1
|
Baskakova KO, Kuzmichev PK, Karbyshev MS. Advanced applications of Nanodiscs-based platforms for antibodies discovery. Biophys Chem 2024; 313:107290. [PMID: 39002246 DOI: 10.1016/j.bpc.2024.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Due to their fundamental biological importance, membrane proteins (MPs) are attractive targets for drug discovery, with cell surface receptors, transporters, ion channels, and membrane-bound enzymes being of particular interest. However, due to numerous challenges, these proteins present underutilized opportunities for discovering biotherapeutics. Antibodies hold the promise of exquisite specificity and adaptability, making them the ideal candidates for targeting complex membrane proteins. They can target specific conformations of a particular membrane protein and can be engineered into various formats. Generating specific and effective antibodies targeting these proteins is no easy task due to several factors. The antigen's design, antibody-generation strategies, lead optimization technologies, and antibody modalities can be modified to tackle these challenges. The rational employment of cutting-edge lipid nanoparticle systems for retrieving the membrane antigen has been successfully implemented to simplify the mechanism-based therapeutic antibody discovery approach. Despite the highlighted MP production challenges, this review unequivocally underscores the advantages of targeting complex membrane proteins with antibodies and designing membrane protein antigens. Selected examples of lipid nanoparticle success have been illustrated, emphasizing the potential of therapeutic antibody discovery in this regard. With further research and development, we can overcome these challenges and unlock the full potential of therapeutic antibodies directed to target complex MPs.
Collapse
Affiliation(s)
- Kristina O Baskakova
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Pavel K Kuzmichev
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudniy, Russian Federation
| | - Mikhail S Karbyshev
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation; Department of Biochemistry and Molecular Biology, Pirogov Russian National Research Medical University, Moscow, Russian Federation.
| |
Collapse
|
2
|
Soulié M, Deletraz A, Wehbie M, Mahler F, Chantemargue B, Bouchemal I, Le Roy A, Petit-Härtlein I, Fieschi F, Breyton C, Ebel C, Keller S, Durand G. Rigid Cyclic Fluorinated Detergents: Fine-Tuning the Hydrophilic-Lipophilic Balance Controls Self-Assembling and Biochemical Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32971-32982. [PMID: 38885044 DOI: 10.1021/acsami.4c03359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We report herein the synthesis of three detergents bearing a perfluorinated cyclohexyl group connected through a short, hydrogenated spacer (i.e., propyl, butyl, or pentyl) to a β-maltoside polar head that are, respectively, called FCymal-3, FCymal-4, and FCymal-5. Increasing the length of the spacer decreased the critical micellar concentration (CMC), as demonstrated by surface tension (SFT) and isothermal titration calorimetry (ITC), from 5 mM for FCymal-3 to 0.7 mM for FCymal-5. The morphology of the micelles was studied by dynamic light scattering (DLS), analytical ultracentrifugation (AUC), and small-angle X-ray scattering (SAXS), indicating heterogeneous rod-like shapes. While micelles of FCymal-3 and -4 have similar hydrodynamic diameters of ∼10 nm, those of FCymal-5 were twice as large. We also investigated the ability of the detergents to solubilize lipid membranes made of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC). Molecular modeling indicated that the FCymal detergents generate disorder in lipid bilayers, with FCymal-3 being inserted more deeply into bilayers than FCymal-4 and -5. This was experimentally confirmed using POPC vesicles that were completely solubilized within 2 h with FCymal-3, whereas FCymal-5 required >8 h. A similar trend was noticed for the direct extraction of membrane proteins from E. coli membranes, with FCymal-3 being more potent than FCymal-5. An opposite trend was observed in terms of stabilization of the two model membrane proteins bacteriorhodopsin (bR) and SpNOX. In all three FCymal detergents, bR was stable for at least 2 months with no signs of aggregation. However, while the structural integrity of bR was fully preserved in FCymal-4 and -5, minor bleaching was observed in FCymal-3. Similarly, SpNOX exhibited the least activity in FCymal-3 and the highest activity in FCymal-5. By combining solubilizing and stabilizing potency, FCymal detergents push forward our expectations of the usefulness of fluorinated detergents for handling and investigating membrane proteins.
