. This system demonstrates an ATP production rate of 0.64 µmol ATP per mg protein within 90 s of light exposure and, for the first time, exhibites regenerative ATP production through multiple light on/off cycles. Furthermore, the ATP generated by the system facilitates the biocoupling of monosaccharides into disaccharides, confirming the hybrid system's capability to convert solar energy into chemical energy in the form of organic molecules. This approach shows significant potential for renewable bioenergy generation, offering precise and reliable control over biochemical processes through artificial photosynthesis.
Collapse
Affiliation(s)
- Jueyi Xue
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Juanfang Ruan
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Karen Hakobyan
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
- Centre for Advanced Macromolecular Design (CAMD), The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
- Centre for Advanced Macromolecular Design (CAMD), The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kang Liang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Montserrat-Canals M, Cordara G, Krengel U. Allostery. Q Rev Biophys 2025; 58:e5. [PMID: 39849666 DOI: 10.1017/s0033583524000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Allostery describes the ability of biological macromolecules to transmit signals spatially through the molecule from an allosteric site – a site that is distinct from orthosteric binding sites of primary, endogenous ligands – to the functional or active site. This review starts with a historical overview and a description of the classical example of allostery – hemoglobin – and other well-known examples (aspartate transcarbamoylase, Lac repressor, kinases, G-protein-coupled receptors, adenosine triphosphate synthase, and chaperonin). We then discuss fringe examples of allostery, including intrinsically disordered proteins and inter-enzyme allostery, and the influence of dynamics, entropy, and conformational ensembles and landscapes on allosteric mechanisms, to capture the essence of the field. Thereafter, we give an overview over central methods for investigating molecular mechanisms, covering experimental techniques as well as simulations and artificial intelligence (AI)-based methods. We conclude with a review of allostery-based drug discovery, with its challenges and opportunities: with the recent advent of AI-based methods, allosteric compounds are set to revolutionize drug discovery and medical treatments.
Collapse
Affiliation(s)
- Mateu Montserrat-Canals
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Gabriele Cordara
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Furlong EJ, Reininger-Chatzigiannakis IBP, Zeng YC, Brown SHJ, Sobti M, Stewart AG. The molecular structure of an axle-less F 1-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149521. [PMID: 39428050 DOI: 10.1016/j.bbabio.2024.149521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
F1Fo ATP synthase is a molecular rotary motor that can generate ATP using a transmembrane proton motive force. Isolated F1-ATPase catalytic cores can hydrolyse ATP, passing through a series of conformational states involving rotation of the central γ rotor subunit and the opening and closing of the catalytic β subunits. Cooperativity in F1-ATPase has long thought to be conferred through the γ subunit, with three key interaction sites between the γ and β subunits being identified. Single molecule studies have demonstrated that the F1 complexes lacking the γ axle still "rotate" and hydrolyse ATP, but with less efficiency. We solved the cryogenic electron microscopy structure of an axle-less Bacillus sp. PS3 F1-ATPase. The unexpected binding-dwell conformation of the structure in combination with the observed lack of interactions between the axle-less γ and the open β subunit suggests that the complete γ subunit is important for coordinating efficient ATP binding of F1-ATPase.
Collapse
Affiliation(s)
- Emily J Furlong
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia; Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Acton, ACT, Australia
| | | | - Yi C Zeng
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, Australia
| | - Simon H J Brown
- School of Chemistry and Molecular Bioscience, Molecular Horizons, and Australian Research Council Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| | - Meghna Sobti
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, Australia
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, Australia
| |
Collapse
|
5
|
Marutyan S, Karapetyan H, Khachatryan L, Muradyan A, Marutyan S, Poladyan A, Trchounian K. The antimicrobial effects of silver nanoparticles obtained through the royal jelly on the yeasts Candida guilliermondii NP-4. Sci Rep 2024; 14:19163. [PMID: 39160246 PMCID: PMC11333486 DOI: 10.1038/s41598-024-70197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
The effect of silver nanoparticles (Ag NPs) obtained in the presence of royal jelly (RJ) on the growth of yeast Candida guilliermondii NP-4, on the total and H+-ATPase activity, as well as lipid peroxidation process and antioxidant enzymes (superoxide dismutase (SOD), catalase) activity was studied. It has been shown that RJ-mediated Ag NPs have a fungicide and fungistatic effects at the concentrations of 5.4 µg mL-1 and 27 µg mL-1, respectively. Under the influence of RJ-mediated Ag NPs, a decrease in total and H+-ATPase activity in yeast homogenates by ~ 90% and ~ 80% was observed, respectively. In yeast mitochondria total and H+-ATPase activity depression was detected by ~ 80% and ~ 90%, respectively. The amount of malondialdehyde in the Ag NPs exposed yeast homogenate increased ~ 60%, the catalase activity increased ~ 70%, and the SOD activity-~ 30%. The obtained data indicate that the use of RJ-mediated Ag NPs have a diverse range of influence on yeast cells. This approach may be important in the field of biomedical research aimed at evaluating the development of oxidative stress in cells. It may also contribute to a more comprehensive understanding of antimicrobial properties of RJ-mediated Ag NPs and help control the proliferation of pathogenic fungi.
Collapse
Affiliation(s)
- Seda Marutyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia.
| | - Hasmik Karapetyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Lusine Khachatryan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Anna Muradyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Syuzan Marutyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Anna Poladyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia.
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia.
- Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 1 A. Manoogian, 0025, Yerevan, Armenia.
| |
Collapse
|
6
|
Furlong EJ, Reininger-Chatzigiannakis IBP, Zeng YC, Brown SHJ, Sobti M, Stewart AG. The molecular structure of an axle-less F 1-ATPase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607276. [PMID: 39149353 PMCID: PMC11326301 DOI: 10.1101/2024.08.08.607276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
F1Fo ATP synthase is a molecular rotary motor that can generate ATP using a transmembrane proton motive force. Isolated F1-ATPase catalytic cores can hydrolyse ATP, passing through a series of conformational states involving rotation of the central γ rotor subunit and the opening and closing of the catalytic β subunits. Cooperativity in F1-ATPase has long thought to be conferred through the γ subunit, with three key interaction sites between the γ and β subunits being identified. Single molecule studies have demonstrated that the F1 complexes lacking the γ axle still "rotate" and hydrolyse ATP, but with less efficiency. We solved the cryogenic electron microscopy structure of an axle-less Bacillus sp. PS3 F1-ATPase. The unexpected binding-dwell conformation of the structure in combination with the observed lack of interactions between the axle-less γ and the open β subunit suggests that the complete γ subunit is important for coordinating efficient ATP binding of F1-ATPase.
Collapse
Affiliation(s)
- Emily J Furlong
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Acton, ACT, Australia
| | | | - Yi C Zeng
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, Australia
| | - Simon H J Brown
- School of Chemistry and Molecular Bioscience, Molecular Horizons, and Australian Research Council Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| | - Meghna Sobti
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, Australia
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, Australia
| |
Collapse
|
7
|
Sobti M, Ueno H, Brown SHJ, Noji H, Stewart AG. The series of conformational states adopted by rotorless F 1-ATPase during its hydrolysis cycle. Structure 2024; 32:393-399.e3. [PMID: 38237595 DOI: 10.1016/j.str.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 12/21/2023] [Indexed: 04/07/2024]
Abstract
F1Fo ATP synthase interchanges phosphate transfer energy and proton motive force via a rotary catalytic mechanism and isolated F1-ATPase subcomplexes can also hydrolyze ATP to generate rotation of their central γ rotor subunit. As ATP is hydrolyzed, the F1-ATPase cycles through a series of conformational states that mediates unidirectional rotation of the rotor. However, even in the absence of a rotor, the α and β subunits are still able to pass through a series of conformations, akin to those that generate rotation. Here, we use cryoelectron microscopy to establish the structures of these rotorless states. These structures indicate that cooperativity in this system is likely mediated by contacts between the β subunit lever domains, irrespective of the presence of the γ rotor subunit. These findings provide insight into how long-range information may be transferred in large biological systems.
Collapse
Affiliation(s)
- Meghna Sobti
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Hiroshi Ueno
- Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Simon H J Brown
- Molecular Horizons, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Hiroyuki Noji
- Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
8
|
Dreyer A, Lenz C, Groß U, Bohne W, Zautner AE. Comparative analysis of proteomic adaptations in Enterococcus faecalis and Enterococcus faecium after long term bile acid exposure. BMC Microbiol 2024; 24:110. [PMID: 38570789 PMCID: PMC10988882 DOI: 10.1186/s12866-024-03253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND All gastrointestinal pathogens, including Enterococcus faecalis and Enterococcus faecium, undergo adaptation processes during colonization and infection. In this study, we investigated by data-independent acquisition mass spectrometry (DIA-MS) two crucial adaptations of these two Enterococcus species at the proteome level. Firstly, we examined the adjustments to cope with bile acid concentrations at 0.05% that the pathogens encounter during a potential gallbladder infection. Therefore, we chose the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) as well as the secondary bile acid deoxycholic acid (DCA), as these are the most prominent bile acids. Secondly, we investigated the adaptations from an aerobic to a microaerophilic environment, as encountered after oral-fecal infection, in the absence and presence of deoxycholic acid (DCA). RESULTS Our findings showed similarities, but also species-specific variations in the response to the different bile acids. Both Enterococcus species showed an IC50 in the range of 0.01- 0.023% for DCA and CDCA in growth experiments and both species were resistant towards 0.05% CA. DCA and CDCA had a strong effect on down-expression of proteins involved in translation, transcription and replication in E. faecalis (424 down-expressed proteins with DCA, 376 down-expressed proteins with CDCA) and in E. faecium (362 down-expressed proteins with DCA, 391 down-expressed proteins with CDCA). Proteins commonly significantly altered in their expression in all bile acid treated samples were identified for both species and represent a "general bile acid response". Among these, various subunits of a V-type ATPase, different ABC-transporters, multi-drug transporters and proteins related to cell wall biogenesis were up-expressed in both species and thus seem to play an essential role in bile acid resistance. Most of the differentially expressed proteins were also identified when E. faecalis was incubated with low levels of DCA at microaerophilic conditions instead of aerobic conditions, indicating that adaptations to bile acids and to a microaerophilic atmosphere can occur simultaneously. CONCLUSIONS Overall, these findings provide a detailed insight into the proteomic stress response of two Enterococcus species and help to understand the resistance potential and the stress-coping mechanisms of these important gastrointestinal bacteria.
