1
|
Guo Y, Li Z, Xu P, Guo G, He T, Lai Y. Subchronic and Chronic Toxicity Assessment of Sublancin in Sprague-Dawley Rats. TOXICS 2025; 13:413. [PMID: 40423492 DOI: 10.3390/toxics13050413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025]
Abstract
Sublancin, an S-linked antimicrobial (glycol) peptide produced by Bacillus subtilis, has emerged as a novel and promising veterinary drug due to its unique antibacterial mechanism, low risk of resistance, and properties that modulate the immune system, reduce inflammation, and promote gut health. This study comprehensively assessed the subchronic (90-day) and chronic (180-day) toxicity of Sprague-Dawley (SD) rats, following the guidelines issued by the Ministry of Agriculture of China. Rats were orally administered sublancin at doses of 2000, 10,000, or 50,000 mg/kg feed, representing 1666-5000 times the efficacious dose (1.0-1.2 mg/kg) reported in mice via the same administration route. Throughout this study, a wide range of physiological and behavioral parameters were monitored to access the toxicity of sublancin, including appetite, water intake, body weight gain, and organ weights. Hematological and biochemical analyses, as well as histopathological examinations of the major organs, were conducted at the end of each study period. The results indicated no adverse effects on any measured parameters at any dose level, with no significant differences observed between the sublancin-treated groups and the control group (p > 0.05). Notably, even the highest dose of 50,000 mg/kg did not induce growth inhibition or physiological dysfunction. A histopathological examination also revealed no tissue abnormalities in the major organs. The no-observed-effect level (NOEL) was determined to be 50,000 mg/kg for both study periods. These results demonstrate the long-term safety of sublancin in Sprague-Dawley rats, with no adverse effects during 180 days of oral administration at doses 1666-5000-fold the documented antimicrobially effective and immune-enhancing doses.
Collapse
Affiliation(s)
- Yong Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 420200, China
- Sinagri YingTai Bio-peptide Co., Ltd., Linzhou 456550, China
- Key Laboratory of Feed Antibiotics Replacement Technology, Ministry of Agriculture and Rural Affairs, Linzhou 456550, China
| | - Zhihao Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Penglong Xu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Gantong Guo
- Sinagri YingTai Bio-peptide Co., Ltd., Linzhou 456550, China
- Key Laboratory of Feed Antibiotics Replacement Technology, Ministry of Agriculture and Rural Affairs, Linzhou 456550, China
| | - Tao He
- Sinagri YingTai Bio-peptide Co., Ltd., Linzhou 456550, China
- Key Laboratory of Feed Antibiotics Replacement Technology, Ministry of Agriculture and Rural Affairs, Linzhou 456550, China
| | - Yujiao Lai
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
2
|
Li Q, Chao W, Qiu L. Therapeutic peptides: chemical strategies fortify peptides for enhanced disease treatment efficacy. Amino Acids 2025; 57:25. [PMID: 40338379 PMCID: PMC12062087 DOI: 10.1007/s00726-025-03454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
Therapeutic peptides, as a unique form of medication composed of orderly arranged sequences of amino acids, are valued for their high affinity, specificity, low immunogenicity, and economical production costs. Currently, more than 100 peptides have already secured market approval. Over 150 are actively undergoing clinical trials, while an additional 400-600 are in the preclinical research stage. Despite this, their clinical application is limited by factors such as salt sensitivity, brief residence in the bloodstream, inadequate cellular uptake, and high structural flexibility. By employing suitable chemical methods to modify peptides, it is possible to regulate important physicochemical factors such as charge, hydrophobicity, conformation, amphiphilicity, and sequence that affect the physicochemical properties and biological activity of peptides. This can overcome the inherent deficiencies of peptides, enhance their pharmacokinetic properties and biological activity, and promote continuous progress in the field of research. A diverse array of modified peptides is currently being developed and investigated across numerous therapeutic fields. Drawing on the latest research, this review encapsulates the essential physicochemical factors and significant chemical modification strategies that influence the properties and biological activity of peptides as pharmaceuticals. It also assesses how physicochemical factors affect the application of peptide drugs in disease treatment and the effectiveness of chemical strategies in disease therapy. Concurrently, this review discusses the prospective advancements in therapeutic peptide development, with the goal of offering guidance for designing and optimizing therapeutic peptides and to delve deeper into the therapeutic potential of peptides for disease intervention.
Collapse
Affiliation(s)
- Qingmei Li
- Hezhou University, Hezhou, 542800, Guangxi, China
- Naval Medical University, Shanghai, 200433, China
| | - Wen Chao
- Naval Medical University, Shanghai, 200433, China
| | - Lijuan Qiu
- Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Kohm K, Clanner AV, Hertel R, Commichau FM. Closely related and yet special - how SPβ family phages control lysis-lysogeny decisions. Trends Microbiol 2025; 33:387-396. [PMID: 39645480 DOI: 10.1016/j.tim.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
Soon after the discovery of genetic competence in the Gram-positive bacterium Bacillus subtilis, lytic and temperate phages that infect this organism were isolated. For instance, the lytic phage ϕ29 became a model for studying processes such as viral DNA packaging, replication, and transcription. By contrast, only a handful of temperate B. subtilis phages have been comprehensively characterized. However, the discovery of a peptide-based quorum sensing (QS) system in 2017 has brought temperate B. subtilis phages, particularly those of the SPβ family, back into the focus of research. The QS system is used by these phages to modulate lysis-lysogeny decisions. Meanwhile, many key components of the lysis-lysogeny management system have been identified. It turned out that a complex co-adaptation between the B. subtilis host cell and SPβ-like phages occurred during evolution and that a host-encoded toxin-antitoxin system plays a key role in controlling lysis-lysogeny decisions. There are many similarities and many important differences between the two well-studied model phages. Thus, a further comparative analysis of the lysis-lysogeny systems is essential to uncover the fundamental differences between ϕ3T and SPβ. Moreover, we believe that it would be exciting to revive research on temperate B. subtilis phages that are not related to SPβ-family phages.
Collapse
Affiliation(s)
- Katharina Kohm
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Annabel V Clanner
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Robert Hertel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Germany
| | - Fabian M Commichau
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
4
|
Ancajas CMF, Oyedele AS, Butt CM, Walker AS. Advances, opportunities, and challenges in methods for interrogating the structure activity relationships of natural products. Nat Prod Rep 2024; 41:1543-1578. [PMID: 38912779 PMCID: PMC11484176 DOI: 10.1039/d4np00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 06/25/2024]
Abstract
Time span in literature: 1985-early 2024Natural products play a key role in drug discovery, both as a direct source of drugs and as a starting point for the development of synthetic compounds. Most natural products are not suitable to be used as drugs without further modification due to insufficient activity or poor pharmacokinetic properties. Choosing what modifications to make requires an understanding of the compound's structure-activity relationships. Use of structure-activity relationships is commonplace and essential in medicinal chemistry campaigns applied to human-designed synthetic compounds. Structure-activity relationships have also been used to improve the properties of natural products, but several challenges still limit these efforts. Here, we review methods for studying the structure-activity relationships of natural products and their limitations. Specifically, we will discuss how synthesis, including total synthesis, late-stage derivatization, chemoenzymatic synthetic pathways, and engineering and genome mining of biosynthetic pathways can be used to produce natural product analogs and discuss the challenges of each of these approaches. Finally, we will discuss computational methods including machine learning methods for analyzing the relationship between biosynthetic genes and product activity, computer aided drug design techniques, and interpretable artificial intelligence approaches towards elucidating structure-activity relationships from models trained to predict bioactivity from chemical structure. Our focus will be on these latter topics as their applications for natural products have not been extensively reviewed. We suggest that these methods are all complementary to each other, and that only collaborative efforts using a combination of these techniques will result in a full understanding of the structure-activity relationships of natural products.
Collapse
Affiliation(s)
| | | | - Caitlin M Butt
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| | - Allison S Walker
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Ahlawat S, Shukla BN, Singh V, Sharma Y, Choudhary P, Rao A. GLYCOCINS: The sugar peppered antimicrobials. Biotechnol Adv 2024; 75:108415. [PMID: 39033836 DOI: 10.1016/j.biotechadv.2024.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Glycosylated bacteriocins, known as glycocins, were first discovered in 2011. These bioactive peptides are produced by bacteria to gain survival advantages. They exhibit diverse types of glycans and demonstrate varied antimicrobial activity. Currently, there are 13 experimentally known glycocins, with over 250 identified in silico across different bacterial phyla. Notably, glycocins are recognized for their glycan-mediated antimicrobial activity, proving effective against drug-resistant and foodborne pathogens. Many glycocins contain rare S-linked glycans. Glycosyltransferases (GTs), responsible for transferring sugar to glycocins and involved in glycocin biosynthesis, often cluster together in the producer's genome. This clustering makes them valuable for custom glycoengineering with diverse substrate specificities. Heterologous expression of glycocins has paved the way for the establishment of microbial factories for glycopeptide and glycoconjugate production across various industries. In this review, we emphasize the primary roles of fully and partially characterized glycocins and their glycosylating enzymes. Additionally, we explore how specific glycan structures facilitate these functions in antibacterial activities. Furthermore, we discuss newer approaches and increasing efforts aimed at exploiting bacterial glycobiology for the development of food preservatives and as replacements or complements to traditional antibiotics, particularly in the face of antibiotic-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Shimona Ahlawat
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | | | - Vaidhvi Singh
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Yogita Sharma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | | | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India; Current address: Food Safety and Standards Authority of India (FSSAI), New Delhi 110002, India.
| |
Collapse
|
6
|
Ren H, Huang C, Pan Y, Dommaraju SR, Cui H, Li M, Gadgil MG, Mitchell DA, Zhao H. Non-modular fatty acid synthases yield distinct N-terminal acylation in ribosomal peptides. Nat Chem 2024; 16:1320-1329. [PMID: 38528101 PMCID: PMC11321927 DOI: 10.1038/s41557-024-01491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
Recent efforts in genome mining of ribosomally synthesized and post-translationally modified peptides (RiPPs) have expanded the diversity of post-translational modification chemistries. However, RiPPs are rarely reported as hybrid molecules incorporating biosynthetic machinery from other natural product families. Here we report lipoavitides, a class of RiPP/fatty-acid hybrid lipopeptides that display a unique, putatively membrane-targeting 4-hydroxy-2,4-dimethylpentanoyl (HMP)-modified N terminus. The HMP is formed via condensation of isobutyryl-coenzyme A (isobutyryl-CoA) and methylmalonyl-CoA catalysed by a 3-ketoacyl-(acyl carrier protein) synthase III enzyme, followed by successive tailoring reactions in the fatty acid biosynthetic pathway. The HMP and RiPP substructures are then connected by an acyltransferase exhibiting promiscuous activity towards the fatty acyl and RiPP substrates. Overall, the discovery of lipoavitides contributes a prototype of RiPP/fatty-acid hybrids and provides possible enzymatic tools for lipopeptide bioengineering.