Collapse
Affiliation(s)
- Marine Soulié
- Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM), Equipe Chimie Bioorganique et Systèmes amphiphiles, 301 Rue Baruch de Spinoza, 84916 Avignon Cedex 9, France
- Avignon Université, Unité Propre de Recherche et d'Innovation, Equipe Synthèse et Systèmes Colloïdaux Bio-organiques, 301 Rue Baruch de Spinoza, 84916 Avignon Cedex 9, France
| | - Anais Deletraz
- Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM), Equipe Chimie Bioorganique et Systèmes amphiphiles, 301 Rue Baruch de Spinoza, 84916 Avignon Cedex 9, France
| | - Moheddine Wehbie
- Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM), Equipe Chimie Bioorganique et Systèmes amphiphiles, 301 Rue Baruch de Spinoza, 84916 Avignon Cedex 9, France
| | - Florian Mahler
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | | | - Ilham Bouchemal
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Aline Le Roy
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, IBS, F-38000 Grenoble, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Cécile Breyton
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Christine Ebel
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Sandro Keller
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Grégory Durand
- Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM), Equipe Chimie Bioorganique et Systèmes amphiphiles, 301 Rue Baruch de Spinoza, 84916 Avignon Cedex 9, France
- Avignon Université, Unité Propre de Recherche et d'Innovation, Equipe Synthèse et Systèmes Colloïdaux Bio-organiques, 301 Rue Baruch de Spinoza, 84916 Avignon Cedex 9, France
| |
Collapse
|
3
|
Sisley EK, Hale OJ, Hughes JW, Cooper HJ. Tissue Washing Improves Native Ambient Mass Spectrometry Detection of Membrane Proteins Directly from Tissue. J Am Chem Soc 2023; 145:15658-15662. [PMID: 37459360 PMCID: PMC10375469 DOI: 10.1021/jacs.3c03454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Native ambient mass spectrometry enables the in situ analysis of proteins and their complexes directly from tissue, providing both structural and spatial information. Until recently, the approach was applied exclusively to the analysis of soluble proteins; however, there is a drive for new techniques that enable analysis of membrane proteins. Here we demonstrate native ambient mass spectrometry of membrane proteins, including β-barrel and α-helical (single and multipass) integral membrane proteins and membrane-associated proteins incorporating lipid anchors, by integration of a simple washing protocol to remove soluble proteins. Mass spectrometry imaging revealed that washing did not disrupt the spatial distributions of the membrane and membrane-associated proteins. Some delocalization of the remaining soluble proteins was observed.
Collapse
Affiliation(s)
- Emma K Sisley
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Oliver J Hale
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - James W Hughes
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Helen J Cooper
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
4
|
Zhou Y, Syed JH, Semchonok DA, Wright E, Kyrilis FL, Hamdi F, Kastritis PL, Bruce BD, Reynolds TB. Solubilization, purification, and characterization of the hexameric form of phosphatidylserine synthase from Candida albicans. J Biol Chem 2023:104756. [PMID: 37116705 DOI: 10.1016/j.jbc.2023.104756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023] Open
Abstract
Phosphatidylserine (PS) synthase from Candida albicans, encoded by the CHO1 gene, has been identified as a potential drug target for new antifungals against systemic candidiasis. Rational drug design or small molecule screening are effective ways to identify specific inhibitors of Cho1, but both will be facilitated by protein purification. Due to the transmembrane nature of Cho1, methods were needed to solubilize and purify the native form of Cho1. Here, we used six non-ionic detergents and three styrene maleic acids (SMAs) to solubilize an HA-tagged Cho1 protein from the total microsomal fractions. Blue native PAGE (BN-PAGE) and immunoblot analysis revealed a single band corresponding to Cho1 in all detergent-solubilized fractions, while two bands were present in the SMA2000-solubilized fraction. Our enzymatic assay suggests that digitonin- or DDM-solubilized enzyme has the most PS synthase activity. Pull-downs of HA-tagged Cho1 in the digitonin-solubilized fraction reveal an apparent MW of Cho1 consistent with a hexamer. Furthermore, negative-staining electron microscopy analysis and AlphaFold2 structure prediction modeling suggest the hexamer is composed of a trimer of dimers. We purified Cho1 protein to near-homogeneity as a hexamer using affinity chromatography and TEV protease treatment, and optimized Cho1 enzyme activity for manganese and detergent concentrations, temperature (24°C), and pH (8.0). The purified Cho1 has a Km for its substrate CDP-diacylglycerol of 72.20 μM with a Vmax of 0.079 nmol/(μg*min) while exhibiting a sigmoidal kinetic curve for its other substrate serine, indicating cooperative binding. Purified hexameric Cho1 can potentially be used in downstream structure determination and small drug screening.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, United States
| | - Jawhar H Syed
- Department of Biochemistry Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - Dmitry A Semchonok
- Interdisciplinary Research Center HALOmem & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Edward Wright
- Department of Biochemistry Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Farzad Hamdi
- Interdisciplinary Research Center HALOmem & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Barry D Bruce
