1
|
Suder DS, Gonen S. Mitigating the Blurring Effect of CryoEM Averaging on a Flexible and Highly Symmetric Protein Complex through Sub-Particle Reconstruction. Int J Mol Sci 2024; 25:5665. [PMID: 38891853 PMCID: PMC11171969 DOI: 10.3390/ijms25115665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Many macromolecules are inherently flexible as a feature of their structure and function. During single-particle CryoEM processing, flexible protein regions can be detrimental to high-resolution reconstruction as signals from thousands of particles are averaged together. This "blurring" effect can be difficult to overcome and is possibly more pronounced when averaging highly symmetric complexes. Approaches to mitigating flexibility during CryoEM processing are becoming increasingly critical as the technique advances and is applied to more dynamic proteins and complexes. Here, we detail the use of sub-particle averaging and signal subtraction techniques to precisely target and resolve flexible DARPin protein attachments on a designed tetrahedrally symmetric protein scaffold called DARP14. Particles are first aligned as full complexes, and then the symmetry is reduced by alignment and focused refinement of the constituent subunits. The final reconstructions we obtained were vastly improved over the fully symmetric reconstructions, with observable secondary structure and side-chain placement. Additionally, we were also able to reconstruct the core region of the scaffold to 2.7 Å. The data processing protocol outlined here is applicable to other dynamic and symmetric protein complexes, and our improved maps could allow for new structure-guided variant designs of DARP14.
Collapse
Affiliation(s)
| | - Shane Gonen
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Agdanowski MP, Castells-Graells R, Sawaya MR, Cascio D, Yeates TO, Arbing MA. X-ray crystal structure of a designed rigidified imaging scaffold in the ligand-free conformation. Acta Crystallogr F Struct Biol Commun 2024; 80:107-115. [PMID: 38767964 PMCID: PMC11134730 DOI: 10.1107/s2053230x2400414x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Imaging scaffolds composed of designed protein cages fused to designed ankyrin repeat proteins (DARPins) have enabled the structure determination of small proteins by cryogenic electron microscopy (cryo-EM). One particularly well characterized scaffold type is a symmetric tetrahedral assembly composed of 24 subunits, 12 A and 12 B, which has three cargo-binding DARPins positioned on each vertex. Here, the X-ray crystal structure of a representative tetrahedral scaffold in the apo state is reported at 3.8 Å resolution. The X-ray crystal structure complements recent cryo-EM findings on a closely related scaffold, while also suggesting potential utility for crystallographic investigations. As observed in this crystal structure, one of the three DARPins, which serve as modular adaptors for binding diverse `cargo' proteins, present on each of the vertices is oriented towards a large solvent channel. The crystal lattice is unusually porous, suggesting that it may be possible to soak crystals of the scaffold with small (≤30 kDa) protein cargo ligands and subsequently determine cage-cargo structures via X-ray crystallography. The results suggest the possibility that cryo-EM scaffolds may be repurposed for structure determination by X-ray crystallography, thus extending the utility of electron-microscopy scaffold designs for alternative structural biology applications.
Collapse
Affiliation(s)
- Matthew P. Agdanowski
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Roger Castells-Graells
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael R. Sawaya
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Duilio Cascio
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Mark A. Arbing
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Yang S, Liu D, Song Y, Liang Y, Yu H, Zuo Y. Designing a structure-function alphabet of helix based on reduced amino acid clusters. Arch Biochem Biophys 2024; 754:109942. [PMID: 38387828 DOI: 10.1016/j.abb.2024.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Several simple secondary structures could form complex and diverse functional proteins, meaning that secondary structures may contain a lot of hidden information and are arranged according to certain principles, to carry enough information of functional specificity and diversity. However, these inner information and principles have not been understood systematically. In our study, we designed a structure-function alphabet of helix based on reduced amino acid clusters to describe the typical features of helices and delve into the information. Firstly, we selected 480 typical helices from membrane proteins, zymoproteins, transcription factors, and other proteins to define and calculate the interval range, and the helices are classified in terms of hydrophilicity, charge and length: (1) hydrophobic helix (≤43%), amphiphilic helix (43%∼71%), and hydrophilic helix (≥71%). (2) positive helix, negative helix, electrically neutral helix and uncharged helix. (3) short helix (≤8 aa), medium-length helix (9-28 aa), and long helix (≥29 aa). Then, we designed an alphabet containing 36 triplet codes according to the above classification, so that the main features of each helix can be represented by only three letters. This alphabet not only preliminarily defined the helix characteristics, but also greatly reduced the informational dimension of protein structure. Finally, we present an application example to demonstrate the value of the structure-function alphabet in protein functional determination and differentiation.