Collapse
Affiliation(s)
- Hengqian Ren
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chunshuai Huang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuwei Pan
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shravan R Dommaraju
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Haiyang Cui
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Maolin Li
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mayuresh G Gadgil
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Douglas A Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
7
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
8
|
Ren H, Huang C, Pan Y, Cui H, Dommaraju SR, Mitchell DA, Zhao H. Non-modular Fatty Acid Synthases Yield Unique Acylation in Ribosomal Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564083. [PMID: 37961664 PMCID: PMC10634828 DOI: 10.1101/2023.10.25.564083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Recent efforts in genome mining of ribosomally synthesized and post-translationally modified peptides (RiPPs) have expanded the diversity of post-translational modification chemistries 1, 2 . However, RiPPs are rarely reported as hybrid molecules incorporating biosynthetic machineries from other natural product families 3-8 . Here, we report lipoavitides, a class of RiPP/fatty acid hybrid lipopeptides that display a unique, membrane-targeting 4-hydroxy-2,4-dimethylpentanoyl (HMP)-modified N -terminus. The HMP is formed via condensation of isobutyryl-CoA and methylmalonyl-CoA catalyzed by a 3-ketoacyl-ACP synthase III enzyme, followed by successive tailoring reactions in the fatty acid biosynthetic pathway. The HMP and RiPP substructures are then connected by an acyltransferase exhibiting promiscuous activity towards the fatty acyl and RiPP substrates. Overall, the discovery of lipoavitides contributes a prototype of RiPP/fatty acid hybrids and provides possible enzymatic tools for lipopeptide bioengineering.
Collapse
|
9
|
Harjes E, Edwards PJB, Bisset SW, Patchett ML, Jameson GB, Yang SH, Navo CD, Harris PWR, Brimble MA, Norris GE. NMR Shows Why a Small Chemical Change Almost Abolishes the Antimicrobial Activity of Glycocin F. Biochemistry 2023; 62:2669-2676. [PMID: 37531216 DOI: 10.1021/acs.biochem.3c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Glycocin F (GccF), a ribosomally synthesized, post-translationally modified peptide secreted by Lactobacillus plantarum KW30, rapidly inhibits the growth of susceptible bacteria at nanomolar concentrations. Previous studies have highlighted structural features important for its activity and have shown the absolute requirement for the Ser18 O-linked GlcNAc on the eight-residue loop linking the two short helices of the (C-X6-C)2 structure. Here, we show that an ostensibly very small chemical modification to Ser18, the substitution of the Cα proton with a methyl group, reduces the antimicrobial activity of GccF 1000-fold (IC50 1.5 μM cf. 1.5 nM). A comparison of the GccFα-methylSer18 NMR structure (PDB 8DFZ) with that of the native protein (PDB 2KUY) showed a marked difference in the orientation and mobility of the loop, as well as a markedly different positioning of the GlcNAc, suggesting that loop conformation, dynamics, and glycan presentation play an important role in the interaction of GccF with as yet unknown but essential physiological target molecules.
Collapse
Affiliation(s)
- Elena Harjes
- School of Natural Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Patrick J B Edwards
- School of Natural Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Sean W Bisset
- School of Natural Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Mark L Patchett
- School of Natural Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Geoffrey B Jameson
- School of Natural Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Sung-Hyun Yang
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
| | - Claudio D Navo
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
| | - Paul W R Harris
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
| | - Margaret A Brimble
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
| | - Gillian E Norris
- School of Natural Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
10
|
Choi GH, Holzapfel WH, Todorov SD. Diversity of the bacteriocins, their classification and potential applications in combat of antibiotic resistant and clinically relevant pathogens. Crit Rev Microbiol 2023; 49:578-597. [PMID: 35731254 DOI: 10.1080/1040841x.2022.2090227] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/18/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022]
Abstract
There is almost a century since discovery of penicillin by Alexander Fleming, a century of enthusiasm, abuse, facing development of antibiotic-resistance and clear conclusion that the modern medicine needs a new type of antimicrobials. Bacteriocins produced by Gram-positive and Gram-negative bacteria, Archaea and Eukaryotes were widely explored as potential antimicrobials with several applications in food industry. In last two decades bacteriocins showed their potential as promising alternative therapeutic for the treatment of antibiotic-resistant pathogens. Bacteriocins can be characterised as highly selective antimicrobials and therapeutics with low cytotoxicity. Most probably in order to solve the problems associated with the increasing number of antibiotic-resistant bacteria, the application of natural or bioengineered bacteriocins in addition to synergistically acting preparations of bacteriocins and conventional antibiotics, can be the next step in combat versus drug-resistant pathogens. In this overview we focussed on diversity of specific lactic acid bacteria and their bacteriocins. Moreover, some additional examples of bacteriocins from non-lactic acid, Gram-positive and Gram-negative bacteria, Archaea and eukaryotic organisms are presented and discussed. Therapeutic properties of bacteriocins, their bioengineering and combined applications, together with conventional antibiotics, were evaluated with the scope of application in human and veterinary medicine for combating (multi-)drug-resistant pathogens.
Collapse
Affiliation(s)
- Gee-Hyeun Choi
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Republic of Korea
| | - Wilhelm Heinrich Holzapfel
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang, Republic of Korea
| | | |
Collapse
|
11
|
Ouadhi S, López DMV, Mohideen FI, Kwan DH. Engineering the enzyme toolbox to tailor glycosylation in small molecule natural products and protein biologics. Protein Eng Des Sel 2023; 36:gzac010. [PMID: 36444941 DOI: 10.1093/protein/gzac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/11/2022] [Accepted: 10/04/2022] [Indexed: 12/03/2022] Open
Abstract
Many glycosylated small molecule natural products and glycoprotein biologics are important in a broad range of therapeutic and industrial applications. The sugar moieties that decorate these compounds often show a profound impact on their biological functions, thus biocatalytic methods for controlling their glycosylation are valuable. Enzymes from nature are useful tools to tailor bioproduct glycosylation but these sometimes have limitations in their catalytic efficiency, substrate specificity, regiospecificity, stereospecificity, or stability. Enzyme engineering strategies such as directed evolution or semi-rational and rational design have addressed some of the challenges presented by these limitations. In this review, we highlight some of the recent research on engineering enzymes to tailor the glycosylation of small molecule natural products (including alkaloids, terpenoids, polyketides, and peptides), as well as the glycosylation of protein biologics (including hormones, enzyme-replacement therapies, enzyme inhibitors, vaccines, and antibodies).
Collapse
Affiliation(s)
- Sara Ouadhi
- Centre for Applied Synthetic Biology, Concordia University, Montreal, QC H4B 2A6, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Dulce María Valdez López
- Centre for Applied Synthetic Biology, Concordia University, Montreal, QC H4B 2A6, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - F Ifthiha Mohideen
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - David H Kwan
- Centre for Applied Synthetic Biology, Concordia University, Montreal, QC H4B 2A6, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
12
|
Mordhorst S, Ruijne F, Vagstad AL, Kuipers OP, Piel J. Emulating nonribosomal peptides with ribosomal biosynthetic strategies. RSC Chem Biol 2023; 4:7-36. [PMID: 36685251 PMCID: PMC9811515 DOI: 10.1039/d2cb00169a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Peptide natural products are important lead structures for human drugs and many nonribosomal peptides possess antibiotic activity. This makes them interesting targets for engineering approaches to generate peptide analogues with, for example, increased bioactivities. Nonribosomal peptides are produced by huge mega-enzyme complexes in an assembly-line like manner, and hence, these biosynthetic pathways are challenging to engineer. In the past decade, more and more structural features thought to be unique to nonribosomal peptides were found in ribosomally synthesised and posttranslationally modified peptides as well. These streamlined ribosomal pathways with modifying enzymes that are often promiscuous and with gene-encoded precursor proteins that can be modified easily, offer several advantages to produce designer peptides. This review aims to provide an overview of recent progress in this emerging research area by comparing structural features common to both nonribosomal and ribosomally synthesised and posttranslationally modified peptides in the first part and highlighting synthetic biology strategies for emulating nonribosomal peptides by ribosomal pathway engineering in the second part.