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, United States; Department of Biochemistry Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, United States
| |
Collapse
|
5
|
Luo W, Yang M, Zhao Y, Wang H, Yang X, Zhang W, Zhao F, Zhao S, Tao H. Transition-Linker Containing Detergents for Membrane Protein Studies. Chemistry 2022; 28:e202202242. [PMID: 36053145 DOI: 10.1002/chem.202202242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 12/14/2022]
Abstract
It is a pressing need, but still challenging to explore the structure and function of membrane proteins (MPs). One of the main obstacles is the limited availability of matched detergents for the handling of specific MPs. We describe herein the design of new detergents by incorporation of a transition linker between the hydrophilic head and the hydrophobic tail. This design allows a gradual change of hydrophobicity between the outside and inside of micelles, in contrast to the abrupt switch in conventional detergents. Notably, many of these detergents assembled into micelles in while retaining low critical micelle concentrations. Meanwhile, thermal stabilizing evaluation identified superior detergents for representative MPs, including G protein-coupled receptors and a transporter protein. Among them, further improved the NMR study of MPs. We anticipate these that results will encourage future detergent expansion through new remodeling on the traditional detergent scaffold.
Collapse
Affiliation(s)
- Weiling Luo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China.,iHuman Institute, ShanghaiTech University, 201210, Shanghai, P. R. China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Meifang Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China
| | - Yitian Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China
| | - Huixia Wang
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Xiaodi Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China
| | - Wei Zhang
- College of Chemistry and Materials Science, Hebei Normal University, 050024, Shijiazhuang, P. R. China
| | - Fei Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, P. R. China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Houchao Tao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China
| |
Collapse
|
6
|
Youn T, Yoon S, Byrne B, Chae PS. Foldable detergents for membrane protein stability. Chembiochem 2022; 23:e202200276. [PMID: 35715931 DOI: 10.1002/cbic.202200276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Indexed: 11/10/2022]
Abstract
Detergents are widely used for membrane protein structural study. Many recently developed detergents contain multiple tail and head groups, which are typically connected via a small and branched linker. Due to their inherent compact structures, with small inter-alkyl chain distances, these detergents form micelles with high alkyl chain density in the interiors, a feature favorably associated with membrane protein stability. A recent study on tandem triazine maltosides (TZM) revealed a distinct trend; despite possession of an apparently large inter-alkyl chain distance, the TZM-Es were highly effective at stabilizing membrane proteins. Thanks to the incorporation of a flexible spacer between the two triazine rings in the linker region, these detergents are prone to folding into a compact architecture in micellar environments instead of adopting an extended conformation. Detergent foldability represents a new concept of novel detergent design with significant potential for future detergent development.
Collapse
Affiliation(s)
- Taeyeol Youn
- Hanyang University - ERICA Campus: Hanyang University - Ansan Campus, Bionano Engineering, KOREA, REPUBLIC OF
| | - Soyoung Yoon
- Hanyang University - ERICA Campus: Hanyang University - Ansan Campus, Bionano Engineering, KOREA, REPUBLIC OF
| | - Bernadette Byrne
- Imperial College London, Department of Life Sciences, UNITED KINGDOM
| | - Pil Seok Chae
- Hanyang University, Department of Bionano Engineering, 55 Hanyangdaehak-ro, 15588, Ansan, KOREA, REPUBLIC OF
| |
Collapse
|
7
|
Zampieri V, Hilpert C, Garnier M, Gestin Y, Delolme S, Martin J, Falson P, Launay G, Chaptal V. The Det.Belt Server: A Tool to Visualize and Estimate Amphipathic Solvent Belts around Membrane Proteins. MEMBRANES 2021; 11:459. [PMID: 34206634 PMCID: PMC8307592 DOI: 10.3390/membranes11070459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022]
Abstract
Detergents wrap around membrane proteins to form a belt covering the hydrophobic part of the protein serving for membrane insertion and interaction with lipids. The number of detergent monomers forming this belt is usually unknown to investigators, unless dedicated detergent quantification is undertaken, which for many projects is difficult to setup. Yet, having an approximate knowledge of the amount of detergent forming the belt is extremely useful, to better grasp the protein of interest in interaction with its direct environment rather than picturing the membrane protein "naked". We created the Det.Belt server to dress up membrane proteins and represent in 3D the bulk made by detergent molecules wrapping in a belt. Many detergents are included in a database, allowing investigators to screen in silico the effect of different detergents around their membrane protein. The input number of detergents is changeable with fast recomputation of the belt for interactive usage. Metrics representing the belt are readily available together with scripts to render quality 3D images for publication. The Det.Belt server is a tool for biochemists to better grasp their sample.