Collapse
Affiliation(s)
- Annika Dreyer
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Groß
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfgang Bohne
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Erich Zautner
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany.
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
9
|
Hatasaki YC, Kobayashi R, Watanabe RR, Hara M, Ueno H, Noji H. Engineering of IF 1 -susceptive bacterial F 1 -ATPase. Protein Sci 2024; 33:e4942. [PMID: 38501464 PMCID: PMC10949317 DOI: 10.1002/pro.4942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/25/2024] [Accepted: 02/11/2024] [Indexed: 03/20/2024]
Abstract
IF1 , an inhibitor protein of mitochondrial ATP synthase, suppresses ATP hydrolytic activity of F1 . One of the unique features of IF1 is the selective inhibition in mitochondrial F1 (MF1 ); it inhibits catalysis of MF1 but does not affect F1 with bacterial origin despite high sequence homology between MF1 and bacterial F1 . Here, we aimed to engineer thermophilic Bacillus F1 (TF1 ) to confer the susceptibility to IF1 for elucidating the molecular mechanism of selective inhibition of IF1 . We first examined the IF1 -susceptibility of hybrid F1 s, composed of each subunit originating from bovine MF1 (bMF1 ) or TF1 . It was clearly shown that only the hybrid with the β subunit of mitochondrial origin has the IF1 -susceptibility. Based on structural analysis and sequence alignment of bMF1 and TF1 , the five non-conserved residues on the C-terminus of the β subunit were identified as the candidate responsible for the IF1 -susceptibility. These residues in TF1 were substituted with the bMF1 residues. The resultant mutant TF1 showed evident IF1 -susceptibility. Reversely, we examined the bMF1 mutant with TF1 residues at the corresponding sites, which showed significant suppression of IF1 -susceptibility, confirming the critical role of these residues. We also tested additional three substitutions with bMF1 residues in α and γ subunits that further enhanced the IF1 -susceptibility, suggesting the additive role of these residues. We discuss the molecular mechanism by which IF1 specifically recognizes F1 with mitochondrial origin, based on the present result and the structure of F1 -IF1 complex. These findings would help the development of the inhibitors targeting bacterial F1 .
Collapse
Affiliation(s)
- Yuichiro C. Hatasaki
- Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Ryohei Kobayashi
- Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Research Center for Computational ScienceInstitute for Molecular ScienceOkazakiAichiJapan
| | - Ryo R. Watanabe
- Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Mayu Hara
- Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Digital Bioanalysis LaboratoryThe University of TokyoTokyoJapan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Digital Bioanalysis LaboratoryThe University of TokyoTokyoJapan
| |
Collapse
|
10
|
Yang F, Vincis Pereira Sanglard L, Lee CP, Ströher E, Singh S, Oh GGK, Millar AH, Small I, Colas des Francs-Small C. Mitochondrial atp1 mRNA knockdown by a custom-designed pentatricopeptide repeat protein alters ATP synthase. PLANT PHYSIOLOGY 2024; 194:2631-2647. [PMID: 38206203 PMCID: PMC10980415 DOI: 10.1093/plphys/kiae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Spontaneous mutations are rare in mitochondria and the lack of mitochondrial transformation methods has hindered genetic analyses. We show that a custom-designed RNA-binding pentatricopeptide repeat (PPR) protein binds and specifically induces cleavage of ATP synthase subunit1 (atp1) mRNA in mitochondria, significantly decreasing the abundance of the Atp1 protein and the assembled F1Fo ATP synthase in Arabidopsis (Arabidopsis thaliana). The transformed plants are characterized by delayed vegetative growth and reduced fertility. Five-fold depletion of Atp1 level was accompanied by a decrease in abundance of other ATP synthase subunits and lowered ATP synthesis rate of isolated mitochondria, but no change to mitochondrial electron transport chain complexes, adenylates, or energy charge in planta. Transcripts for amino acid transport and a variety of stress response processes were differentially expressed in lines containing the PPR protein, indicating changes to achieve cellular homeostasis when ATP synthase was highly depleted. Leaves of ATP synthase-depleted lines showed higher respiratory rates and elevated steady-state levels of numerous amino acids, most notably of the serine family. The results show the value of using custom-designed PPR proteins to influence the expression of specific mitochondrial transcripts to carry out reverse genetic studies on mitochondrial gene functions and the consequences of ATP synthase depletion on cellular functions in Arabidopsis.
Collapse
Affiliation(s)
- Fei Yang
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, P. R. China
| | - Lilian Vincis Pereira Sanglard
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Chun-Pong Lee
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Elke Ströher
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Swati Singh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Glenda Guec Khim Oh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
11
|
Mahendrarajah TA, Moody ERR, Schrempf D, Szánthó LL, Dombrowski N, Davín AA, Pisani D, Donoghue PCJ, Szöllősi GJ, Williams TA, Spang A. ATP synthase evolution on a cross-braced dated tree of life. Nat Commun 2023; 14:7456. [PMID: 37978174 PMCID: PMC10656485 DOI: 10.1038/s41467-023-42924-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
The timing of early cellular evolution, from the divergence of Archaea and Bacteria to the origin of eukaryotes, is poorly constrained. The ATP synthase complex is thought to have originated prior to the Last Universal Common Ancestor (LUCA) and analyses of ATP synthase genes, together with ribosomes, have played a key role in inferring and rooting the tree of life. We reconstruct the evolutionary history of ATP synthases using an expanded taxon sampling set and develop a phylogenetic cross-bracing approach, constraining equivalent speciation nodes to be contemporaneous, based on the phylogenetic imprint of endosymbioses and ancient gene duplications. This approach results in a highly resolved, dated species tree and establishes an absolute timeline for ATP synthase evolution. Our analyses show that the divergence of ATP synthase into F- and A/V-type lineages was a very early event in cellular evolution dating back to more than 4 Ga, potentially predating the diversification of Archaea and Bacteria. Our cross-braced, dated tree of life also provides insight into more recent evolutionary transitions including eukaryogenesis, showing that the eukaryotic nuclear and mitochondrial lineages diverged from their closest archaeal (2.67-2.19 Ga) and bacterial (2.58-2.12 Ga) relatives at approximately the same time, with a slightly longer nuclear stem-lineage.
Collapse
Affiliation(s)
- Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands
| | - Edmund R R Moody
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, BS8 1TQ, Bristol, UK
| | - Dominik Schrempf
- Department Biological Physics, Eötvös University, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- MTA-ELTE "Lendulet" Evolutionary Genomics Research Group, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
| | - Lénárd L Szánthó
- Department Biological Physics, Eötvös University, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- MTA-ELTE "Lendulet" Evolutionary Genomics Research Group, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Karolina ut 29, H-1113, Budapest, Hungary
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands
| | - Adrián A Davín
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, BS8 1TQ, Bristol, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, BS8 1TQ, Bristol, UK
| | - Gergely J Szöllősi
- Department Biological Physics, Eötvös University, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- MTA-ELTE "Lendulet" Evolutionary Genomics Research Group, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK.
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands.
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Burton-Smith RN, Song C, Ueno H, Murata T, Iino R, Murata K. Six states of Enterococcus hirae V-type ATPase reveals non-uniform rotor rotation during turnover. Commun Biol 2023; 6:755. [PMID: 37507515 PMCID: PMC10382590 DOI: 10.1038/s42003-023-05110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The vacuolar-type ATPase from Enterococcus hirae (EhV-ATPase) is a thus-far unique adaptation of V-ATPases, as it performs Na+ transport and demonstrates an off-axis rotor assembly. Recent single molecule studies of the isolated V1 domain have indicated that there are subpauses within the three major states of the pseudo three-fold symmetric rotary enzyme. However, there was no structural evidence for these. Herein we activate the EhV-ATPase complex with ATP and identified multiple structures consisting of a total of six states of this complex by using cryo-electron microscopy. The orientations of the rotor complex during turnover, especially in the intermediates, are not as perfectly uniform as expected. The densities in the nucleotide binding pockets in the V1 domain indicate the different catalytic conditions for the six conformations. The off-axis rotor and its' interactions with the stator a-subunit during rotation suggests that this non-uniform rotor rotation is performed through the entire complex.