Collapse
Affiliation(s)
- Silja Mordhorst
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Fleur Ruijne
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7, 9747 AG Groningen The Netherlands
| | - Anna L Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7, 9747 AG Groningen The Netherlands
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| |
Collapse
|
13
|
Protein cysteine S-glycosylation: oxidative hydrolysis of protein S-glycosidic bonds in aqueous alkaline environments. Amino Acids 2023; 55:61-74. [PMID: 36460841 PMCID: PMC9877059 DOI: 10.1007/s00726-022-03208-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022]
Abstract
Some glycoproteins contain carbohydrates S-linked to cysteine (Cys) residues. However, relatively few S-glycosylated proteins have been detected, due to the lack of an effective research methodology. This work outlines a general concept for the detection of S-glycosylation sites in proteins. The approach was verified by exploratory experiments on a model mixture of β-S-glucosylated polypeptides obtained by the chemical transformation of lysozyme P00698. The model underwent two processes: (1) oxidative hydrolysis of S-glycosidic bonds under alkaline conditions to expose the thiol group of Cys residues; (2) thiol S-alkylation leading to thiol S-adduct formation at the former S-glycosylation sites. Oxidative hydrolysis was conducted in aqueous urea, dimethyl sulfoxide, or trifluoroethanol, with silver nitrate as the reaction promoter, in the presence of triethylamine and/or pyridine. The concurrent formation of stable protein silver thiolates, gluconic acid, and silver nanoclusters was observed. The essential de-metalation of protein silver thiolates using dithiothreitol preceded the S-labeling of Cys residues with 4-vinyl pyridine or a fluorescent reagent. The S-labeled model was sequenced by tandem mass spectrometry to obtain data on the modifications and their distribution over the protein chains. This enabled the efficiency of both S-glycosidic bonds hydrolysis and S-glycosylation site labeling to be evaluated. Suggestions are also given for testing this novel strategy on real proteomic samples.
Collapse
|
14
|
Ayikpoe RS, Shi C, Battiste AJ, Eslami SM, Ramesh S, Simon MA, Bothwell IR, Lee H, Rice AJ, Ren H, Tian Q, Harris LA, Sarksian R, Zhu L, Frerk AM, Precord TW, van der Donk WA, Mitchell DA, Zhao H. A scalable platform to discover antimicrobials of ribosomal origin. Nat Commun 2022; 13:6135. [PMID: 36253467 PMCID: PMC9576775 DOI: 10.1038/s41467-022-33890-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a promising source of new antimicrobials in the face of rising antibiotic resistance. Here, we report a scalable platform that combines high-throughput bioinformatics with automated biosynthetic gene cluster refactoring for rapid evaluation of uncharacterized gene clusters. As a proof of concept, 96 RiPP gene clusters that originate from diverse bacterial phyla involving 383 biosynthetic genes are refactored in a high-throughput manner using a biological foundry with a success rate of 86%. Heterologous expression of all successfully refactored gene clusters in Escherichia coli enables the discovery of 30 compounds covering six RiPP classes: lanthipeptides, lasso peptides, graspetides, glycocins, linear azol(in)e-containing peptides, and thioamitides. A subset of the discovered lanthipeptides exhibit antibiotic activity, with one class II lanthipeptide showing low µM activity against Klebsiella pneumoniae, an ESKAPE pathogen. Overall, this work provides a robust platform for rapidly discovering RiPPs.
Collapse
Affiliation(s)
- Richard S Ayikpoe
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Chengyou Shi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Alexander J Battiste
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Sara M Eslami
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Sangeetha Ramesh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Max A Simon
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Ian R Bothwell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Hyunji Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Andrew J Rice
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Hengqian Ren
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Qiqi Tian
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Lonnie A Harris
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Raymond Sarksian
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Autumn M Frerk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Timothy W Precord
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Wilfred A van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, 20815, MD, USA.
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
| | - Huimin Zhao
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
| |
Collapse
|
15
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
16
|
In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications. Int J Biol Macromol 2022; 218:135-156. [PMID: 35868409 DOI: 10.1016/j.ijbiomac.2022.07.103] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) attracted attention as potential source of novel antimicrobials. Multi-drug resistant (MDR) infections have emerged as a global threat to public health in recent years. Furthermore, due to rapid emergence of new diseases, there is pressing need for development of efficient antimicrobials. AMPs are essential part of the innate immunity in most living organisms, acting as the primary line of defense against foreign invasions. AMPs kill a wide range of microorganisms by primarily targeting cell membranes or intracellular components through a variety of ways. AMPs can be broadly categorized based on their physico-chemical properties, structure, function, target and source of origin. The synthetic analogues produced either with suitable chemical modifications or with the use of suitable delivery systems are projected to eliminate the constraints of toxicity and poor stability commonly linked with natural AMPs. The concept of peptidomimetics is gaining ground around the world nowadays. Among the delivery systems, nanoparticles are emerging as potential delivery tools for AMPs, amplifying their utility against a variety of pathogens. In the present review, the broad classification of various AMPs, their mechanism of action (MOA), challenges associated with AMPs, current applications, and novel strategies to overcome the limitations have been discussed.
Collapse
|
17
|
Unusual Post-Translational Modifications in the Biosynthesis of Lasso Peptides. Int J Mol Sci 2022; 23:ijms23137231. [PMID: 35806232 PMCID: PMC9266682 DOI: 10.3390/ijms23137231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Lasso peptides are a subclass of ribosomally synthesized and post-translationally modified peptides (RiPPs) and feature the threaded, lariat knot-like topology. The basic post-translational modifications (PTMs) of lasso peptide contain two steps, including the leader peptide removal of the ribosome-derived linear precursor peptide by an ATP-dependent cysteine protease, and the macrolactam cyclization by an ATP-dependent macrolactam synthetase. Recently, advanced bioinformatic tools combined with genome mining have paved the way to uncover a rapidly growing number of lasso peptides as well as a series of PTMs other than the general class-defining processes. Despite abundant reviews focusing on lasso peptide discoveries, structures, properties, and physiological functionalities, few summaries concerned their unique PTMs. In this review, we summarized all the unique PTMs of lasso peptides uncovered to date, shedding light on the related investigations in the future.
Collapse
|
18
|
Teng K, Huang F, Liu Y, Wang Y, Xia T, Yun F, Zhong J. Food and gut originated bacteriocins involved in gut microbe-host interactions. Crit Rev Microbiol 2022:1-13. [PMID: 35713699 DOI: 10.1080/1040841x.2022.2082860] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The gut microbes interact with each other as well as host, influencing human health and some diseases. Many gut commensals and food originated bacteria produce bacteriocins which can inhibit pathogens and modulate gut microbiota. Bacteriocins have comparable narrow antimicrobial spectrum and are attractive potentials for precision therapy of gut disorders. In this review, the bacteriocins from food and gut microbiomes and their involvement in the interaction between producers and gut ecosystem, along with their characteristics, types, biosynthesis, and functions are described and discussed. Bacteriocins are produced by many intestinal commensals and food microbes among which lactic acid bacteria (many are probiotics) has been paid more attention. Bacteriocin production has been generally regarded as a probiotic trait. They give a competitive advantage to bacteria, enabling their colonization in human gut, and mediating the interaction between the producers and host ecosystem. They fight against unwanted bacteria and pathogens without significant impact on the composition of commensal microbiota. Bacteriocins assist the producers to survive and colonize in the gut microbial populations. There is a great need to evaluate and utilize the potential of bacteriocins for improved therapeutic implications for intestinal health.
Collapse
Affiliation(s)
- Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fuqing Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yayong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yudong Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Tianqi Xia
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Fangfei Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Wenski SL, Thiengmag S, Helfrich EJ. Complex peptide natural products: Biosynthetic principles, challenges and opportunities for pathway engineering. Synth Syst Biotechnol 2022; 7:631-647. [PMID: 35224231 PMCID: PMC8842026 DOI: 10.1016/j.synbio.2022.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/03/2023] Open
Abstract
Complex peptide natural products exhibit diverse biological functions and a wide range of physico-chemical properties. As a result, many peptides have entered the clinics for various applications. Two main routes for the biosynthesis of complex peptides have evolved in nature: ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic pathways and non-ribosomal peptide synthetases (NRPSs). Insights into both bioorthogonal peptide biosynthetic strategies led to the establishment of universal principles for each of the two routes. These universal rules can be leveraged for the targeted identification of novel peptide biosynthetic blueprints in genome sequences and used for the rational engineering of biosynthetic pathways to produce non-natural peptides. In this review, we contrast the key principles of both biosynthetic routes and compare the different biochemical strategies to install the most frequently encountered peptide modifications. In addition, the influence of the fundamentally different biosynthetic principles on past, current and future engineering approaches is illustrated. Despite the different biosynthetic principles of both peptide biosynthetic routes, the arsenal of characterized peptide modifications encountered in RiPP and NRPS systems is largely overlapping. The continuous expansion of the biocatalytic toolbox of peptide modifying enzymes for both routes paves the way towards the production of complex tailor-made peptides and opens up the possibility to produce NRPS-derived peptides using the ribosomal route and vice versa.
Collapse
Affiliation(s)
- Sebastian L. Wenski
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Sirinthra Thiengmag
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Eric J.N. Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Villavicencio B, Ligabue-Braun R, Verli H. Structural Characteristics of Glycocins: Unraveling the Role of S-Linked Carbohydrates and Other Structural Elements. J Chem Inf Model 2022; 62:927-935. [PMID: 35129982 DOI: 10.1021/acs.jcim.1c01001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycocins are antimicrobial peptides with glycosylations, often an S-linked monosaccharide. Their recent structure elucidation has brought forth questions about their mechanisms of action as well as the impact of S-glycosylation on their structural behavior. Here, we investigated structural characteristics of glycocins using a computational approach. Depending on the peptide's class (sublancin- or glycocin F-like), the sugar changes the peptide's flexibility. Also, the presence of glycosylation is necessary for the lack of structure of Asm1. The C-terminal tail in glycocin F-like peptides influenced their structured regions, acting like a regulator. These findings corroborate the versatility of these post-translational modifications, pointing toward their potential use in molecular engineering.