Collapse
Affiliation(s)
- Veronica Zampieri
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, CEDEX 9, 38042 Grenoble, France;
| | - Cécile Hilpert
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Mélanie Garnier
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Yannick Gestin
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Sébastien Delolme
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Juliette Martin
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Pierre Falson
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Guillaume Launay
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| |
Collapse
|
8
|
Armony G, Heck AJR, Wu W. Extracellular crosslinking mass spectrometry reveals HLA class I - HLA class II interactions on the cell surface. Mol Immunol 2021; 136:16-25. [PMID: 34052579 DOI: 10.1016/j.molimm.2021.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 01/26/2023]
Abstract
Human Leukocyte Antigen (HLA) complexes are critical cell-surface protein assemblies that facilitate T-cell surveillance of almost all cell types in the body. While T-cell receptor binding to HLA class I and class II complexes is well-described with detailed structural information, the nature of cis HLA interactions within the plasma membrane of the surveyed cells remains to be better characterized, as protein-protein interactions in the membrane environment are technically challenging to profile. Here we performed extracellular chemical crosslinking on intact antigen presenting cells to specifically elucidate protein-protein interactions present in the external plasma membrane. We found that the crosslink dataset was dominated by inter- and intra-protein crosslinks involving HLA molecules, which enabled not only the construction of an HLA-centric plasma membrane protein interaction map, but also revealed multiple modes of HLA class I - HLA class II interactions with further structural modeling based on crosslinker distance restraints. Collectively, our data demonstrate that HLA molecules colocalize and can be densely packed on the plasma membrane.
Collapse
Affiliation(s)
- Gad Armony
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Dynamic Structural Biology Experiments at XFEL or Synchrotron Sources. Methods Mol Biol 2021; 2305:203-228. [PMID: 33950392 DOI: 10.1007/978-1-0716-1406-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Macromolecular crystallography (MX) leverages the methods of physics and the language of chemistry to reveal fundamental insights into biology. Often beautifully artistic images present MX results to support profound functional hypotheses that are vital to entire life science research community. Over the past several decades, synchrotrons around the world have been the workhorses for X-ray diffraction data collection at many highly automated beamlines. The newest tools include X-ray-free electron lasers (XFELs) located at facilities in the USA, Japan, Korea, Switzerland, and Germany that deliver about nine orders of magnitude higher brightness in discrete femtosecond long pulses. At each of these facilities, new serial femtosecond crystallography (SFX) strategies exploit slurries of micron-size crystals by rapidly delivering individual crystals into the XFEL X-ray interaction region, from which one diffraction pattern is collected per crystal before it is destroyed by the intense X-ray pulse. Relatively simple adaptions to SFX methods produce time-resolved data collection strategies wherein reactions are triggered by visible light illumination or by chemical diffusion/mixing. Thus, XFELs provide new opportunities for high temporal and spatial resolution studies of systems engaged in function at physiological temperature. In this chapter, we summarize various issues related to microcrystal slurry preparation, sample delivery into the X-ray interaction region, and some emerging strategies for time-resolved SFX data collection.
Collapse
|
10
|
Beyond structure: emerging approaches to study GPCR dynamics. Curr Opin Struct Biol 2020; 63:18-25. [PMID: 32305785 DOI: 10.1016/j.sbi.2020.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/22/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest superfamily of membrane proteins that are involved in regulation of sensory and physiological processes and implicated in many diseases. The last decade revolutionized the GPCR field by unraveling multiple high-resolution structures of many different receptors in complexes with various ligands and signaling partners. A complete understanding of the complex nature of GPCR function is, however, impossible to attain without combining static structural snapshots with information about GPCR dynamics obtained by complementary spectroscopic techniques. As illustrated in this review, structure and dynamics studies are now paving the way for understanding important questions of GPCR biology such as partial and biased agonism, allostery, oligomerization, and other fundamental aspects of GPCR signaling.
