1
|
Godoy AS, Mesquita NCMR, Noske GD, Gawriljuk VO, Lithgo RM, Balcomb BH, Aschenbrenner JC, Tomlinson CWE, Winokan M, Scheen J, Marples PG, Chandran AV, Ni X, Thompson W, Fairhead M, Fearon D, Koekemoer L, Xavier MAE, Walsh M, Oliva G, von Delft F. High-throughput crystallographic fragment screening of Zika virus NS3 Helicase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.27.591279. [PMID: 38746241 PMCID: PMC11092484 DOI: 10.1101/2024.04.27.591279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The Zika virus (ZIKV), discovered in Africa in 1947, swiftly spread across continents, causing significant concern due to its recent association with microcephaly in newborns and Guillain-Barré syndrome in adults. Despite a decrease in prevalence, the potential for a resurgence remains, necessitating urgent therapeutic interventions. Like other flaviviruses, ZIKV presents promising drug targets within its replication machinery, notably the NS3 helicase (NS3Hel) protein, which plays critical roles in viral replication. However, a lack of structural information impedes the development of specific inhibitors targeting NS3Hel. Here we applied high-throughput crystallographic fragment screening on ZIKV NS3Hel, which yielded structures that reveal 3D binding poses of 46 fragments at multiple sites of the protein, including 11 unique fragments in the RNA-cleft site. These fragment structures provide templates for direct design of hit compounds and should thus assist the development of novel direct-acting antivirals against ZIKV and related flaviviruses, thus opening a promising avenue for combating future outbreaks.
Collapse
Affiliation(s)
- Andre S Godoy
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100 - Jardim Santa Angelina, São Carlos, 13563-120, Brazil
- ASAP Discovery Consortium: asapdiscovery.org
| | - Nathalya C M R Mesquita
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100 - Jardim Santa Angelina, São Carlos, 13563-120, Brazil
| | - Gabriela Dias Noske
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100 - Jardim Santa Angelina, São Carlos, 13563-120, Brazil
| | - Victor Oliveira Gawriljuk
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100 - Jardim Santa Angelina, São Carlos, 13563-120, Brazil
| | - Ryan M Lithgo
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Blake H Balcomb
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Jasmin Cara Aschenbrenner
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Charles W E Tomlinson
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Max Winokan
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Jenke Scheen
- Open Molecular Sciences Foundation, Davis, CA 95618, USA
- ASAP Discovery Consortium: asapdiscovery.org
| | - Peter George Marples
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Anu V Chandran
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Xiaomin Ni
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Warren Thompson
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Michael Fairhead
- Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, Headington, Oxford, OX3 7FZ, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Daren Fearon
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Lizbé Koekemoer
- Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, Headington, Oxford, OX3 7FZ, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Mary-Ann Elvina Xavier
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, Headington, Oxford, OX3 7FZ, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Martin Walsh
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Glaucius Oliva
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100 - Jardim Santa Angelina, São Carlos, 13563-120, Brazil
| | - Frank von Delft
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, Headington, Oxford, OX3 7FZ, UK
- ASAP Discovery Consortium: asapdiscovery.org
| |
Collapse
|
3
|
Amaro IA, Ahmed-Braimah YH, League GP, Pitcher SA, Avila FW, Cruz PC, Harrington LC, Wolfner MF. Seminal fluid proteins induce transcriptome changes in the Aedes aegypti female lower reproductive tract. BMC Genomics 2021; 22:896. [PMID: 34906087 PMCID: PMC8672594 DOI: 10.1186/s12864-021-08201-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mating induces behavioral and physiological changes in the arbovirus vector Aedes aegypti, including stimulation of egg development and oviposition, increased survival, and reluctance to re-mate with subsequent males. Transferred seminal fluid proteins and peptides derived from the male accessory glands induce these changes, though the mechanism by which they do this is not known. RESULTS To determine transcriptome changes induced by seminal proteins, we injected extract from male accessory glands and seminal vesicles (MAG extract) into females and examined female lower reproductive tract (LRT) transcriptomes 24 h later, relative to non-injected controls. MAG extract induced 87 transcript-level changes, 31 of which were also seen in a previous study of the LRT 24 h after a natural mating, including 15 genes with transcript-level changes similarly observed in the spermathecae of mated females. The differentially-regulated genes are involved in diverse molecular processes, including immunity, proteolysis, neuronal function, transcription control, or contain predicted small-molecule binding and transport domains. CONCLUSIONS Our results reveal that seminal fluid proteins, specifically, can induce gene expression responses after mating and identify gene targets to further investigate for roles in post-mating responses and potential use in vector control.
Collapse
Affiliation(s)
- I Alexandra Amaro
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Garrett P League
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Sylvie A Pitcher
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Priscilla C Cruz
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Juárez-Saldivar A, Schroeder M, Salentin S, Haupt VJ, Saavedra E, Vázquez C, Reyes-Espinosa F, Herrera-Mayorga V, Villalobos-Rocha JC, García-Pérez CA, Campillo NE, Rivera G. Computational Drug Repositioning for Chagas Disease Using Protein-Ligand Interaction Profiling. Int J Mol Sci 2020; 21:ijms21124270. [PMID: 32560043 PMCID: PMC7348847 DOI: 10.3390/ijms21124270] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi (T. cruzi), affects nearly eight million people worldwide. There are currently only limited treatment options, which cause several side effects and have drug resistance. Thus, there is a great need for a novel, improved Chagas treatment. Bifunctional enzyme dihydrofolate reductase-thymidylate synthase (DHFR-TS) has emerged as a promising pharmacological target. Moreover, some human dihydrofolate reductase (HsDHFR) inhibitors such as trimetrexate also inhibit T. cruzi DHFR-TS (TcDHFR-TS). These compounds serve as a starting point and a reference in a screening campaign to search for new TcDHFR-TS inhibitors. In this paper, a novel virtual screening approach was developed that combines classical docking with protein-ligand interaction profiling to identify drug repositioning opportunities against T. cruzi infection. In this approach, some food and drug administration (FDA)-approved drugs that were predicted to bind with high affinity to TcDHFR-TS and whose predicted molecular interactions are conserved among known inhibitors were selected. Overall, ten putative TcDHFR-TS inhibitors were identified. These exhibited a similar interaction profile and a higher computed binding affinity, compared to trimetrexate. Nilotinib, glipizide, glyburide and gliquidone were tested on T. cruzi epimastigotes and showed growth inhibitory activity in the micromolar range. Therefore, these compounds could lead to the development of new treatment options for Chagas disease.