Collapse
Affiliation(s)
- Bianca Villavicencio
- Graduate Program in Cellular and Molecular Biology (PPGBCM-UFRGS), Center for Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, Brazil
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Graduate Program in Biosciences (PPGBio-UFCSPA), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre CEP 90050-170, Brazil
| | - Hugo Verli
- Department of Molecular Biology and Biotechnology, Graduate Program in Cellular and Molecular Biology (PPGBCM-UFRGS), Center for Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, Brazil
| |
Collapse
|
21
|
Rebuffat S. Ribosomally synthesized peptides, foreground players in microbial interactions: recent developments and unanswered questions. Nat Prod Rep 2021; 39:273-310. [PMID: 34755755 DOI: 10.1039/d1np00052g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is currently well established that multicellular organisms live in tight association with complex communities of microorganisms including a large number of bacteria. These are immersed in complex interaction networks reflecting the relationships established between them and with host organisms; yet, little is known about the molecules and mechanisms involved in these mutual interactions. Ribosomally synthesized peptides, among which bacterial antimicrobial peptides called bacteriocins and microcins have been identified as contributing to host-microbe interplays, are either unmodified or post-translationally modified peptides. This review will unveil current knowledge on these ribosomal peptide-based natural products, their interplay with the host immune system, and their roles in microbial interactions and symbioses. It will include their major structural characteristics and post-translational modifications, the main rules of their maturation pathways, and the principal ecological functions they ensure (communication, signalization, competition), especially in symbiosis, taking select examples in various organisms. Finally, we address unanswered questions and provide a framework for deciphering big issues inspiring future directions in the field.
Collapse
Affiliation(s)
- Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), National Centre of Scientific Research (CNRS), CP 54, 57 rue Cuvier 75005, Paris, France.
| |
Collapse
|
22
|
Characterization of the Biosynthetic Gene Cluster of Enterocin F4-9, a Glycosylated Bacteriocin. Microorganisms 2021; 9:microorganisms9112276. [PMID: 34835402 PMCID: PMC8620827 DOI: 10.3390/microorganisms9112276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 02/02/2023] Open
Abstract
Enterocin F4-9 belongs to the glycocin family having post-translational modifications by two molecules of N-acetylglucosamine β-O-linked to Ser37 and Thr46. In this study, the biosynthetic gene cluster of enterocin F4-9 was cloned and expressed in Enterococcus faecalis JH2-2. Production of glycocin by the JH2-2 expression strain was confirmed by expression of the five genes. The molecular weight was greater than glycocin secreted by the wild strain, E. faecalis F4-9, because eight amino acids from the N-terminal leader sequence remained attached. This N-terminal extension was eliminated after treatment with the culture supernatant of strain F4-9, implying an extracellular protease from E. faecalis F4-9 cleaves the N-terminal sequence. Thus, leader sequences cleavage requires two steps: the first via the EnfT protease domain and the second via extracellular proteases. Interestingly, the long peptide, with N-terminal extension, demonstrated advanced antimicrobial activity against Gram-positive and Gram-negative bacteria. Furthermore, enfC was responsible for glycosylation, a necessary step prior to secretion and cleavage of the leader peptide. In addition, enfI was found to grant self-immunity to producer cells against enterocin F4-9. This report demonstrates specifications of the minimal gene set responsible for production of enterocin F4-9, as well as a new biosynthetic mechanism of glycocins.
Collapse
|
23
|
Sharma Y, Ahlawat S, Rao A. Biochemical characterization of an inverting S/O-HexNAc-transferase and evidence of S-linked glycosylation in Actinobacteria. Glycobiology 2021; 32:148-161. [PMID: 34420053 DOI: 10.1093/glycob/cwab089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides harboring S- and or O-linked glycans are known as glycocins. Glycocins were first discovered and best characterized in Firmicutes. S-glycosylation is an enzymatic process catalyzed by S-glycosyltransferases of the GT2 family. Using a heterologous expression system, here we describe an inverting S/O-HexNAc-transferase (SvGT), encoded by ORF AQF52_3101 of S. venezuelae ATCC 15439, along with its acceptor substrate (SvC), encoded by ORF AQF52_3099. Using in vitro and in vivo assays, we define the distinct donor specificity, acceptor specificity, regioselectivity, chemoselectivity, and Y(G/A/K/Q/E ≠ ΔG)(C/S/T ≠ Y/N)(G/A ≠ P/Q)G as the minimum acceptor sequon of SvGT. Although UDP-GlcNAc served as the donor in the cellular milieu, SvGT could also utilize UDP-Glc and UDP-GalNAc as donors in vitro. Using mass spectrometry and western blotting, we provide evidence that an anti-O-GlcNAc antibody (CTD110.6) cross-reacts with S-GlcNAc and may be used to detect S-GlcNAcylated glycoconjugates directly. With an understanding of enzyme specificities, we finally employed SvGT to generate two proof-of-concept neoglycocins against L. monocytogenes. In conclusion, this study provides the first experimental evidence for S-glycosylation in Actinobacteria and the application of its S/O-HexNAc-transferase in glycocin engineering.
Collapse
Affiliation(s)
- Yogita Sharma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Shimona Ahlawat
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India.,Academy of Scientific and Innovation Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, India
| |
Collapse
|
24
|
Biswas S, Wu C, van der Donk WA. The Antimicrobial Activity of the Glycocin Sublancin Is Dependent on an Active Phosphoenolpyruvate-Sugar Phosphotransferase System. ACS Infect Dis 2021; 7:2402-2412. [PMID: 34242010 DOI: 10.1021/acsinfecdis.1c00157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antimicrobial resistance is a global challenge that is compounded by the limited number of available targets. Glycocins are antimicrobial glycopeptides that are believed to have novel targets. Previous studies have shown that the mechanism of action of the glycocin sublancin 168 involves the glucose uptake system. The phosphoenolpyruvate:sugar phosphotransferase system (PTS) phosphorylates the C6 hydroxyl group on glucose during import. Since sublancin carries a glucose on a Cys on an exposed loop, we investigated whether phosphorylation of this glucose might be involved in its mechanism of action by replacement with xylose. Surprisingly, the xylose analog was more active than wild-type sublancin and still required the glucose PTS for activity. Overexpression of the individual components of the PTS rendered cells more sensitive to sublancin, and their resistance frequency was considerably decreased. These observations suggest that sublancin is activated in some form by the glucose PTS or that sublancin imparts a deleterious gain-of-function on the PTS. Superresolution microscopy studies with fluorescent sublancin and fluorescently labeled PTS proteins revealed localization of both at the poles of cells. Resistant mutants raised under conditions that would minimize mutation of the PTS revealed mutations in FliQ, a protein involved in the flagellar protein export process. Overexpression of FliQ lead to decreased sensitivity of cells to sublancin. Collectively, these findings enforce a model in which the PTS is required for sublancin activity, either by inducing a deleterious gain-of-function or by activating or transporting sublancin.
Collapse
|
25
|
Li W, Separovic F, O'Brien-Simpson NM, Wade JD. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem Soc Rev 2021; 50:4932-4973. [PMID: 33710195 DOI: 10.1039/d0cs01026j] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance (AMR) is one of the greatest threats to human health that, by 2050, will lead to more deaths from bacterial infections than cancer. New antimicrobial agents, both broad-spectrum and selective, that do not induce AMR are urgently required. Antimicrobial peptides (AMPs) are a novel class of alternatives that possess potent activity against a wide range of Gram-negative and positive bacteria with little or no capacity to induce AMR. This has stimulated substantial chemical development of novel peptide-based antibiotics possessing improved therapeutic index. This review summarises recent synthetic efforts and their impact on analogue design as well as their various applications in AMP development. It includes modifications that have been reported to enhance antimicrobial activity including lipidation, glycosylation and multimerization through to the broad application of novel bio-orthogonal chemistry, as well as perspectives on the direction of future research. The subject area is primarily the development of next-generation antimicrobial agents through selective, rational chemical modification of AMPs. The review further serves as a guide toward the most promising directions in this field to stimulate broad scientific attention, and will lead to new, effective and selective solutions for the several biomedical challenges to which antimicrobial peptidomimetics are being applied.
Collapse
Affiliation(s)
- Wenyi Li
- Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, VIC 3010, Australia. and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - Frances Separovic
- Bio21 Institute, University of Melbourne, VIC 3010, Australia and School of Chemistry, University of Melbourne, VIC 3010, Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, VIC 3010, Australia. and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - John D Wade
- School of Chemistry, University of Melbourne, VIC 3010, Australia and The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
26
|
Fujinami D, Garcia de Gonzalo CV, Biswas S, Hao Y, Wang H, Garg N, Lukk T, Nair SK, van der Donk WA. Structural and mechanistic investigations of protein S-glycosyltransferases. Cell Chem Biol 2021; 28:1740-1749.e6. [PMID: 34283964 DOI: 10.1016/j.chembiol.2021.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/06/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Attachment of sugars to nitrogen and oxygen in peptides is ubiquitous in biology, but glycosylation of sulfur atoms has only been recently described. Here, we characterize two S-glycosyltransferases SunS and ThuS that selectively glycosylate one of five Cys residues in their substrate peptides; substitution of this Cys with Ser results in a strong decrease in glycosylation activity. Crystal structures of SunS and ThuS in complex with UDP-glucose or a derivative reveal an unusual architecture in which a glycosyltransferase type A (GTA) fold is decorated with additional domains to support homodimerization. Dimer formation creates an extended cavity for the substrate peptide, drawing functional analogy with O-glycosyltransferases involved in cell wall biosynthesis. This extended cavity contains a sharp bend that may explain the site selectivity of the glycosylation because the target Cys is in a Gly-rich stretch that can accommodate the bend. These studies establish a molecular framework for understanding the unusual S-glycosyltransferases.