Collapse
|
11
|
Pseudo-Symmetric Assembly of Protodomains as a Common Denominator in the Evolution of Polytopic Helical Membrane Proteins. J Mol Evol 2020; 88:319-344. [PMID: 32189026 PMCID: PMC7162841 DOI: 10.1007/s00239-020-09934-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/16/2020] [Indexed: 11/05/2022]
Abstract
The polytopic helical membrane proteome is dominated by proteins containing seven transmembrane helices (7TMHs). They cannot be grouped under a monolithic fold or superfold. However, a parallel structural analysis of folds around that magic number of seven in distinct protein superfamilies (SWEET, PnuC, TRIC, FocA, Aquaporin, GPCRs) reveals a common homology, not in their structural fold, but in their systematic pseudo-symmetric construction during their evolution. Our analysis leads to guiding principles of intragenic duplication and pseudo-symmetric assembly of ancestral transmembrane helical protodomains, consisting of 3 (or 4) helices. A parallel deconstruction and reconstruction of these domains provides a structural and mechanistic framework for their evolutionary paths. It highlights the conformational plasticity inherent to fold formation itself, the role of structural as well as functional constraints in shaping that fold, and the usefulness of protodomains as a tool to probe convergent vs divergent evolution. In the case of FocA vs. Aquaporin, this protodomain analysis sheds new light on their potential divergent evolution at the protodomain level followed by duplication and parallel evolution of the two folds. GPCR domains, whose function does not seem to require symmetry, nevertheless exhibit structural pseudo-symmetry. Their construction follows the same protodomain assembly as any other pseudo-symmetric protein suggesting their potential evolutionary origins. Interestingly, all the 6/7/8TMH pseudo-symmetric folds in this study also assemble as oligomeric forms in the membrane, emphasizing the role of symmetry in evolution, revealing self-assembly and co-evolution not only at the protodomain level but also at the domain level.
Collapse
|
12
|
Shiref H, Bergman S, Clivio S, Sahai MA. The fine art of preparing membrane transport proteins for biomolecular simulations: Concepts and practical considerations. Methods 2020; 185:3-14. [PMID: 32081744 PMCID: PMC10062712 DOI: 10.1016/j.ymeth.2020.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 10/25/2022] Open
Abstract
Molecular dynamics (MD) simulations have developed into an invaluable tool in bimolecular research, due to the capability of the method in capturing molecular events and structural transitions that describe the function as well as the physiochemical properties of biomolecular systems. Due to the progressive development of more efficient algorithms, expansion of the available computational resources, as well as the emergence of more advanced methodologies, the scope of computational studies has increased vastly over time. We now have access to a multitude of online databases, software packages, larger molecular systems and novel ligands due to the phenomenon of emerging novel psychoactive substances (NPS). With so many advances in the field, it is understandable that novices will no doubt find it challenging setting up a protein-ligand system even before they run their first MD simulation. These initial steps, such as homology modelling, ligand docking, parameterization, protein preparation and membrane setup have become a fundamental part of the drug discovery pipeline, and many areas of biomolecular sciences benefit from the applications provided by these technologies. However, there still remains no standard on their usage. Therefore, our aim within this review is to provide a clear overview of a variety of concepts and methodologies to consider, providing a workflow for a case study of a membrane transport protein, the full-length human dopamine transporter (hDAT) in complex with different stimulants, where MD simulations have recently been applied successfully.
Collapse
Affiliation(s)
- Hana Shiref
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Shana Bergman
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, NY 10065, USA
| | | | - Michelle A Sahai
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK.
| |
Collapse
|
13
|
Ogawa H, Kurebayashi N, Yamazawa T, Murayama T. Regulatory mechanisms of ryanodine receptor/Ca 2+ release channel revealed by recent advancements in structural studies. J Muscle Res Cell Motil 2020; 42:291-304. [PMID: 32040690 PMCID: PMC8332584 DOI: 10.1007/s10974-020-09575-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Ryanodine receptors (RyRs) are huge homotetrameric Ca2+ release channels localized to the sarcoplasmic reticulum. RyRs are responsible for the release of Ca2+ from the SR during excitation–contraction coupling in striated muscle cells. Recent revolutionary advancements in cryo-electron microscopy have provided a number of near-atomic structures of RyRs, which have enabled us to better understand the architecture of RyRs. Thus, we are now in a new era understanding the gating, regulatory and disease-causing mechanisms of RyRs. Here we review recent advances in the elucidation of the structures of RyRs, especially RyR1 in skeletal muscle, and their mechanisms of regulation by small molecules, associated proteins and disease-causing mutations.
Collapse
Affiliation(s)
- Haruo Ogawa
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Toshiko Yamazawa
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| |
Collapse
|