Collapse
Affiliation(s)
- Raymond N Burton-Smith
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Chihong Song
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institute for Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Kazuyoshi Murata
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
13
|
Changes within the central stalk of E. coli F 1F o ATP synthase observed after addition of ATP. Commun Biol 2023; 6:26. [PMID: 36631659 PMCID: PMC9834311 DOI: 10.1038/s42003-023-04414-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
F1Fo ATP synthase functions as a biological generator and makes a major contribution to cellular energy production. Proton flow generates rotation in the Fo motor that is transferred to the F1 motor to catalyze ATP production, with flexible F1/Fo coupling required for efficient catalysis. F1Fo ATP synthase can also operate in reverse, hydrolyzing ATP and pumping protons, and in bacteria this function can be regulated by an inhibitory ε subunit. Here we present cryo-EM data showing E. coli F1Fo ATP synthase in different rotational and inhibited sub-states, observed following incubation with 10 mM MgATP. Our structures demonstrate how structural transitions within the inhibitory ε subunit induce torsional movement in the central stalk, thereby enabling its rotation within the Fο motor. This highlights the importance of the central rotor for flexible coupling of the F1 and Fo motors and provides further insight into the regulatory mechanism mediated by subunit ε.
Collapse
|
14
|
Osman KA, Shaaban MMI, Ahmed NS. Biomarkers of imidacloprid toxicity in Japanese quail, Coturnix coturnix japonica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5662-5676. [PMID: 35980528 DOI: 10.1007/s11356-022-22580-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The in vivo effect of the oral sublethal doses of 3.014 mg kg-1 of IMI (1/25 LD50) for 1, 7, 14, and 28 days every other day on Japanese quail was investigated. The results revealed that certain biomarkers in the selected tissues of the quail such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), aminotransaminases (alanine aminotransferase, ALT, and aspartate aminotransaminase, AST), phosphatases (acid phosphatase, ACP, and alkaline phosphatase, ALP), lactate dehydrogenase (LDH), adenosine-triphosphatase (ATPase), glutathione-S-transferase (GST), lipid peroxidation (LPO), and blood glucose showed significant inductions, while significant reductions in the levels of glutathione-reduced (GSH), deoxyribonucleic acid (DNA), and ribonucleic acid (RNA) were noticed. In this study, the molecular mechanisms of the toxic effects of imidacloprid on quails were elucidated regarding neurotoxicity, hepatotoxicity, oxidative stress, lipid peroxidation, antioxidant activity, and genotoxicity. Because IMI induced alterations in the levels of these biomarkers in Japanese quail; therefore, Japanese quail as a wild avian can be used as a suite bioindicator to detect imidacloprid toxicity.
Collapse
Affiliation(s)
- Khaled A Osman
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, P.O Box 21545, Alexandria, Egypt.
| | - Mahmoud M I Shaaban
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, P.O Box 21545, Alexandria, Egypt
| | - Nabila S Ahmed
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, P.O Box 21545, Alexandria, Egypt
| |
Collapse
|
15
|
Khomyakova MA, Zavarzina DG, Merkel AY, Klyukina AA, Pikhtereva VA, Gavrilov SN, Slobodkin AI. The first cultivated representatives of the actinobacterial lineage OPB41 isolated from subsurface environments constitute a novel order Anaerosomatales. Front Microbiol 2022; 13:1047580. [PMID: 36439822 PMCID: PMC9686372 DOI: 10.3389/fmicb.2022.1047580] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 08/01/2023] Open
Abstract
The continental subsurface harbors microbial populations highly enriched in uncultured taxa. OPB41 is an uncultured order-level phylogenetic lineage within the actinobacterial class Coriobacteriia. OPB41 bacteria have a wide geographical distribution, but the physiology and metabolic traits of this cosmopolitan group remain elusive. From two contrasting subsurface environments, a terrestrial mud volcano and a deep subsurface aquifer, located in the central part of Eurasia, within the Caucasus petroleum region, we have isolated two pure cultures of anaerobic actinobacteria belonging to OPB41. The cells of both strains are small non-motile rods forming numerous pili-like appendages. Strain M08DHBT is mesophilic, while strain Es71-Z0120T is a true thermophile having a broad temperature range for growth (25-77°C). Strain M08DHBT anaerobically reduces sulfur compounds and utilizes an aromatic compound 3,4-dihydroxybenzoic acid. Strain Es71-Z0120T is an obligate dissimilatory Fe(III) reducer that is unable to utilize aromatic compounds. Both isolates grow lithotrophically and consume molecular hydrogen or formate using either thiosulfate, elemental sulfur, or Fe(III) as an electron acceptor. Genomes of the strains encode the putative reductive glycine pathway for autotrophic CO2 fixation, Ni-Fe hydrogenases, putative thiosulfate/polysulfide reductases, and multiheme c-type cytochromes presumably involved in dissimilatory Fe(III) reduction. We propose to assign the isolated strains to the novel taxa of the species-order levels and describe strain M08DHBT as Anaerosoma tenue gen. nov., sp. nov., and strain Es71-Z0120T as Parvivirga hydrogeniphila gen. nov., sp. nov., being members of Anaerosomatales ord. nov. This work expands the knowledge of the diversity, metabolic functions, and ecological role of the phylum Actinomycetota.
Collapse
Affiliation(s)
- Maria A. Khomyakova
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Daria G. Zavarzina
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Y. Merkel
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra A. Klyukina
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Valeria A. Pikhtereva
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey N. Gavrilov
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander I. Slobodkin
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Liyana Gunawardana VW, Finnegan TJ, Ward CE, Moore CE, Badjić JD. Dissipative Formation of Covalent Basket Cages. Angew Chem Int Ed Engl 2022; 61:e202207418. [PMID: 35723284 PMCID: PMC9544755 DOI: 10.1002/anie.202207418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/23/2022]
Abstract
Living systems use chemical fuels to transiently assemble functional structures. As a step toward constructing abiotic mimics of such structures, we herein describe dissipative formation of covalent basket cage CBC 5 by reversible imine condensation of cup-shaped aldehyde 2 (i.e., basket) with trivalent aromatic amine 4. This nanosized [4+4] cage (V=5 nm3 , Mw =6150 Da) has shape of a truncated tetrahedron with four baskets at its vertices and four aromatic amines forming the faces. Importantly, tris-aldehyde basket 2 and aliphatic tris-amine 7 undergo condensation to give small [1+1] cage 6. The imine metathesis of 6 and aromatic tris-amine 4 into CBC 5 was optimized to bias the equilibrium favouring 6. Addition of tribromoacetic acid (TBA) as a chemical fuel perturbs this equilibrium to result in the transient formation of CBC 5, with subsequent consumption of TBA via decarboxylation driving the system back to the starting state.
Collapse
Affiliation(s)
| | - Tyler J. Finnegan
- Department of Chemistry & BiochemistryThe Ohio State University100 West 18th AvenueColumbusOH 43210USA
| | - Carson E. Ward
- Department of Chemistry & BiochemistryThe Ohio State University100 West 18th AvenueColumbusOH 43210USA
| | - Curtis E. Moore
- Department of Chemistry & BiochemistryThe Ohio State University100 West 18th AvenueColumbusOH 43210USA
| | - Jovica D. Badjić
- Department of Chemistry & BiochemistryThe Ohio State University100 West 18th AvenueColumbusOH 43210USA
| |
Collapse
|
17
|
Shekhar M, Gupta C, Suzuki K, Chan CK, Murata T, Singharoy A. Revealing a Hidden Intermediate of Rotatory Catalysis with X-ray Crystallography and Molecular Simulations. ACS CENTRAL SCIENCE 2022; 8:915-925. [PMID: 35912346 PMCID: PMC9336149 DOI: 10.1021/acscentsci.1c01599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mechanism of rotatory catalysis in ATP-hydrolyzing molecular motors remains an unresolved puzzle in biological energy transfer. Notwithstanding the wealth of available biochemical and structural information inferred from years of experiments, knowledge on how the coupling between the chemical and mechanical steps within motors enforces directional rotatory movements remains fragmentary. Even more contentious is to pinpoint the rate-limiting step of a multistep rotation process. Here, using vacuolar or V1-type hexameric ATPase as an exemplary rotational motor, we present a model of the complete 4-step conformational cycle involved in rotatory catalysis. First, using X-ray crystallography, a new intermediate or "dwell" is identified, which enables the release of an inorganic phosphate (or Pi) after ATP hydrolysis. Using molecular dynamics simulations, this new dwell is placed in a sequence with three other crystal structures to derive a putative cyclic rotation path. Free-energy simulations are employed to estimate the rate of the hexameric protein transformations and delineate allosteric effects that allow new reactant ATP entry only after hydrolysis product exit. An analysis of transfer entropy brings to light how the side-chain-level interactions transcend into larger-scale reorganizations, highlighting the role of the ubiquitous arginine-finger residues in coupling chemical and mechanical information. An inspection of all known rates encompassing the 4-step rotation mechanism implicates the overcoming of the ADP interactions with V1-ATPase to be the rate-limiting step of motor action.