Collapse
Affiliation(s)
- Daisuke Fujinami
- Howard Hughes Medical Institute and Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Chantal V Garcia de Gonzalo
- Howard Hughes Medical Institute and Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Subhanip Biswas
- Howard Hughes Medical Institute and Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Yue Hao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Huan Wang
- Howard Hughes Medical Institute and Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Neha Garg
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Tiit Lukk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
27
|
Li J, Chen J, Yang G, Tao L. Sublancin protects against methicillin-resistant Staphylococcus aureus infection by the combined modulation of innate immune response and microbiota. Peptides 2021; 141:170533. [PMID: 33775803 DOI: 10.1016/j.peptides.2021.170533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major pathogen responsible for community and hospital bacterial infections. In the present study, the protective role of sublancin, an antimicrobial peptides, was explored in MRSA infection model. We report that sublancin directly induce macrophage migration through the chemotactic receptors. We further show that sublancin exhibits protection in a mouse MRSA infection model. This protection involved an immunomodulatory activity, but was blocked by depletion of monocyte/macrophages or neutrophils. Sublancin selectively up-regulates the levels of chemokines (C-X-C motif chemokine ligand 1, CXCL1 and monocyte chemoattractant protein-1, MCP-1) while reducing the production of pro-inflammatory cytokine (tumor necrosis factor-α, TNF-α). Meanwhile, sublancin regulated the microbiota composition disrupted by MRSA injection, increasing the abundance of Lactobacillus and decreasing that of Staphylococcus and Pseudomonas. Also, sublancin restored to normal levels of metabolic functional pathways, especially amino acid biosynthesis (e.g., branched amino acid, histidine and tryptophan), disrupted after injection, and this restoration was significantly correlated with neutrophils. These results demonstrates that sublancin stimulates the innate response and modulates the microbiota community to protect against MRSA infection.
Collapse
Affiliation(s)
- Jiantao Li
- College of Animal Husbandry and Veterinary, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, China.
| | - Jing Chen
- College of Animal Husbandry and Veterinary, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, China
| | - Guiqin Yang
- College of Animal Husbandry and Veterinary, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, China
| | - Lijuan Tao
- College of Animal Husbandry and Veterinary, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, China
| |
Collapse
|
28
|
Optimized Genetic Tools Allow the Biosynthesis of Glycocin F and Analogues Designed To Test the Roles of gcc Cluster Genes in Bacteriocin Production. J Bacteriol 2021; 203:JB.00529-20. [PMID: 33468591 DOI: 10.1128/jb.00529-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/06/2021] [Indexed: 11/20/2022] Open
Abstract
The emergence of multidrug-resistant pathogens has motivated natural product research to inform the development of new antimicrobial agents. Glycocin F (GccF) is a diglycosylated 43-amino-acid bacteriocin secreted by Lactobacillus plantarum KW30. It displays a moderate phylogenetic target range that includes vancomycin-resistant strains of Enterococcus species and appears to have a novel bacteriostatic mechanism, rapidly inhibiting the growth of the most susceptible bacterial strains at picomolar concentrations. Experimental verification of the predicted role(s) of gcc cluster genes in GccF biosynthesis has been hampered by the inability to produce soluble recombinant Gcc proteins. Here, we report the development of pRV610gcc, an easily modifiable 11.2-kbp plasmid that enables the production of GccF in L. plantarum NC8. gcc gene expression relies on native promoters in the cloned cluster, and NC8(pRV610gcc) produces mature GccF at levels similar to KW30. Key findings are that the glycosyltransferase glycosylates both serine and cysteine at either position in the sequence but glycosylation of the loop serine is both sequence and spatially specific, that glycosylation of the peptide scaffold is not required for export and subsequent disulfide bond formation, that neither of the putative thioredoxin proteins is essential for peptide maturation, and that removal of the entire putative response regulator GccE decreases GccF production less than removal of the LytTR domain alone. Using this system, we have verified the functions of most of the gcc genes and have advanced our understanding of the roles of GccF structure in its maturation and antibacterial activity.IMPORTANCE The entire 7-gene cluster for the diglycosylated bacteriocin glycocin F (GccF), including the natural promoters responsible for gcc gene expression, has been ligated into the Escherichia coli-lactic acid bacteria (LAB) shuttle vector pRV610 to produce the easily modifiable 11.2-kbp plasmid pRV610gcc for the efficient production of glycocin F analogues. In contrast to the refactoring approach, chemical synthesis, or chemoenzymatic synthesis, all of which have been successfully used to probe glycocin structure and function, this plasmid can also be used to probe in vivo the evolutionary constraints on glycocin scaffolds and their processing by the maturation pathway machinery, thus increasing understanding of the enzymes involved, the order in which they act, and how they are regulated.
Collapse
|
29
|
Soltani S, Hammami R, Cotter PD, Rebuffat S, Said LB, Gaudreau H, Bédard F, Biron E, Drider D, Fliss I. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev 2021; 45:fuaa039. [PMID: 32876664 PMCID: PMC7794045 DOI: 10.1093/femsre/fuaa039] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, bacteriocins have received substantial attention as antimicrobial compounds. Although bacteriocins have been predominantly exploited as food preservatives, they are now receiving increased attention as potential clinical antimicrobials and as possible immune-modulating agents. Infections caused by antibiotic-resistant bacteria have been declared as a global threat to public health. Bacteriocins represent a potential solution to this worldwide threat due to their broad- or narrow-spectrum activity against antibiotic-resistant bacteria. Notably, despite their role in food safety as natural alternatives to chemical preservatives, nisin remains the only bacteriocin legally approved by regulatory agencies as a food preservative. Moreover, insufficient data on the safety and toxicity of bacteriocins represent a barrier against the more widespread use of bacteriocins by the food and medical industry. Here, we focus on the most recent trends relating to the application of bacteriocins, their toxicity and impacts.
Collapse
Affiliation(s)
- Samira Soltani
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - Riadh Hammami
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON K1N 6N5, Canada
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996 Ireland
- APC Microbiome Ireland, Institute and school of Microbiology, University College Cork, Western Road, Cork, T12 YN60, Ireland
| | - Sylvie Rebuffat
- Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-MNHN, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Laila Ben Said
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - Hélène Gaudreau
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - François Bédard
- Faculty of Pharmacy and Centre de Recherche en Endocrinologie Moléculaire et Oncologique et Génomique Humaine, Université Laval, 2705 Boulevard Laurier, Quebec G1V 4G2, Canada
| | - Eric Biron
- Faculty of Pharmacy and Centre de Recherche en Endocrinologie Moléculaire et Oncologique et Génomique Humaine, Université Laval, 2705 Boulevard Laurier, Quebec G1V 4G2, Canada
| | - Djamel Drider
- Institut Charles Viollette, Université de Lille, EA 7394, 53955 Villeneuve d'Ascq, France
| | - Ismail Fliss
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
- Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec G1V 0A6, Canada
| |
Collapse
|
30
|
Lu J, Li Y, Bai Z, Lv H, Wang H. Enzymatic macrocyclization of ribosomally synthesized and posttranslational modified peptides via C-S and C-C bond formation. Nat Prod Rep 2021; 38:981-992. [PMID: 33185226 DOI: 10.1039/d0np00044b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2000 to 2020 Ribosomally synthesized and posttranslational modified peptides (RiPPs) are a rapidly growing class of bioactive natural products. Many members of RiPPs contain macrocyclic structural units constructed by modification enzymes through macrocyclization of linear precursor peptides. In this study, we summarize recent progress in the macrocyclization of RiPPs by C-S and C-C bond formation with a focus on the current understanding of the enzymatic mechanisms.
Collapse
Affiliation(s)
- Jingxia Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yuqing Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Zengbing Bai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Hongmei Lv
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
31
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 488] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
32
|
SELECT-GLYCOCIN: a recombinant microbial system for expression and high-throughput screening of glycocins. Glycoconj J 2020; 38:233-250. [PMID: 33206284 DOI: 10.1007/s10719-020-09960-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/03/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
Abstract
Glycosylated bacteriocins (glycocins) are potential clean label food preservatives and new alternatives to antibiotics. Further development requires the availability of a method for laboratory evolution of glycocins, wherein the challenges to overcome include ensuring glycosylation in a heterologous host, avoiding potential toxicity of active glycocins to the host, and provisioning of a one-pot screening assay for active mutants. Employing EntS, a sequential O/S- di-glycosyltransferase from Enterococcus faecalis TX0104, a proof of the concept microbial system and high throughput screening assay (SELECT-GLYCOCIN) is developed for generation of O/S- linked glycopeptide libraries and screening of glycocins for desired activity/property. The method enabled enzyme-dependent in vivo glycosylation in the heterologous host and rapid screening of mutants of enterocin 96 (Ent96)- a glycocin active against food-borne pathogen L. monocytogenes. Using SELECT-GLYCOCIN, a library of random (1.5 X 10^3) and rational (17) mutants of Ent96 was generated. The mutants were screened for bioactivity to identify a total of 376 random and 14 rational mutants as bioactive. Downstream detailed analysis of 16 random and 14 rational mutants led to the identification of sequence- and or glyco-variants namely, G16E-H24Q, C13T, and Ent96-K4_K5insYYGNGV (PedioEnt96) as improved antimicrobials. To summaries, SELECT-GLYCOCIN provides a system and a generic method for discovery and screening of glycocins that can further be adapted to any known/unknown glycocins and can be employed in food preservatives' and drug discovery programs.