Collapse
Affiliation(s)
- Alfredo Juárez-Saldivar
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.J.-S.); (F.R.-E.); (V.H.-M.); (J.C.V.-R.)
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (S.S.); (V.J.H.)
| | - Sebastian Salentin
- Biotechnology Center (BIOTEC), Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (S.S.); (V.J.H.)
| | - V. Joachim Haupt
- Biotechnology Center (BIOTEC), Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (S.S.); (V.J.H.)
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico 14080, Mexico; (E.S.); (C.V.)
| | - Citlali Vázquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico 14080, Mexico; (E.S.); (C.V.)
| | - Francisco Reyes-Espinosa
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.J.-S.); (F.R.-E.); (V.H.-M.); (J.C.V.-R.)
| | - Verónica Herrera-Mayorga
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.J.-S.); (F.R.-E.); (V.H.-M.); (J.C.V.-R.)
- Departamento de Ingeniería Bioquímica, Unidad Académica Multidisciplinaria Mante, Universidad Autónoma de Tamaulipas, Mante 89840, Mexico
| | - Juan Carlos Villalobos-Rocha
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.J.-S.); (F.R.-E.); (V.H.-M.); (J.C.V.-R.)
| | - Carlos A. García-Pérez
- Scientific Computing Research Unit, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
| | - Nuria E. Campillo
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.J.-S.); (F.R.-E.); (V.H.-M.); (J.C.V.-R.)
- Correspondence: ; Tel.: +52-1-8991-601-356
| |
Collapse
|
6
|
Garcia ML, de Oliveira AA, Bueno RV, Nogueira VHR, de Souza GE, Guido RVC. QSAR studies on benzothiophene derivatives as Plasmodium falciparum N-myristoyltransferase inhibitors: Molecular insights into affinity and selectivity. Drug Dev Res 2020; 83:264-284. [PMID: 32045013 DOI: 10.1002/ddr.21646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/16/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
Malaria is an infectious disease caused by protozoan parasites of the genus Plasmodium and transmitted by Anopheles spp. mosquitos. Due to the emerging resistance to currently available drugs, great efforts must be invested in discovering new molecular targets and drugs. N-myristoyltransferase (NMT) is an essential enzyme to parasites and has been validated as a chemically tractable target for the discovery of new drug candidates against malaria. In this work, 2D and 3D quantitative structure-activity relationship (QSAR) studies were conducted on a series of benzothiophene derivatives as P. falciparum NMT (PfNMT) and human NMT (HsNMT) inhibitors to shed light on the molecular requirements for inhibitor affinity and selectivity. A combination of Quantitative Structure-activity Relationship (QSAR) methods, including the hologram quantitative structure-activity relationship (HQSAR), comparative molecular field analysis (CoMFA), and comparative molecular similarity index analysis (CoMSIA) models, were used, and the impacts of the molecular alignment strategies (maximum common substructure and flexible ligand alignment) and atomic partial charge methods (Gasteiger-Hückel, MMFF94, AM1-BCC, CHELPG, and Mulliken) on the quality and reliability of the models were assessed. The best models exhibited internal consistency and could reasonably predict the inhibitory activity against both PfNMT (HQSAR: q2 /r2 /r2 pred = 0.83/0.98/0.81; CoMFA: q2 /r2 /r2 pred = 0.78/0.97/0.86; CoMSIA: q2 /r2 /r2 pred = 0.74/0.95/0.82) and HsNMT (HQSAR: q2 /r2 /r2 pred = 0.79/0.93/0.74; CoMFA: q2 /r2 /r2 pred = 0.82/0.98/0.60; CoMSIA: q2 /r2 /r2 pred = 0.62/0.95/0.56). The results enabled the identification of the polar interactions (electrostatic and hydrogen-bonding properties) as the major molecular features that affected the inhibitory activity and selectivity. These findings should be useful for the design of PfNMT inhibitors with high affinities and selectivities as antimalarial lead candidates.
Collapse
Affiliation(s)
- Mariana L Garcia
- Sao Carlos Institute of Physics, University of Sao Paulo, São Carlos, São Paulo, Brazil
| | - Andrew A de Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo, São Carlos, São Paulo, Brazil
| | - Renata V Bueno
- Sao Carlos Institute of Physics, University of Sao Paulo, São Carlos, São Paulo, Brazil
| | - Victor H R Nogueira
- Sao Carlos Institute of Physics, University of Sao Paulo, São Carlos, São Paulo, Brazil
| | - Guilherme E de Souza
- Sao Carlos Institute of Physics, University of Sao Paulo, São Carlos, São Paulo, Brazil
| | - Rafael V C Guido
- Sao Carlos Institute of Physics, University of Sao Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|