Collapse
Affiliation(s)
- Mrinal Shekhar
- Center
for Development of Therapeutics, Broad Institute
of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Chitrak Gupta
- School
of Molecular Sciences, Arizona State University, 797 East Tyler Street, Tempe, Arizona 85281, United States
| | - Kano Suzuki
- Department
of Chemistry, Graduate School of Science, Chiba University, Inage-ku, Chiba, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Chun Kit Chan
- School
of Molecular Sciences, Arizona State University, 797 East Tyler Street, Tempe, Arizona 85281, United States
| | - Takeshi Murata
- Department
of Chemistry, Graduate School of Science, Chiba University, Inage-ku, Chiba, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Membrane
Protein Research and Molecular Chirality Research Centers, Chiba University, Inage-ku, Chiba, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Structure
Biology Research Center, Institute of Materials
Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, 1-1 Oho, Ibaraki 305-0801, Japan
| | - Abhishek Singharoy
- School
of Molecular Sciences, Arizona State University, 797 East Tyler Street, Tempe, Arizona 85281, United States
| |
Collapse
|
18
|
Badjic JD, Liyana Gunawardana VW, Finnegan TJ, Ward CE, Moore CE. Dissipative Formation of Covalent Basket Cages. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jovica D Badjic
- Ohio State University Department of Chemistry 100 W. 18th Avenue 43210 Columbus UNITED STATES
| | | | | | | | | |
Collapse
|
19
|
De Beer B, Villacis-Perez E, Khalighi M, Saalwaechter C, Vandenhole M, Jonckheere W, Ismaeil I, Geibel S, Van Leeuwen T, Dermauw W. QTL mapping suggests that both cytochrome P450-mediated detoxification and target-site resistance are involved in fenbutatin oxide resistance in Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 145:103757. [PMID: 35301092 DOI: 10.1016/j.ibmb.2022.103757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/17/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The organotin acaricide fenbutatin oxide (FBO) - an inhibitor of mitochondrial ATP-synthase - has been one of the most extensively used acaricides for the control of spider mites, and is still in use today. Resistance against FBO has evolved in many regions around the world but only few studies have investigated the molecular and genetic mechanisms of resistance to organotin acaricides. Here, we found that FBO resistance is polygenic in two genetically distant, highly resistant strains of the spider mite Tetranychus urticae, MAR-AB and MR-VL. To identify the loci underlying FBO resistance, two independent bulked segregant analysis (BSA) based QTL mapping experiments, BSA MAR-AB and BSA MR-VL, were performed. Two QTLs on chromosome 1 were associated with FBO resistance in each mapping experiment. At the second QTL of BSA MAR-AB, several cytochrome P450 monooxygenase (CYP) genes were located, including CYP392E4, CYP392E6 and CYP392E11, the latter being overexpressed in MAR-AB. Synergism tests further implied a role for CYPs in FBO resistance. Subunit c of mitochondrial ATP-synthase was located near the first QTL of both mapping experiments and harbored a unique V89A mutation enriched in the resistant parents and selected BSA populations. Marker-assisted introgression into a susceptible strain demonstrated a moderate but significant effect of the V89A mutation on toxicity of organotin acaricides. The impact of the mutation on organotin inhibition of ATP synthase was also functionally confirmed by ATPase assays on mitochondrial preparations. To conclude, our findings suggest that FBO resistance in the spider mite T. urticae is a complex interplay between CYP-mediated detoxification and target-site resistance.
Collapse
Affiliation(s)
- Berdien De Beer
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ernesto Villacis-Perez
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), Science Park 904, 1908, XH, Amsterdam, the Netherlands
| | - Mousaalreza Khalighi
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | | | - Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Wim Jonckheere
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ibrahim Ismaeil
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sven Geibel
- Bayer AG, CropScience Division, 40789, Monheim, Germany
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Burgemeester Van Gansberghelaan 96, 9820, Merelbeke, Belgium.
| |
Collapse
|
20
|
Silverstein TP. The Proton in Biochemistry: Impacts on Bioenergetics, Biophysical Chemistry, and Bioorganic Chemistry. Front Mol Biosci 2021; 8:764099. [PMID: 34901158 PMCID: PMC8661011 DOI: 10.3389/fmolb.2021.764099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
The proton is the smallest atomic particle, and in aqueous solution it is the smallest hydrated ion, having only two waters in its first hydration shell. In this article we survey key aspects of the proton in chemistry and biochemistry, starting with the definitions of pH and pK a and their application inside biological cells. This includes an exploration of pH in nanoscale spaces, distinguishing between bulk and interfacial phases. We survey the Eigen and Zundel models of the structure of the hydrated proton, and how these can be used to explain: a) the behavior of protons at the water-hydrophobic interface, and b) the extraordinarily high mobility of protons in bulk water via Grotthuss hopping, and inside proteins via proton wires. Lastly, we survey key aspects of the effect of proton concentration and proton transfer on biochemical reactions including ligand binding and enzyme catalysis, as well as pH effects on biochemical thermodynamics, including the Chemiosmotic Theory. We find, for example, that the spontaneity of ATP hydrolysis at pH ≥ 7 is not due to any inherent property of ATP (or ADP or phosphate), but rather to the low concentration of H+. Additionally, we show that acidification due to fermentation does not derive from the organic acid waste products, but rather from the proton produced by ATP hydrolysis.
Collapse
Affiliation(s)
- Todd P Silverstein
- Chemistry Department (emeritus), Willamette University, Salem, OR, United States
| |
Collapse
|
21
|
Papalazarou V, Maddocks ODK. Supply and demand: Cellular nutrient uptake and exchange in cancer. Mol Cell 2021; 81:3731-3748. [PMID: 34547236 DOI: 10.1016/j.molcel.2021.08.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/27/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022]
Abstract
Nutrient supply and demand delineate cell behavior in health and disease. Mammalian cells have developed multiple strategies to secure the necessary nutrients that fuel their metabolic needs. This is more evident upon disruption of homeostasis in conditions such as cancer, when cells display high proliferation rates in energetically challenging conditions where nutritional sources may be scarce. Here, we summarize the main routes of nutrient acquisition that fuel mammalian cells and their implications in tumorigenesis. We argue that the molecular mechanisms of nutrient acquisition not only tip the balance between nutrient supply and demand but also determine cell behavior upon nutrient limitation and energetic stress and contribute to nutrient partitioning and metabolic coordination between different cell types in inflamed or tumorigenic environments.
Collapse
Affiliation(s)
- Vasileios Papalazarou
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Oliver D K Maddocks
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK.
| |
Collapse
|
22
|
Gao S, Gisbert Y, Erbland G, Abid S, Kammerer C, Venturini A, Rapenne G, Ventura B, Armaroli N. Photophysical properties of 1,2,3,4,5-pentaarylcyclopentadienyl-hydrotris(indazolyl)borate ruthenium(II) complexes. Phys Chem Chem Phys 2021; 23:17049-17056. [PMID: 34346431 DOI: 10.1039/d1cp02261j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photophysical properties of heteroleptic rotor-like Ru(ii) complexes containing both a cyclopentadienyl-type ligand and a hydrotris(indazolyl)borate chelating unit with a piano stool structure (Ar5L1-Ru-S1 and L3-Ru-S1) and their corresponding subunits have been investigated. The complexes show peculiar absorption features when compared with their related ligands or fragments. L3-Ru-S1 was found to be non-emissive, while Ar5L1-Ru-S1 showed a weak emission with a quantum yield of 0.27%. With the help of DFT calculations, we demonstrate that the new absorption features can be attributed to ruthenium-based charge transfer transitions which involve the π* orbitals of the phenyl substituents of the cyclopentadienyl ligand.
Collapse
Affiliation(s)
- Sheng Gao
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (CNR-ISOF), Via Gobetti 101, 40129 Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
The six steps of the complete F 1-ATPase rotary catalytic cycle. Nat Commun 2021; 12:4690. [PMID: 34344897 DOI: 10.1038/s41467-021-25029-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
F1Fo ATP synthase interchanges phosphate transfer energy and proton motive force via a rotary catalysis mechanism. Isolated F1-ATPase catalytic cores can hydrolyze ATP, passing through six intermediate conformational states to generate rotation of their central γ-subunit. Although previous structural studies have contributed greatly to understanding rotary catalysis in the F1-ATPase, the structure of an important conformational state (the binding-dwell) has remained elusive. Here, we exploit temperature and time-resolved cryo-electron microscopy to determine the structure of the binding- and catalytic-dwell states of Bacillus PS3 F1-ATPase. Each state shows three catalytic β-subunits in different conformations, establishing the complete set of six states taken up during the catalytic cycle and providing molecular details for both the ATP binding and hydrolysis strokes. We also identify a potential phosphate-release tunnel that indicates how ADP and phosphate binding are coordinated during synthesis. Overall these findings provide a structural basis for the entire F1-ATPase catalytic cycle.
Collapse
|
24
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
25
|
Site-directed crosslinking identifies the stator-rotor interaction surfaces in a hybrid bacterial flagellar motor. J Bacteriol 2021; 203:JB.00016-21. [PMID: 33619152 PMCID: PMC8092157 DOI: 10.1128/jb.00016-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The bacterial flagellum is the motility organelle powered by a rotary motor. The rotor and stator elements of the motor are located in the cytoplasmic membrane and cytoplasm. The stator units assemble around the rotor, and an ion flux (typically H+ or Na+) conducted through a channel of the stator induces conformational changes that generate rotor torque. Electrostatic interactions between the stator protein PomA in Vibrio (MotA in Escherichia coli) and the rotor protein FliG have been shown by genetic analyses, but have not been demonstrated biochemically. Here, we used site-directed photo- and disulfide-crosslinking to provide direct evidence for the interaction. We introduced a UV-reactive amino acid, p-benzoyl-L-phenylalanine (pBPA), into the cytoplasmic region of PomA or the C-terminal region of FliG in intact cells. After UV irradiation, pBPA inserted at a number of positions in PomA formed a crosslink with FliG. PomA residue K89 gave the highest yield of crosslinks, suggesting that it is the PomA residue nearest to FliG. UV-induced crosslinking stopped motor rotation, and the isolated hook-basal body contained the crosslinked products. pBPA inserted to replace residues R281 or D288 in FliG formed crosslinks with the Escherichia coli stator protein, MotA. A cysteine residue introduced in place of PomA K89 formed disulfide crosslinks with cysteine inserted in place of FliG residues R281 and D288, and some other flanking positions. These results provide the first demonstration of direct physical interaction between specific residues in FliG and PomA/MotA.ImportanceThe bacterial flagellum is a unique organelle that functions as a rotary motor. The interaction between the stator and rotor is indispensable for stator assembly into the motor and the generation of motor torque. However, the interface of the stator-rotor interaction has only been defined by mutational analysis. Here, we detected the stator-rotor interaction using site-directed photo- and disulfide-crosslinking approaches. We identified several residues in the PomA stator, especially K89, that are in close proximity to the rotor. Moreover, we identified several pairs of stator and rotor residues that interact. This study directly demonstrates the nature of the stator-rotor interaction and suggests how stator units assemble around the rotor and generate torque in the bacterial flagellar motor.