Collapse
|
33
|
Singh V, Rao A. Distribution and diversity of glycocin biosynthesis gene clusters beyond Firmicutes. Glycobiology 2020; 31:89-102. [PMID: 32614945 DOI: 10.1093/glycob/cwaa061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Glycocins are the ribosomally synthesized glycosylated bacteriocins discovered and characterized in Firmicutes, only. These peptides have antimicrobial activity against several pathogenic bacteria, including Streptococcus pyogenes , methicillin-resistant Staphylococcus aureus and food-spoilage bacteria Listeria monocytogenes. Glycocins exhibit immunostimulatory properties and make a promising source of new antibiotics and food preservatives akin to Nisin. Biochemical studies of Sublancin, Glycocin F, Pallidocin and ASM1 prove that the nested disulfide-bonds are essential for their bioactivities. Using in silico approach of genome mining coupled with manual curation, here we identify 220 new putative glycocin biosynthesis gene clusters (PGBCs) spread across 153 bacterial species belonging to seven different bacterial phyla. Based on gene composition, we have grouped these PGBCs into five distinct conserved cluster Types I-V. All experimentally identified glycocins belong to Type I PGBCs. From protein sequence based phylograms, tanglegrams, global similarity heat-maps and cumulative mutual information analysis, it appears that glycocins may have originated from closely related bacteriocins, whereas recruitment of cognate glycosyltransferases (GTs) might be an independent event. Analysis further suggests that GTs may have coevolved with glycocins in cluster-specific manner to define distinctive donor specificities of GTs or to contribute to glycocin diversity across these clusters. We further identify 162 hitherto unreported PGBCs wherein the corresponding product glycocins have three or less than three cysteines. Secondary structure predictions suggest that these putative glycocins may not form di-nested disulfide-bonds. Therefore, production of such glycocins in heterologous host Escherichia coli is feasible and may provide novel antimicrobial spectrum and or mechanism of action for varied applications.
Collapse
Affiliation(s)
- Vaidhvi Singh
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India.,Academy of Scientific and Innovation Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, India
| |
Collapse
|
34
|
Palaniappan K, Chen IMA, Chu K, Ratner A, Seshadri R, Kyrpides NC, Ivanova NN, Mouncey NJ. IMG-ABC v.5.0: an update to the IMG/Atlas of Biosynthetic Gene Clusters Knowledgebase. Nucleic Acids Res 2020; 48:D422-D430. [PMID: 31665416 DOI: 10.1093/nar/gkz932] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 01/14/2023] Open
Abstract
Microbial secondary metabolism is a reservoir of bioactive compounds of immense biotechnological and biomedical potential. The biosynthetic machinery responsible for the production of these secondary metabolites (SMs) (also called natural products) is often encoded by collocated groups of genes called biosynthetic gene clusters (BGCs). High-throughput genome sequencing of both isolates and metagenomic samples combined with the development of specialized computational workflows is enabling systematic identification of BGCs and the discovery of novel SMs. In order to advance exploration of microbial secondary metabolism and its diversity, we developed the largest publicly available database of predicted BGCs combined with experimentally verified BGCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc-public). Here we describe the first major content update of the IMG-ABC knowledgebase, since its initial release in 2015, refreshing the BGC prediction pipeline with the latest version of antiSMASH (v5) as well as presenting the data in the context of underlying environmental metadata sourced from GOLD (https://gold.jgi.doe.gov/). This update has greatly improved the quality and expanded the types of predicted BGCs compared to the previous version.
Collapse
Affiliation(s)
- Krishnaveni Palaniappan
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - I-Min A Chen
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ken Chu
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Ratner
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rekha Seshadri
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Natalia N Ivanova
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nigel J Mouncey
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
35
|
Main P, Hata T, Loo TS, Man P, Novak P, Havlíček V, Norris GE, Patchett ML. Bacteriocin ASM1 is an
O
/
S
‐diglycosylated, plasmid‐encoded homologue of glycocin F. FEBS Lett 2020; 594:1196-1206. [DOI: 10.1002/1873-3468.13708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Patrick Main
- School of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Tomomi Hata
- Department of Food and Nutritional Sciences Ochanomizu University Tokyo Japan
| | - Trevor S. Loo
- School of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Petr Man
- Institute of Microbiology, v.v.i. Academy of Sciences of the Czech Republic Prague 4 Czech Republic
| | - Petr Novak
- Institute of Microbiology, v.v.i. Academy of Sciences of the Czech Republic Prague 4 Czech Republic
| | - Vladimír Havlíček
- Institute of Microbiology, v.v.i. Academy of Sciences of the Czech Republic Prague 4 Czech Republic
| | - Gillian E. Norris
- School of Fundamental Sciences Massey University Palmerston North New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery University of Auckland New Zealand
| | - Mark L. Patchett
- School of Fundamental Sciences Massey University Palmerston North New Zealand
| |
Collapse
|
36
|
Structural Characterization of the S-glycosylated Bacteriocin ASM1 from Lactobacillus plantarum. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to protect their environmental niche, most bacteria secret antimicrobial substances designed to target specific bacterial strains that are often closely related to the producer strain. Bacteriocins, small, ribosomally synthesised antimicrobial peptides, comprise a class of such substances and can either inhibit (bacteriostatic) or kill (bactericidal) target cells. Glycocins are a class of bacteriocin that are post-translationally modified by one or more carbohydrate moieties that are either β-O-linked to either a serine or threonine and/or β-S-linked to a cysteine. The solution nuclear magnetic resonance structure (NMR) of the glycocin ASM1 (produced by Lactobacillus plantarum A-1), an orthologue of GccF, has been determined. In both structures, the disulfide bonds are essential for activity and restrict the mobility of the N-acetyl-glucosamine (GlcNAc) attached to Ser-18 (O-linked), compared to the much more flexible GlcNAc moiety on Cys-43 (S-linked). Interestingly, despite 88% sequence identity, the helical structure of ASM1 is less pronounced which appears to be consistent with the far ultra-violet circular dichroism (UV CD) spectra.
Collapse
|
37
|
Choudhary P, Nagar R, Singh V, Bhat AH, Sharma Y, Rao A. ProGlycProt V2.0, a repository of experimentally validated glycoproteins and protein glycosyltransferases of prokaryotes. Glycobiology 2020; 29:461-468. [PMID: 30835791 DOI: 10.1093/glycob/cwz013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 01/05/2023] Open
Abstract
Knowledge of glycosylation status and glycan-pattern of proteins are of considerable medical, academic and application interest. ProGlycProt V2.0 (www.proglycprot.org) therefore, is conceived and maintained as an exclusive web-resource providing comprehensive information on experimentally validated glycoproteins and protein glycosyltransferases (GTs) of prokaryotic origin. The second release of ProGlycProt features a major update with a 191% increase in the total number of entries, manually collected and curated from 607 peer-reviewed publications, on the subject. Protein GTs from prokaryotes that catalyze a varied range of glycan linkages are amenable glycoengineering tools. Therefore, the second release presents content that is greatly expanded and reorganized in two sub-databases: ProGPdb and ProGTdb. While ProGPdb provides information about validated glycoproteins (222 entries), ProGTdb catalogs enzymes/proteins that are instrumental in protein glycosylation, directly (122) or as accessory proteins (182). ProGlycProt V2.0 remains highly cross-referenced yet exclusive and complementary in content to other related databases. The second release further features enhanced search capability, a "compare" entries option and an innovative geoanalytical tool (MapView) facilitating location-assisted search-cum filtering of the entries using geo-positioning information of researchers/groups cited in the ProGlycProt V2.0 databases. Thus, ProGlycProt V2.0 continues to serve as a useful one-point web-resource on various evidence-based information on protein glycosylation in prokaryotes.
Collapse
Affiliation(s)
| | - Rupa Nagar
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Vaidhvi Singh
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | | | - Yogita Sharma
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| |
Collapse
|
38
|
Meade E, Slattery MA, Garvey M. Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? Antibiotics (Basel) 2020; 9:antibiotics9010032. [PMID: 31963311 PMCID: PMC7168330 DOI: 10.3390/antibiotics9010032] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite highly specialized international interventions and policies in place today, the rapid emergence and dissemination of resistant bacterial species continue to occur globally, threatening the longevity of antibiotics in the medical sector. In particular, problematic nosocomial infections caused by multidrug resistant Gram-negative pathogens present as a major burden to both patients and healthcare systems, with annual mortality rates incrementally rising. Bacteriocins, peptidic toxins produced by bacteria, offer promising potential as substitutes or conjugates to current therapeutic compounds. These non-toxic peptides exhibit significant potency against certain bacteria (including multidrug-resistant species), while producer strains remain insusceptible to the bactericidal peptides. The selectivity and safety profile of bacteriocins have been highlighted as superior advantages over traditional antibiotics; however, many aspects regarding their efficacy are still unknown. Although active at low concentrations, bacteriocins typically have low in vivo stability, being susceptible to degradation by proteolytic enzymes. Another major drawback lies in the feasibility of large-scale production, with these key features collectively limiting their current clinical application. Though such limitations require extensive research, the concept of expanding bacteriocins from food preservation to human health opens many fascinating doors, including novel drug delivery systems and anticancer treatment applications.
Collapse
Affiliation(s)
- Elaine Meade
- Department of Life Science, Sligo Institute of Technology, F91 YW50 Sligo, Ireland;
| | - Mark Anthony Slattery
- Mark Anthony Slattery MVB, Veterinary Practice, Manorhamilton, F91 DP62 Leitrim, Ireland;
| | - Mary Garvey
- Department of Life Science, Sligo Institute of Technology, F91 YW50 Sligo, Ireland;
- Mark Anthony Slattery MVB, Veterinary Practice, Manorhamilton, F91 DP62 Leitrim, Ireland;
- Correspondence: ; Tel.: +353-071-9305529
| |
Collapse
|
39
|
Gontijo MTP, Silva JDS, Vidigal PMP, Martin JGP. Phylogenetic distribution of the bacteriocin repertoire of lactic acid bacteria species associated with artisanal cheese. Food Res Int 2019; 128:108783. [PMID: 31955749 DOI: 10.1016/j.foodres.2019.108783] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 12/20/2022]
Abstract
The microbiota contributes to artisanal cheese bioprotection and biopreservation through inter and intraspecific competition. This work aimed to investigate the phylogenetic distribution of the repertoire of bacteriocin structural genes of model lactic acid bacteria (LAB) in order to investigate its respective role in the artisanal cheeses microenvironment. A phylogenetic analysis of the rRNA 16S gene from 445 model strains of LAB was conducted using bayesian inference and the repertoire of bacteriocin genes was predicted from these strains by BAGEL software. Bacterial strains were clustered in five monophyletic clades (A, B, C, D and E) with high posterior probability values (PP > 0.99). One bacteriocin structural gene was predicted for 88.5% of the analyzed strains. The majority of the species encoded different classes of bacteriocins. Greater diversity of bacteriocin genes was found for strains included in clade A, comprising Lactococcus lactis, Streptococcus agalactiae, Streptococcus thermophilus, Streptococcus macedonicus, Enterococcus faecalis and Enterococcus faecium. In addition, Lactococcus lactis presented higher diversity of bacteriocin classes, encoding glycocins, lanthipeptides, sactipeptides, cyclic and linear azole-containing peptides, included in bacteriocins class I, besides class II and III. The results suggest that the distribution of bacteriocin structural genes is related to the phylogenetic clades of LAB species, with a higher frequency in some specific clades. Information comprised in this study contributes to comprehend the bacterial competition mechanisms in the artisanal cheese microenvironment.
Collapse
Affiliation(s)
- Marco Túlio Pardini Gontijo
- Departamento de Microbiologia, Centro de Ciências Biológicas e da Saúde (CCB), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil.
| | - Jackson de Sousa Silva
- Departamento de Engenharia de Produção, Centro de Ciências e Tecnologia (CCT), Universidade Regional do Cariri (URCA), Juazeiro do Norte, 63040-000 Ceará, Brazil.
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NUBIOMOL), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil
| | - José Guilherme Prado Martin
- Departamento de Microbiologia, Centro de Ciências Biológicas e da Saúde (CCB), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil
| |
Collapse
|
40
|
Ahn S, Stepper J, Loo TS, Bisset SW, Patchett ML, Norris GE. Expression of Lactobacillus plantarum KW30 gcc genes correlates with the production of glycocin F in late log phase. FEMS Microbiol Lett 2019; 365:5144765. [PMID: 30364948 DOI: 10.1093/femsle/fny261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Antibacterial compounds known as bacteriocins are microbial inventions designed to reduce the competition for limited resources by inhibiting the growth of closely related bacteria. Glycocin F (GccF) is an unusually di-glycosylated bacteriocin produced in a lactic acid bacterium, Lactobacillus plantarum KW30 that has been shown to be resistant to extreme conditions. It is bacteriostatic rather than bactericidal, and all its post-translational modifications (a pair of nested disulfide bonds, and O-linked and S-linked N-acetylglucosamines) are required for full activity. Here, we examine a cluster of genes predicted to be responsible for GccF expression and maturation. The expression of eight genes, previously reported to make up the gcc operon, was profiled for their expression during cell culture. We found that all but one of the genes of the gcc cluster followed a pattern of expression that correlated with the stage of growth observed for the producer organism along with the increase in GccF secretion. We also found that most of the gcc genes are transcribed as a single unit. These data provide evidence that the gcc cluster genes gccABCDEF constitute a true operon for regulated GccF production, and explain the observed increase in GccF concentration that accompanies an increase in cell numbers.
Collapse
Affiliation(s)
- Soyeon Ahn
- Institute of Fundamental Sciences, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| | - Judith Stepper
- Institute of Fundamental Sciences, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| | - Trevor S Loo
- Institute of Fundamental Sciences, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| | - Sean W Bisset
- Institute of Fundamental Sciences, Massey University, Tennent Drive, Palmerston North 4474, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Mark L Patchett
- Institute of Fundamental Sciences, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| | - Gillian E Norris
- Institute of Fundamental Sciences, Massey University, Tennent Drive, Palmerston North 4474, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
41
|
Wu C, Biswas S, Garcia De Gonzalo CV, van der Donk WA. Investigations into the Mechanism of Action of Sublancin. ACS Infect Dis 2019; 5:454-459. [PMID: 30582697 PMCID: PMC6408254 DOI: 10.1021/acsinfecdis.8b00320] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Antimicrobial resistance is a global threat that poses a rising concern. One underlying challenge is the limited number of targets in bacteria affected by the current pool of antibiotics. To potentially help find new targets, we studied a member of the class of antimicrobial natural products named glycocins. We examined the mode of action of sublancin, which contains an unusual and essential glucosylated Cys residue, by monitoring macromolecular synthesis. Sublancin negatively affected DNA replication, transcription, and translation without affecting cell wall biosynthesis. In addition, we confirmed that the presence of the PTS sugar glucose in the medium negatively impacted antimicrobial activity of sublancin. Additionally, sublancin analogues carrying different sugars retained their antimicrobial activity regardless of which sugar was attached to the peptide or the carbon source used. These data suggest a novel mechanism upstream of transcription and translation and are consistent with previous studies suggesting that the glucose uptake system is involved.
Collapse
|
42
|
Kaunietis A, Buivydas A, Čitavičius DJ, Kuipers OP. Heterologous biosynthesis and characterization of a glycocin from a thermophilic bacterium. Nat Commun 2019; 10:1115. [PMID: 30846700 PMCID: PMC6405829 DOI: 10.1038/s41467-019-09065-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/18/2019] [Indexed: 11/18/2022] Open
Abstract
The genome of the thermophilic bacterium, Aeribacillus pallidus 8, encodes the bacteriocin pallidocin. It belongs to the small class of glycocins and is posttranslationally modified, containing an S-linked glucose on a specific Cys residue. In this study, the pallidocin biosynthetic machinery is cloned and expressed in Escherichia coli to achieve its full biosynthesis and modification. It targets other thermophilic bacteria with potent activity, demonstrated by a low minimum inhibitory concentration (MIC) value. Moreover, the characterized biosynthetic machinery is employed to produce two other glycopeptides Hyp1 and Hyp2. Pallidocin and Hyp1 exhibit antibacterial activity against closely related thermophilic bacteria and some Bacillus sp. strains. Thus, heterologous expression of a glycocin biosynthetic gene cluster including an S-glycosyltransferase provides a good tool for production of hypothetical glycocins encoded by various bacterial genomes and allows rapid in vivo screening. Heterologous production of the glycocins, posttranslationally modified peptide bacteriocins containing a sugar moiety, has not been achieved. Here, the authors express a thermophilic bacterium glycocin biosynthetic gene cluster and S-glycosyltransferase for the production of antibacterial glycocins in E. coli.
Collapse
Affiliation(s)
- Arnoldas Kaunietis
- Molecular Genetics Dept., Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands.,Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10223, Vilnius, Lithuania
| | - Andrius Buivydas
- Molecular Genetics Dept., Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands
| | - Donaldas J Čitavičius
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10223, Vilnius, Lithuania
| | - Oscar P Kuipers
- Molecular Genetics Dept., Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands.
| |
Collapse
|
43
|
Denham EL, Piersma S, Rinket M, Reilman E, de Goffau MC, van Dijl JM. Differential expression of a prophage-encoded glycocin and its immunity protein suggests a mutualistic strategy of a phage and its host. Sci Rep 2019; 9:2845. [PMID: 30808982 PMCID: PMC6391423 DOI: 10.1038/s41598-019-39169-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/31/2018] [Indexed: 01/12/2023] Open
Abstract
Sublancin 168 is a highly potent and stable antimicrobial peptide secreted by the Gram-positive bacterium Bacillus subtilis. Production of sublancin gives B. subtilis a major competitive growth advantage over a range of other bacteria thriving in the same ecological niches, the soil and plant rhizosphere. B. subtilis protects itself against sublancin by producing the cognate immunity protein SunI. Previous studies have shown that both the sunA gene for sublancin and the sunI immunity gene are encoded by the prophage SPβ. The sunA gene is under control of several transcriptional regulators. Here we describe the mechanisms by which sunA is heterogeneously expressed within a population, while the sunI gene encoding the immunity protein is homogeneously expressed. The key determinants in heterogeneous sunA expression are the transcriptional regulators Spo0A, AbrB and Rok. Interestingly, these regulators have only a minor influence on sunI expression and they have no effect on the homogeneous expression of sunI within a population of growing cells. Altogether, our findings imply that the homogeneous expression of sunI allows even cells that are not producing sublancin to protect themselves at all times from the active sublancin produced at high levels by their isogenic neighbors. This suggests a mutualistic evolutionary strategy entertained by the SPβ prophage and its Bacillus host, ensuring both stable prophage maintenance and a maximal competitive advantage for the host at minimal costs.
Collapse
Affiliation(s)
- Emma L Denham
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.,Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Sjouke Piersma
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Marleen Rinket
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Ewoud Reilman
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Marcus C de Goffau
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.,Wellcome Sanger Institute, Cambridge, UK
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
44
|
Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol Rev 2019; 42:805-828. [PMID: 30085042 DOI: 10.1093/femsre/fuy033] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteria use various strategies to compete in an ecological niche, including the production of bacteriocins. Bacteriocins are ribosomally synthesized antibacterial peptides, and it has been postulated that the majority of Gram-positive bacteria produce one or more of these natural products. Bacteriocins can be used in food preservation and are also considered as potential alternatives to antibiotics. The majority of bacteriocins from Gram-positive bacteria had been traditionally divided into two major classes, namely lantibiotics, which are post-translationally modified bacteriocins, and unmodified bacteriocins. The last decade has seen an expanding number of ribosomally synthesized and post-translationally modified peptides (RiPPs) in Gram-positive bacteria that have antibacterial activity. These include linear azol(in)e-containing peptides, thiopeptides, bottromycins, glycocins, lasso peptides and lipolanthines. In addition, the three-dimensional (3D) structures of a number of modified and unmodified bacteriocins have been elucidated in recent years. This review gives an overview on the structural variety of bacteriocins from Gram-positive bacteria. It will focus on the chemical and 3D structures of these peptides, and their interactions with receptors and membranes, structure-function relationships and possible modes of action.