Collapse
|
26
|
Role of protons in calcium signaling. Biochem J 2021; 478:895-910. [PMID: 33635336 DOI: 10.1042/bcj20200971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/03/2023]
Abstract
Thirty-six years after the publication of the important article by Busa and Nuccitelli on the variability of intracellular pH (pHi) and the interdependence of pHi and intracellular Ca2+ concentration ([Ca2+]i), little research has been carried out on pHi and calcium signaling. Moreover, the results appear to be contradictory. Some authors claim that the increase in [Ca2+]i is due to a reduction in pHi, others that it is caused by an increase in pHi. The reasons for these conflicting results have not yet been discussed and clarified in an exhaustive manner. The idea that variations in pHi are insignificant, because cellular buffers quickly stabilize the pHi, may be a limiting and fundamentally wrong concept. In fact, it has been shown that protons can move and react in the cell before they are neutralized. Variations in pHi have a remarkable impact on [Ca2+]i and hence on some of the basic biochemical mechanisms of calcium signaling. This paper focuses on the possible triggering role of protons during their short cellular cycle and it suggests a new hypothesis for an IP3 proton dependent mechanism of action.
Collapse
|
27
|
Abstract
ATP synthase is an essential enzyme found in all known forms of life, generating the majority of cellular energy via a rotary catalytic mechanism. Here, we describe the in-depth methods for expression, purification, and functional assessment of E. coli ATP synthase.
Collapse
|
28
|
Barth M, Schmidt C. Native mass spectrometry-A valuable tool in structural biology. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4578. [PMID: 32662584 DOI: 10.1002/jms.4578] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 05/16/2023]
Abstract
Proteins and the complexes they form with their ligands are the players of cellular action. Their function is directly linked with their structure making the structural analysis of protein-ligand complexes essential. Classical techniques of structural biology include X-ray crystallography, nuclear magnetic resonance spectroscopy and recently distinguished cryo-electron microscopy. However, protein-ligand complexes are often dynamic and heterogeneous and consequently challenging for these techniques. Alternative approaches are therefore needed and gained importance during the last decades. One alternative is native mass spectrometry, which is the analysis of intact protein complexes in the gas phase. To achieve this, sample preparation and instrument conditions have to be optimised. Native mass spectrometry then reveals stoichiometry, protein interactions and topology of protein assemblies. Advanced techniques such as ion mobility and high-resolution mass spectrometry further add to the range of applications and deliver information on shape and microheterogeneity of the complexes. In this tutorial, we explain the basics of native mass spectrometry including sample requirements, instrument modifications and interpretation of native mass spectra. We further discuss the developments of native mass spectrometry and provide example spectra and applications.
Collapse
Affiliation(s)
- Marie Barth
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
29
|
Kamariah N, Huber RG, Bond PJ, Müller V, Grüber G. 3D reconstruction and flexibility of the hybrid engine Acetobacterium woodii F-ATP synthase. Biochem Biophys Res Commun 2020; 527:518-524. [PMID: 32423799 DOI: 10.1016/j.bbrc.2020.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022]
Abstract
The Na+-translocating F1FO ATP synthase from Acetobacterium woodii (AwF-ATP synthase) with a subunit stoichiometry of α3:β3:γ:δ:ε:a:b2:(c2/3)9:c1 represents an evolutionary path between ATP-synthases and vacuolar ATPases, by containing a heteromeric rotor c-ring, composed of subunits c1, c2 and c3, and an extra loop (γ195-211) within the rotary γ subunit. Here, the recombinant AwF-ATP synthase was subjected to negative stain electron microscopy and single particle analysis. The reference free 2D class averages revealed high flexibility of the enzyme, wherein the F1 and FO domains distinctively bended to adopt multiple conformations. Moreover, both the F1 and FO domains tilted relative to each other to a maximum extent of 28° and 30°, respectively. The first 3D reconstruction of the AwF-ATP synthase was determined which accommodates well the modelled structure of the AwF-ATP synthase as well as the γ195-211-loop. Molecular simulations of the enzyme underlined the bending features and flexibility observed in the electron micrographs, and enabled assessment of the dynamics of the extra γ195-211-loop.
Collapse
Affiliation(s)
- Neelagandan Kamariah
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Roland G Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), #07-01 Matrix, 30 Biopolis Street, Singapore, 38671
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), #07-01 Matrix, 30 Biopolis Street, Singapore, 38671; Department of Biological Sciences (DBS), National University of Singapore (NUS), 14 Science Drive 4, Singapore, 117543
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore; Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), #07-01 Matrix, 30 Biopolis Street, Singapore, 38671.
| |
Collapse
|
30
|
Sobti M, Walshe JL, Wu D, Ishmukhametov R, Zeng YC, Robinson CV, Berry RM, Stewart AG. Cryo-EM structures provide insight into how E. coli F 1F o ATP synthase accommodates symmetry mismatch. Nat Commun 2020; 11:2615. [PMID: 32457314 PMCID: PMC7251095 DOI: 10.1038/s41467-020-16387-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
F1Fo ATP synthase functions as a biological rotary generator that makes a major contribution to cellular energy production. It comprises two molecular motors coupled together by a central and a peripheral stalk. Proton flow through the Fo motor generates rotation of the central stalk, inducing conformational changes in the F1 motor that catalyzes ATP production. Here we present nine cryo-EM structures of E. coli ATP synthase to 3.1-3.4 Å resolution, in four discrete rotational sub-states, which provide a comprehensive structural model for this widely studied bacterial molecular machine. We observe torsional flexing of the entire complex and a rotational sub-step of Fo associated with long-range conformational changes that indicates how this flexibility accommodates the mismatch between the 3- and 10-fold symmetries of the F1 and Fo motors. We also identify density likely corresponding to lipid molecules that may contribute to the rotor/stator interaction within the Fo motor.
Collapse
Affiliation(s)
- Meghna Sobti
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.,Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - James L Walshe
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Di Wu
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, United Kingdom
| | - Robert Ishmukhametov
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, United Kingdom
| | - Yi C Zeng
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, United Kingdom
| | - Richard M Berry
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, United Kingdom
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia. .,Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Kensington, NSW, 2052, Australia.
| |
Collapse
|
31
|
Tulum I, Kimura K, Miyata M. Identification and sequence analyses of the gliding machinery proteins from Mycoplasma mobile. Sci Rep 2020; 10:3792. [PMID: 32123220 PMCID: PMC7052211 DOI: 10.1038/s41598-020-60535-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/10/2020] [Indexed: 11/09/2022] Open
Abstract
Mycoplasma mobile, a fish pathogen, exhibits its own specialized gliding motility on host cells based on ATP hydrolysis. The special protein machinery enabling this motility is composed of surface and internal protein complexes. Four proteins, MMOBs 1630, 1660, 1670, and 4860 constitute the internal complex, including paralogs of F-type ATPase/synthase α and β subunits. In the present study, the cellular localisation for the candidate gliding machinery proteins, MMOBs 1620, 1640, 1650, and 5430 was investigated by using a total internal reflection fluorescence microscopy system after tagging these proteins with the enhanced yellow fluorescent protein (EYFP). The M. mobile strain expressing a fusion protein MMOB1620-EYFP exhibited reduced cell-binding activity and a strain expressing MMOB1640 fused with EYFP exhibited increased gliding speed, showing the involvement of these proteins in the gliding mechanism. Based on the genomic sequences, we analysed the sequence conservativity in the proteins of the internal and the surface complexes from four gliding mycoplasma species. The proteins in the internal complex were more conserved compared to the surface complex, suggesting that the surface complex undergoes modifications depending on the host. The analyses suggested that the internal gliding complex was highly conserved probably due to its role in the motility mechanism.
Collapse
Affiliation(s)
- Isil Tulum
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Kenta Kimura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan.
| |
Collapse
|
32
|
Unlabeled image analysis-based cell viability assay with intracellular movement monitoring. Biotechniques 2020; 66:128-133. [PMID: 30869548 DOI: 10.2144/btn-2018-0157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The need for technologies to monitor cell health is increasing with advancements in the field of cell therapy and regenerative medicine. In this study, we demonstrated unlabeled optical metabolic imaging of cultured living cells. This imaging technique is based on motion vector analysis with a block-matching algorithm to compare sequential time-lapse images. Motion vector analysis evaluates the movement of intracellular granules observed with a phase-contrast microscope. We demonstrated that the motion speed of intracellular movement reflects adenosine triphosphate (ATP)-dependent intracellular trafficking in cells. We also confirmed that intracellular motion speed is correlated with the ATP concentrations of the cells. This assay can measure cellular viability at a single-cell level without requiring any reagents.