Collapse
Affiliation(s)
- Jeella Z Acedo
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Sorina Chiorean
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
45
|
Li FF, Brimble MA. Using chemical synthesis to optimise antimicrobial peptides in the fight against antimicrobial resistance. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-0704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The emergence of multidrug-resistant bacteria has necessitated the urgent need for novel antibacterial agents. Antimicrobial peptides (AMPs), the host-defence molecules of most living organisms, have shown great promise as potential antibiotic candidates due to their multiple mechanisms of action which result in very low or negligible induction of resistance. However, the development of AMPs for clinical use has been limited by their potential toxicity to animal cells, low metabolic stability and high manufacturing cost. Extensive efforts have therefore been directed towards the development of enhanced variants of natural AMPs to overcome these aforementioned limitations. In this review, we present our efforts focused on development of efficient strategies to prepare several recently discovered AMPs including antitubercular peptides. The design and synthesis of more potent and stable AMP analogues with synthetic modifications made to the natural peptides containing glycosylated residues or disulfide bridges are described.
Collapse
Affiliation(s)
- Freda F. Li
- School of Chemical Sciences, The University of Auckland , 23 Symonds Street , Auckland 1010 , New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences, The University of Auckland , 23 Symonds Street , Auckland 1010 , New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery , 3 Symonds Street , Auckland 1010 , New Zealand
| |
Collapse
|
46
|
Montoir D, Amoura M, Ababsa ZEA, Vishwanatha TM, Yen-Pon E, Robert V, Beltramo M, Piller V, Alami M, Aucagne V, Messaoudi S. Synthesis of aryl-thioglycopeptides through chemoselective Pd-mediated conjugation. Chem Sci 2018; 9:8753-8759. [PMID: 30627396 PMCID: PMC6295873 DOI: 10.1039/c8sc02370k] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022] Open
Abstract
We describe herein a Pd-catalyzed methodology for the thioglycoconjugation of iodoaryl peptides and aminoacids. This operationally simple process occurs under semi-aqueous conditions and displays wide substrate scope. The strategy has been successfully applied to both the thioglycosylation of unprotected peptides and the generation of thioglyco-aminoacid building blocks, including those suitable for solid phase peptide synthesis. To demonstrate the broad potential of this technique for late stage functionalization, we successfully incorporated challenging unprotected β-S-GlcNAc- and α-S-GalNAc-derivatives into very long unprotected peptides. This study opens the way to new applications in chemical biology, considering the well-recognized advantages of S-glycosides over O-glycosides in terms of resistance towards both enzymatic and chemical degradation.
Collapse
Affiliation(s)
- David Montoir
- BioCIS , Univ. Paris-Sud , CNRS , Univ. Paris-Saclay , Châtenay-Malabry , France . ; Tel: +33 0146835887
| | - Mehdi Amoura
- Centre de Biophysique Moléculaire , CNRS , Orléans , France . ; Tel: +33 0238255577
| | - Zine El Abidine Ababsa
- BioCIS , Univ. Paris-Sud , CNRS , Univ. Paris-Saclay , Châtenay-Malabry , France . ; Tel: +33 0146835887
| | - T M Vishwanatha
- Centre de Biophysique Moléculaire , CNRS , Orléans , France . ; Tel: +33 0238255577
| | - Expédite Yen-Pon
- BioCIS , Univ. Paris-Sud , CNRS , Univ. Paris-Saclay , Châtenay-Malabry , France . ; Tel: +33 0146835887
| | - Vincent Robert
- UMR Physiologie de la Reproduction et des Comportements , INRA , CNRS , Univ. Tours , IFCE , Nouzilly , France
| | - Massimiliano Beltramo
- UMR Physiologie de la Reproduction et des Comportements , INRA , CNRS , Univ. Tours , IFCE , Nouzilly , France
| | - Véronique Piller
- Centre de Biophysique Moléculaire , CNRS , Orléans , France . ; Tel: +33 0238255577
| | - Mouad Alami
- BioCIS , Univ. Paris-Sud , CNRS , Univ. Paris-Saclay , Châtenay-Malabry , France . ; Tel: +33 0146835887
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire , CNRS , Orléans , France . ; Tel: +33 0238255577
| | - Samir Messaoudi
- BioCIS , Univ. Paris-Sud , CNRS , Univ. Paris-Saclay , Châtenay-Malabry , France . ; Tel: +33 0146835887
| |
Collapse
|
47
|
The first report of antifungal lipopeptide production by a Bacillus subtilis subsp. inaquosorum strain. Microbiol Res 2018; 216:40-46. [DOI: 10.1016/j.micres.2018.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/17/2018] [Accepted: 08/01/2018] [Indexed: 12/18/2022]
|
48
|
Ren H, Biswas S, Ho S, van der Donk WA, Zhao H. Rapid Discovery of Glycocins through Pathway Refactoring in Escherichia coli. ACS Chem Biol 2018; 13:2966-2972. [PMID: 30183259 DOI: 10.1021/acschembio.8b00599] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycocins (glycosylated bacteriocins) are a family of ribosomally synthesized and post-translationally modified peptides with antimicrobial activities against pathogens of interest, including methicillin-resistant Staphylococcus aureus, representing a promising source of new antibiotics. Glycocins are still largely underexplored, and thus far, only six glycocins are known. Here, we used genome mining to identify 50 putative glycocin biosynthetic gene clusters and then chose six of them with distinct features for further investigation. Through two rounds of plug-and-play pathway refactoring and expression in Escherichia coli BL21(DE3), four systems produced novel glycocins. Further structural characterization revealed that one of them, which belongs to the enterocin 96-type glycocins, was diglucosylated on a single serine. The other three compounds belong to the SunA/ThuA-type glycocins and exhibit a antimicrobial spectrum narrower than that of sublancin, the best characterized member in this group, even though they share a similar disulfide topology and glycosylation. Further evaluation of their bioactivities with free glucose at high concentrations suggested that their antimicrobial mechanisms might be both glycocin- and species-specific. These glycocins with distinct features significantly broaden our knowledge and may lead to the discovery of new classes of antibiotics.
Collapse
|
49
|
Bisset SW, Yang SH, Amso Z, Harris PWR, Patchett ML, Brimble MA, Norris GE. Using Chemical Synthesis to Probe Structure-Activity Relationships of the Glycoactive Bacteriocin Glycocin F. ACS Chem Biol 2018; 13:1270-1278. [PMID: 29701461 DOI: 10.1021/acschembio.8b00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycocin F, a bacteriocin produced by Lactobacillus plantarum KW30, is glycosylated with two N-acetyl-d-glucosamine sugars, and has been shown to exhibit a rapid and reversible bacteriostasis on susceptible cells. The roles of certain structural features of glycocin F have not been studied to date. We report here the synthesis of various glycocin F analogues through solid-phase peptide synthesis (SPPS) and native chemical ligation (NCL), allowing us to probe the roles of different structural features of this peptide. Our results indicate that the bacteriostatic activity of glycocin F is controlled by the glycosylated interhelical loop, while the glycosylated flexible tail appears to be involved in localizing the peptide to its cellular target.
Collapse
Affiliation(s)
- Sean W. Bisset
- Institute of Fundamental Sciences, Massey University, Colombo Rd, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, New Zealand
| | - Sung-Hyun Yang
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
| | - Zaid Amso
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
| | - Paul W. R. Harris
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, New Zealand
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
| | - Mark L. Patchett
- Institute of Fundamental Sciences, Massey University, Colombo Rd, Palmerston North 4442, New Zealand
| | - Margaret A. Brimble
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, New Zealand
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
| | - Gillian E. Norris
- Institute of Fundamental Sciences, Massey University, Colombo Rd, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, New Zealand
| |
Collapse
|
50
|
Hegemann JD, van der Donk WA. Investigation of Substrate Recognition and Biosynthesis in Class IV Lanthipeptide Systems. J Am Chem Soc 2018; 140:5743-5754. [PMID: 29633842 PMCID: PMC5932250 DOI: 10.1021/jacs.8b01323] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lanthipeptides belong to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs) and are subdivided into four classes. The first two classes have been heavily studied, but less is known about classes III and IV. The lanthipeptide synthetases of classes III and IV share a similar organization of protein domains: A lyase domain at the N-terminus, a central kinase domain, and a C-terminal cyclase domain. Here, we provide deeper insight into class IV enzymes (LanLs). A series of putative producer strains was screened to identify production conditions of four new venezuelin-like lanthipeptides, and an Escherichia coli based heterologous production system was established for a fifth. The latter not only allowed production of fully modified core peptide but was also employed as the basis for mutational analysis of the precursor peptide to identify regions important for enzyme recognition. These experiments were complemented by in vitro binding studies aimed at identifying the region of the leader peptide recognized by the LanL enzymes as well as determining which domain of the enzyme is recognizing the substrate peptide. Combined, these studies revealed that the kinase domain is mediating the interaction with the precursor peptide and that a putatively α-helical stretch of residues at the center to N-terminal region of the leader peptide is important for enzyme recognition. In addition, a combination of in vitro assays and tandem mass spectrometry was used to elucidate the order of dehydration events in these systems.
Collapse
Affiliation(s)
- Julian D Hegemann
- Howard Hughes Medical Institute and Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana, Illinois 61801 , United States
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana, Illinois 61801 , United States
| |
Collapse
|