Collapse
|
33
|
Abstract
In nature, DNA molecules carry the hereditary information. But DNA has physical and chemical properties that make it attractive for uses beyond heredity. In this Review, we discuss the potential of DNA for creating machines that are both encoded by and built from DNA molecules. We review the main methods of DNA nanostructure assembly, describe recent advances in building increasingly complex molecular structures and discuss strategies for creating machine-like nanostructures that can be actuated and move. We highlight opportunities for applications of custom DNA nanostructures as scientific tools to address challenges across biology, chemistry and engineering.
Collapse
|
34
|
Iida T, Minagawa Y, Ueno H, Kawai F, Murata T, Iino R. Single-molecule analysis reveals rotational substeps and chemo-mechanical coupling scheme of Enterococcus hirae V 1-ATPase. J Biol Chem 2019; 294:17017-17030. [PMID: 31519751 PMCID: PMC6851342 DOI: 10.1074/jbc.ra119.008947] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
V1-ATPase (V1), the catalytic domain of an ion-pumping V-ATPase, is a molecular motor that converts ATP hydrolysis-derived chemical energy into rotation. Here, using a gold nanoparticle probe, we directly observed rotation of V1 from the pathogen Enterococcus hirae (EhV1). We found that 120° steps in each ATP hydrolysis event are divided into 40 and 80° substeps. In the main pause before the 40° substep and at low ATP concentration ([ATP]), the time constant was inversely proportional to [ATP], indicating that ATP binds during the main pause with a rate constant of 1.0 × 107 m-1 s-1 At high [ATP], we observed two [ATP]-independent time constants (0.5 and 0.7 ms). One of two time constants was prolonged (144 ms) in a rotation driven by slowly hydrolyzable ATPγS, indicating that ATP is cleaved during the main pause. In another subpause before the 80° substep, we noted an [ATP]-independent time constant (2.5 ms). Furthermore, in an ATP-driven rotation of an arginine-finger mutant in the presence of ADP, -80 and -40° backward steps were observed. The time constants of the pauses before -80° backward and +40° recovery steps were inversely proportional to [ADP] and [ATP], respectively, indicating that ADP- and ATP-binding events trigger these steps. Assuming that backward steps are reverse reactions, we conclude that 40 and 80° substeps are triggered by ATP binding and ADP release, respectively, and that the remaining time constant in the main pause represents phosphate release. We propose a chemo-mechanical coupling scheme of EhV1, including substeps largely different from those of F1-ATPases.
Collapse
Affiliation(s)
- Tatsuya Iida
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Yoshihiro Minagawa
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fumihiro Kawai
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.,Japan Science and Technology Agency (JST), PRESTO, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan .,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
35
|
Artika IM. Current understanding of structure, function and biogenesis of yeast mitochondrial ATP synthase. J Bioenerg Biomembr 2019; 51:315-328. [DOI: 10.1007/s10863-019-09809-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
|
36
|
Lapashina AS, Shugaeva TE, Berezina KM, Kholina TD, Feniouk BA. Amino Acid Residues β139, β189, and β319 Modulate ADP-Inhibition in Escherichia coli H+-F OF 1-ATP Synthase. BIOCHEMISTRY (MOSCOW) 2019; 84:407-415. [PMID: 31228932 DOI: 10.1134/s0006297919040084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proton-translocating FOF1-ATP synthase (F-type ATPase, F-ATPase or FOF1) performs ATP synthesis/hydrolysis coupled to proton transport across the membrane in mitochondria, chloroplasts, and most eubacteria. The ATPase activity of the enzyme is suppressed in the absence of protonmotive force by several regulatory mechanisms. The most conserved of these mechanisms is noncompetitive inhibition of ATP hydrolysis by the MgADP complex (ADP-inhibition) which has been found in all the enzymes studied. When MgADP binds without phosphate in the catalytic site, the enzyme enters an inactive state, and MgADP gets locked in the catalytic site and does not exchange with the medium. The degree of ADP-inhibition varies in FOF1 enzymes from different organisms. In the Escherichia coli enzyme, ADP-inhibition is relatively weak and, in contrast to other organisms, is enhanced rather than suppressed by phosphate. In this study, we used site-directed mutagenesis to investigate the role of amino acid residues β139, β158, β189, and β319 of E. coli FOF1-ATP synthase in the mechanism of ADP-inhibition and its modulation by the protonmotive force. The amino acid residues in these positions differ in the enzymes from beta- and gammaproteobacteria (including E. coli) and FOF1-ATP synthases from other eubacteria, mitochondria, and chloroplasts. The βN158L substitution produced no effect on the enzyme activity, while substitutions βF139Y, βF189L, and βV319T only slightly affected ATP (1 mM) hydrolysis. However, in a mixture of ATP and ADP, the activity of the mutants was less suppressed than that of the wild-type enzyme. In addition, mutations βF189L and βV319T weakened the ATPase activity inhibition by phosphate in the presence of ADP. We suggest that residues β139, β189, and β319 are involved in the mechanism of ADP-inhibition and its modulation by phosphate.
Collapse
Affiliation(s)
- A S Lapashina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - T E Shugaeva
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - K M Berezina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - T D Kholina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - B A Feniouk
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
37
|
Identification of rfk-1, a Meiotic Driver Undergoing RNA Editing in Neurospora. Genetics 2019; 212:93-110. [PMID: 30918007 DOI: 10.1534/genetics.119.302122] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/21/2019] [Indexed: 11/18/2022] Open
Abstract
Sk-2 is a meiotic drive element that was discovered in wild populations of Neurospora fungi over 40 years ago. While early studies quickly determined that Sk-2 transmits itself through sexual reproduction in a biased manner via spore killing, the genetic factors responsible for this phenomenon have remained mostly unknown. Here, we identify and characterize rfk-1, a gene required for Sk-2-based spore killing. The rfk-1 gene contains four exons, three introns, and two stop codons, the first of which undergoes RNA editing to a tryptophan codon during sexual development. Translation of an unedited rfk-1 transcript in vegetative tissue is expected to produce a 102-amino acid protein, whereas translation of an edited rfk-1 transcript in sexual tissue is expected to produce a protein with 130 amino acids. These findings indicate that unedited and edited rfk-1 transcripts exist and that these transcripts could have different roles with respect to the mechanism of meiotic drive by spore killing. Regardless of RNA editing, spore killing only succeeds if rfk-1 transcripts avoid silencing caused by a genome defense process called meiotic silencing by unpaired DNA (MSUD). We show that rfk-1's MSUD avoidance mechanism is linked to the genomic landscape surrounding the rfk-1 gene, which is located near the Sk-2 border on the right arm of chromosome III. In addition to demonstrating that the location of rfk-1 is critical to spore-killing success, our results add to accumulating evidence that MSUD helps protect Neurospora genomes from complex meiotic drive elements.
Collapse
|
38
|
Sobti M, Ishmukhametov R, Bouwer JC, Ayer A, Suarna C, Smith NJ, Christie M, Stocker R, Duncan TM, Stewart AG. Cryo-EM reveals distinct conformations of E. coli ATP synthase on exposure to ATP. eLife 2019; 8:e43864. [PMID: 30912741 PMCID: PMC6449082 DOI: 10.7554/elife.43864] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
ATP synthase produces the majority of cellular energy in most cells. We have previously reported cryo-EM maps of autoinhibited E. coli ATP synthase imaged without addition of nucleotide (Sobti et al. 2016), indicating that the subunit ε engages the α, β and γ subunits to lock the enzyme and prevent functional rotation. Here we present multiple cryo-EM reconstructions of the enzyme frozen after the addition of MgATP to identify the changes that occur when this ε inhibition is removed. The maps generated show that, after exposure to MgATP, E. coli ATP synthase adopts a different conformation with a catalytic subunit changing conformation substantially and the ε C-terminal domain transitioning via an intermediate 'half-up' state to a condensed 'down' state. This work provides direct evidence for unique conformational states that occur in E. coli ATP synthase when ATP binding prevents the ε C-terminal domain from entering the inhibitory 'up' state.
Collapse
Affiliation(s)
- Meghna Sobti
- Molecular, Structural and Computational Biology DivisionThe Victor Chang Cardiac Research InstituteDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
| | - Robert Ishmukhametov
- Department of Physics, Clarendon LaboratoryUniversity of OxfordOxfordUnited Kingdom
| | - James C Bouwer
- Molecular HorizonsThe University of WollongongWollongongAustralia
| | - Anita Ayer
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
- Vascular Biology DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Cacang Suarna
- Vascular Biology DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Nicola J Smith
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
- Molecular Cardiology and Biophysics DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Mary Christie
- Molecular, Structural and Computational Biology DivisionThe Victor Chang Cardiac Research InstituteDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
| | - Roland Stocker
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
- Vascular Biology DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Thomas M Duncan
- Department of Biochemistry & Molecular BiologySUNY Upstate Medical UniversitySyracuse, NYUnited States
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology DivisionThe Victor Chang Cardiac Research InstituteDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
| |
Collapse
|
39
|
Bogdanović N, Trifunović D, Sielaff H, Westphal L, Bhushan S, Müller V, Grüber G. The structural features of Acetobacterium woodii F-ATP synthase reveal the importance of the unique subunit γ-loop in Na + translocation and ATP synthesis. FEBS J 2019; 286:1894-1907. [PMID: 30791207 DOI: 10.1111/febs.14793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/25/2019] [Accepted: 02/18/2019] [Indexed: 12/18/2022]
Abstract
The Na+ translocating F1 FO ATP synthase from Acetobacterium woodii shows a subunit stoichiometry of α3 :β3 :γ:δ:ε:a:b2 :(c2/3 )9 :c1 and reveals an evolutionary path between synthases and pumps involving adaptations in the rotor c-ring, which is composed of F- and vacuolar-type c subunits in a stoichiometry of 9 : 1. This hybrid turbine couples rotation with Na+ translocation in the FO part and rotation of the central stalk subunits γ-ε to drive ATP synthesis in the catalytic α3 :β3 headpiece. Here, we isolated a highly pure recombinant A. woodii F-ATP synthase and present the first projected structure of this hybrid engine as determined by negative-stain electron microscopy and single-particle analysis. The uniqueness of the A. woodii F-ATP synthase is also reflected by an extra 17 amino acid residues loop (195 TSGKVKITEETKEEKSK211 ) in subunit γ. Deleting the loop-encoding DNA sequence (γΔ195-211 ) and purifying the recombinant F-ATP synthase γΔ195-211 mutant provided a platform to study its effect in enzyme stability and activity. The recombinant F-ATP synthase γΔ195-211 mutant revealed the same subunit composition as the wild-type enzyme and a minor reduction in ATP hydrolysis. When reconstituted into proteoliposomes ATP synthesis and Na+ transport were diminished, demonstrating the importance of the γ195-211 loop in both enzymatic processes. Based on a structural model, a coupling mechanism for this enzyme is proposed, highlighting the role of the γ-loop. Finally, the γ195-211 loop of A. woodii is discussed in comparison with the extra γ-loops of mycobacterial and chloroplasts F-ATP synthases described to be involved in species-specific regulatory mechanisms.
Collapse
Affiliation(s)
- Nebojša Bogdanović
- Nanyang Technological University, School of Biological Sciences, Singapore City, Singapore
| | - Dragan Trifunović
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Germany
| | - Hendrik Sielaff
- Nanyang Technological University, School of Biological Sciences, Singapore City, Singapore
| | - Lars Westphal
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Germany
| | - Shashi Bhushan
- Nanyang Technological University, School of Biological Sciences, Singapore City, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Germany
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, Singapore City, Singapore
| |
Collapse
|
40
|
Mutation Q259L in subunit beta in Bacillus subtilis ATP synthase attenuates ADP-inhibition and decreases fitness in mixed cultures. Biochem Biophys Res Commun 2018; 509:102-107. [PMID: 30580998 DOI: 10.1016/j.bbrc.2018.12.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022]
Abstract
The ATPase activity of H+-FOF1-ATP synthase (FOF1) is down-regulated by several mechanisms. The most universal of them found in bacterial, chloroplast and mitochondrial enzymes is non-competitive inhibition by MgADP (ADP-inhibition). When MgADP binds in a catalytic site in the absence of phosphate, the nucleotide might be trapped instead of being released and replaced by new MgATP. In this case the enzyme becomes inactivated, and MgADP release is required for re-activation. The degree of ADP-inhibition varies between different organisms: it is strong in mitochondrial and chloroplast FOF1 and in enzymes of some bacteria (including Bacillus PS3 sp., and Bacillus subtilis), but in FOF1 of Escherichia coli it is much weaker. It was shown that mutation betaGln259Leu in Bacillus PS3 FOF1 noticeably relieves its strong ADP-inhibition. In this work, we introduced the same mutation in FOF1 from B. subtilis. ADP-inhibition in the mutant FOF1 was also attenuated in comparison to the wild-type enzyme. The ATPase activity in membrane preparations was 3 fold higher in the mutant. Mutant enzyme was capable of ATP-driven proton pumping, and its ATPase activity was stimulated by dissipation of the protonmotive force, implying that the coupling efficiency between ATP hydrolysis and proton transport was not impaired by the mutation. We observed no effect of mutation on the growth rate of B. subtilis in pure cultures. However, in competition growth experiments when the wild type and the mutant strains were cultivated together in mixed cultures, the wild type strain always crowded out the mutant. To our knowledge, this is the first demonstration of the negative effect of FOF1 ADP-inhibition attenuation in vivo.
Collapse
|
41
|
Lapashina AS, Feniouk BA. ADP-Inhibition of H+-F OF 1-ATP Synthase. BIOCHEMISTRY (MOSCOW) 2018; 83:1141-1160. [PMID: 30472953 DOI: 10.1134/s0006297918100012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
H+-FOF1-ATP synthase (F-ATPase, F-type ATPase, FOF1 complex) catalyzes ATP synthesis from ADP and inorganic phosphate in eubacteria, mitochondria, chloroplasts, and some archaea. ATP synthesis is powered by the transmembrane proton transport driven by the proton motive force (PMF) generated by the respiratory or photosynthetic electron transport chains. When the PMF is decreased or absent, ATP synthase catalyzes the reverse reaction, working as an ATP-dependent proton pump. The ATPase activity of the enzyme is regulated by several mechanisms, of which the most conserved is the non-competitive inhibition by the MgADP complex (ADP-inhibition). When ADP binds to the catalytic site without phosphate, the enzyme may undergo conformational changes that lock bound ADP, resulting in enzyme inactivation. PMF can induce release of inhibitory ADP and reactivate ATP synthase; the threshold PMF value required for enzyme reactivation might exceed the PMF for ATP synthesis. Moreover, membrane energization increases the catalytic site affinity to phosphate, thereby reducing the probability of ADP binding without phosphate and preventing enzyme transition to the ADP-inhibited state. Besides phosphate, oxyanions (e.g., sulfite and bicarbonate), alcohols, lauryldimethylamine oxide, and a number of other detergents can weaken ADP-inhibition and increase ATPase activity of the enzyme. In this paper, we review the data on ADP-inhibition of ATP synthases from different organisms and discuss the in vivo role of this phenomenon and its relationship with other regulatory mechanisms, such as ATPase activity inhibition by subunit ε and nucleotide binding in the noncatalytic sites of the enzyme. It should be noted that in Escherichia coli enzyme, ADP-inhibition is relatively weak and rather enhanced than prevented by phosphate.
Collapse
Affiliation(s)
- A S Lapashina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - B A Feniouk
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
42
|
Lapashina AS, Prikhodko AS, Shugaeva TE, Feniouk BA. Residue 249 in subunit beta regulates ADP inhibition and its phosphate modulation in Escherichia coli ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:181-188. [PMID: 30528692 DOI: 10.1016/j.bbabio.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 11/29/2022]
Abstract
ATPase activity of proton-translocating FOF1-ATP synthase (F-type ATPase or F-ATPase) is suppressed in the absence of protonmotive force by several regulatory mechanisms. The most conservative of these mechanisms found in all enzymes studied so far is allosteric inhibition of ATP hydrolysis by MgADP (ADP-inhibition). When MgADP is bound without phosphate in the catalytic site, the enzyme lapses into an inactive state with MgADP trapped. In chloroplasts and mitochondria, as well as in most bacteria, phosphate prevents MgADP inhibition. However, in Escherichia coli ATP synthase ADP-inhibition is relatively weak and phosphate does not prevent it but seems to enhance it. We found that a single amino acid residue in subunit β is responsible for these features of E. coli enzyme. Mutation βL249Q significantly enhanced ADP-inhibition in E. coli ATP synthase, increased the extent of ATP hydrolysis stimulation by sulfite, and rendered the ADP-inhibition sensitive to phosphate in the same manner as observed in FOF1 from mitochondria, chloroplasts, and most aerobic\photosynthetic bacteria.
Collapse
Affiliation(s)
- Anna S Lapashina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia S Prikhodko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tatiana E Shugaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Boris A Feniouk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
43
|
Colina-Tenorio L, Dautant A, Miranda-Astudillo H, Giraud MF, González-Halphen D. The Peripheral Stalk of Rotary ATPases. Front Physiol 2018; 9:1243. [PMID: 30233414 PMCID: PMC6131620 DOI: 10.3389/fphys.2018.01243] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
Rotary ATPases are a family of enzymes that are thought of as molecular nanomotors and are classified in three types: F, A, and V-type ATPases. Two members (F and A-type) can synthesize and hydrolyze ATP, depending on the energetic needs of the cell, while the V-type enzyme exhibits only a hydrolytic activity. The overall architecture of all these enzymes is conserved and three main sectors are distinguished: a catalytic core, a rotor and a stator or peripheral stalk. The peripheral stalks of the A and V-types are highly conserved in both structure and function, however, the F-type peripheral stalks have divergent structures. Furthermore, the peripheral stalk has other roles beyond its stator function, as evidenced by several biochemical and recent structural studies. This review describes the information regarding the organization of the peripheral stalk components of F, A, and V-ATPases, highlighting the key differences between the studied enzymes, as well as the different processes in which the structure is involved.
Collapse
Affiliation(s)
- Lilia Colina-Tenorio
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alain Dautant
- CNRS, UMR5095, IBGC, Bordeaux, France.,Energy Transducing Systems and Mitochondrial Morphology, Université de Bordeaux, Bordeaux, France
| | - Héctor Miranda-Astudillo
- Genetics and Physiology of Microalgae, InBios, PhytoSYSTEMS, University of Liège, Liège, Belgium
| | - Marie-France Giraud
- CNRS, UMR5095, IBGC, Bordeaux, France.,Energy Transducing Systems and Mitochondrial Morphology, Université de Bordeaux, Bordeaux, France
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
44
|
Sielaff H, Duncan TM, Börsch M. The regulatory subunit ε in Escherichia coli F OF 1-ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:775-788. [PMID: 29932911 DOI: 10.1016/j.bbabio.2018.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
Abstract
F-type ATP synthases are extraordinary multisubunit proteins that operate as nanomotors. The Escherichia coli (E. coli) enzyme uses the proton motive force (pmf) across the bacterial plasma membrane to drive rotation of the central rotor subunits within a stator subunit complex. Through this mechanical rotation, the rotor coordinates three nucleotide binding sites that sequentially catalyze the synthesis of ATP. Moreover, the enzyme can hydrolyze ATP to turn the rotor in the opposite direction and generate pmf. The direction of net catalysis, i.e. synthesis or hydrolysis of ATP, depends on the cell's bioenergetic conditions. Different control mechanisms have been found for ATP synthases in mitochondria, chloroplasts and bacteria. This review discusses the auto-inhibitory behavior of subunit ε found in FOF1-ATP synthases of many bacteria. We focus on E. coli FOF1-ATP synthase, with insights into the regulatory mechanism of subunit ε arising from structural and biochemical studies complemented by single-molecule microscopy experiments.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Thomas M Duncan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
45
|
Ekimoto T, Ikeguchi M. Multiscale molecular dynamics simulations of rotary motor proteins. Biophys Rev 2017; 10:605-615. [PMID: 29204882 DOI: 10.1007/s12551-017-0373-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/23/2017] [Indexed: 12/16/2022] Open
Abstract
Protein functions require specific structures frequently coupled with conformational changes. The scale of the structural dynamics of proteins spans from the atomic to the molecular level. Theoretically, all-atom molecular dynamics (MD) simulation is a powerful tool to investigate protein dynamics because the MD simulation is capable of capturing conformational changes obeying the intrinsically structural features. However, to study long-timescale dynamics, efficient sampling techniques and coarse-grained (CG) approaches coupled with all-atom MD simulations, termed multiscale MD simulations, are required to overcome the timescale limitation in all-atom MD simulations. Here, we review two examples of rotary motor proteins examined using free energy landscape (FEL) analysis and CG-MD simulations. In the FEL analysis, FEL is calculated as a function of reaction coordinates, and the long-timescale dynamics corresponding to conformational changes is described as transitions on the FEL surface. Another approach is the utilization of the CG model, in which the CG parameters are tuned using the fluctuation matching methodology with all-atom MD simulations. The long-timespan dynamics is then elucidated straightforwardly by using CG-MD simulations.
Collapse
Affiliation(s)
- Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
46
|
Furuta K, Furuta A. Re-engineering of protein motors to understand mechanisms biasing random motion and generating collective dynamics. Curr Opin Biotechnol 2017; 51:39-46. [PMID: 29179022 DOI: 10.1016/j.copbio.2017.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 11/25/2022]
Abstract
A considerable amount of insight into the mechanisms of protein-based biomolecular motors has been accumulated over decades of research. However, our knowledge about the design principles of these motors is still limited. Even less is known about the design of multi-motor systems that perform various functions within the cell. Here we focus on constructive (or synthetic) approaches to biomolecular motors that could make a breakthrough in our understanding. Recent achievements include studies at different hierarchical levels of complexity: re-engineering of individual motors, construction of multi-motor systems, and generation of large-scale complex behaviour. We then propose a strategy where the collective behaviour can be repeatedly tested upon modifying individual motors, which may provide important clues about how biomolecular motors and their systems are designed.
Collapse
Affiliation(s)
- Ken'ya Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan.
| | - Akane Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| |
Collapse
|
47
|
Singh D, Grüber G. Crystallographic and enzymatic insights into the mechanisms of Mg-ADP inhibition in the A 1 complex of the A 1A O ATP synthase. J Struct Biol 2017; 201:26-35. [PMID: 29074108 DOI: 10.1016/j.jsb.2017.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/19/2017] [Accepted: 10/21/2017] [Indexed: 01/02/2023]
Abstract
F-ATP synthases are described to have mechanisms which regulate the unnecessary depletion of ATP pool during an energy limited state of the cell. Mg-ADP inhibition is one of the regulatory features where Mg-ADP gets entrapped in the catalytic site, preventing the binding of ATP and further inhibiting ATP hydrolysis. Knowledge about the existence and regulation of the related archaeal-type A1AO ATP synthases (A3B3CDE2FG2ac) is limited. We demonstrate MgADP inhibition of the enzymatically active A3B3D- and A3B3DF complexes of Methanosarcina mazei Gö1 A-ATP synthase and reveal the importance of the amino acids P235 and S238 inside the P-loop (GPFGSGKTV) of the catalytic A subunit. Substituting these two residues by the respective P-loop residues alanine and cysteine (GAFGCGKTV) of the related eukaryotic V-ATPase increases significantly the ATPase activity of the enzyme variant and abolishes MgADP inhibition. The atomic structure of the P235A, S238C double mutant of subunit A of the Pyrococcus horikoshii OT3 A-ATP synthase provides details of how these critical residues affect nucleotide-binding and ATP hydrolysis in this molecular engine. The qualitative data are confirmed by quantitative results derived from fluorescence correlation spectroscopy experiments.
Collapse
Affiliation(s)
- Dhirendra Singh
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
48
|
Plattner H. Evolutionary Cell Biology of Proteins from Protists to Humans and Plants. J Eukaryot Microbiol 2017; 65:255-289. [PMID: 28719054 DOI: 10.1111/jeu.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/10/2023]
Abstract
During evolution, the cell as a fine-tuned machine had to undergo permanent adjustments to match changes in its environment, while "closed for repair work" was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging "evolutionary cell biology." Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage-dependent Ca2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R-type SNAREs differs in mono- and bikonta, as do Ca2+ -dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H+ -ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in Paramecium. One of the most flexible proteins is centrin when its intracellular localization and function throughout evolution is traced. There are many more examples documenting evolutionary flexibility of translation products depending on requirements and potential for implantation within the actual cellular context at different levels of evolution. From estimates of gene and protein numbers per organism, it appears that much of the basic inventory of protozoan precursors could be transmitted to highest eukaryotic levels, with some losses and also with important additional "inventions."
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P. O. Box M625, Konstanz, 78457, Germany
| |
Collapse
|
49
|
Zhdanov AV, Andreev DE, Baranov PV, Papkovsky DB. Low energy costs of F1Fo ATP synthase reversal in colon carcinoma cells deficient in mitochondrial complex IV. Free Radic Biol Med 2017; 106:184-195. [PMID: 28189850 DOI: 10.1016/j.freeradbiomed.2017.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
Abstract
Mitochondrial polarisation is paramount for a variety of cellular functions. Under ischemia, mitochondrial membrane potential (ΔΨm) and proton gradient (ΔpH) are maintained via a reversal of mitochondrial F1Fo ATP synthase (mATPase), which can rapidly deplete ATP and drive cells into energy crisis. We found that under normal conditions in cells with disassembled cytochrome c oxidase complex (COX-deficient HCT116), mATPase maintains ΔΨm at levels only 15-20% lower than in WT cells, and for this utilises relatively little ATP. For a small energy expenditure, mATPase enables mitochondrial ΔpH, protein import, Ca2+ turnover, and supports free radical detoxication machinery enlarged to protect the cells from oxidative damage. Whereas in COX-deficient cells the main source of ATP is glycolysis, the ΔΨm is still maintained upon inhibition of the adenine nucleotide translocators with bongkrekic acid and carboxyatractyloside, indicating that the role of ANTs is redundant, and matrix substrate level phosphorylation alone or in cooperation with ATP-Mg/Pi carriers can continuously support the mATPase activity. Intriguingly, we found that mitochondrial complex III is active, and it contributes not only to free radical production, but also to ΔΨm maintenance and energy budget of COX-deficient cells. Overall, this study demonstrates that F1Fo ATP synthase can support general mitochondrial and cellular functions, working in extremely efficient 'energy saving' reverse mode and flexibly recruiting free radical detoxication and ATP producing / transporting pathways.
Collapse
Affiliation(s)
- Alexander V Zhdanov
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland.
| | - Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel V Baranov
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
| | - Dmitri B Papkovsky
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
50
|
Schmidt C, Beilsten-Edmands V, Mohammed S, Robinson CV. Acetylation and phosphorylation control both local and global stability of the chloroplast F 1 ATP synthase. Sci Rep 2017; 7:44068. [PMID: 28276484 PMCID: PMC5343439 DOI: 10.1038/srep44068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/03/2017] [Indexed: 12/14/2022] Open
Abstract
ATP synthases (ATPases) are enzymes that produce ATP and control the pH in the cell or cellular compartments. While highly conserved over different species, ATPases are structurally well-characterised but the existence and functional significance of many post-translational modifications (PTMs) is not well understood. We combined a range of mass spectrometric techniques to unravel the location and extent of PTMs in the chloroplast ATP synthase (cATPase) purified from spinach leaves. We identified multiple phosphorylation and acetylation sites and found that both modifications stabilise binding of ε and δ subunits. Comparing cross-linking of naturally modified cATPase with the in vitro deacetylated enzyme revealed a major conformational change in the ε subunit in accord with extended and folded forms of the subunit. Locating modified residues within the catalytic head we found that phosphorylated and acetylated residues are primarily on α/β and β/α interfaces respectively. By aligning along different interfaces the higher abundance acetylated residues are proximal to the regulatory sites while the lower abundance phosphorylation sites are more densely populated at the catalytic sites. We propose that modifications in the catalytic head, together with the conformational change in subunit ε, work in synergy to fine-tune the enzyme during adverse conditions.
Collapse
Affiliation(s)
- Carla Schmidt
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | | | - Shabaz Mohammed
- Department of Chemistry, University of Oxford, Oxford, United Kingdom.,Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|