Collapse
Affiliation(s)
- Siqi Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Dongyang Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yancheng Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Yuchao Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Haoyu Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
4
|
Lee EJ, Gladkov N, Miller JE, Yeates TO. Design of Ligand-Operable Protein-Cages That Open Upon Specific Protein Binding. ACS Synth Biol 2024; 13:157-167. [PMID: 38133598 DOI: 10.1021/acssynbio.3c00383] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Protein nanocages have diverse applications in medicine and biotechnology, including molecular delivery. However, although numerous studies have demonstrated the ability of protein nanocages to encapsulate various molecular species, limited methods are available for subsequently opening a nanocage for cargo release under specific conditions. A modular platform with a specific protein-target-based mechanism of nanocage opening is notably lacking. To address this important technology gap, we present a new class of designed protein cages, the Ligand-Operable Cage (LOC). LOCs primarily comprise a protein nanocage core and a fused surface binding adaptor. The geometry of the LOC is designed so that binding of a target protein ligand (or multiple copies thereof) to the surface binder is sterically incompatible with retention of the assembled state of the cage. Therefore, the tight binding of a target ligand drives cage disassembly by mass action, subsequently exposing the encapsulated cargo. LOCs are modular; direct substitution of the surface binder sequence can reprogram the nanocage to open in response to any target protein ligand of interest. We demonstrate these design principles using both a natural and a designed protein cage as the core, with different proteins acting as the triggering ligand and with different reporter readouts─fluorescence unquenching and luminescence─for cage disassembly. These developments advance the critical problem of targeted molecular delivery and detection.
Collapse
Affiliation(s)
- Eric J Lee
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Nika Gladkov
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Justin E Miller
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, United States
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, United States
- UCLA-DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Mijit A, Wang X, Li Y, Xu H, Chen Y, Xue W. Mapping synthetic binding proteins epitopes on diverse protein targets by protein structure prediction and protein-protein docking. Comput Biol Med 2023; 163:107183. [PMID: 37352638 DOI: 10.1016/j.compbiomed.2023.107183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
Synthetic binding proteins (SBPs) are a class of artificial proteins engineered from privileged protein scaffolds, which can form highly specific molecular recognition interfaces with a variety of targets. Due to the characteristics of small size, high stability, and good tissue permeability, SBPs have important applications in biomedical research, disease diagnosis and treatment. However, knowledge of SBPs epitopes on the structures of target proteins is still limited, which hinder the development of novel SBPs. In this study, based on the currently available information of SBPs and their targets, 96 pairs of interacting proteins referring to 96 representative SBPs and 80 different targets, were systemically investigated using the state-of-the-art computational modeling techniques including AlphaFold2 protein structure prediction and Rosetta protein-protein docking. As a result, 71 out of the 96 pairs were successfully docked, of which 18, 33, and 20 pairs were defined as models with high, medium, and acceptable quality, respectively. In addition, the interface information was analyzed to decipher the interaction types driven SBPs and targets recognition. Overall, this work not only provides important structural information for understanding the mechanism of action of other SBPs with same protein scaffold, but also for aiding the rational protein engineering and to design of novel SBPs with biomedical applications.
Collapse
Affiliation(s)
- Arzu Mijit
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaona Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yanlin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Hangwei Xu
- School of Medicine, Hangzhou City University, Hangzhou, 310000, China
| | - Yingjun Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
6
|
Design of an artificial phage-display library based on a new scaffold improved for average stability of the randomized proteins. Sci Rep 2023; 13:1339. [PMID: 36693880 PMCID: PMC9873692 DOI: 10.1038/s41598-023-27710-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
Scaffold-based protein libraries are designed to be both diverse and rich in functional/folded proteins. However, introducing an extended diversity while preserving stability of the initial scaffold remains a challenge. Here we developed an original approach to select the ensemble of folded proteins from an initial library. The thermostable CheY protein from Thermotoga maritima was chosen as scaffold. Four loops of CheY were diversified to create a new binding surface. The subset of the library giving rise to folded proteins was first selected using a natural protein partner of the template scaffold. Then, a gene shuffling approach based on a single restriction enzyme was used to recombine DNA sequences encoding these filtrated variants. Taken together, the filtration strategy and the shuffling of the filtrated sequences were shown to enrich the library in folded and stable sequences while maintaining a large diversity in the final library (Lib-Cheytins 2.1). Binders of the Oplophorus luciferase Kaz domain were then selected by phage display from the final library, showing affinities in the μM range. One of the best variants induced a loss of 92% of luminescent activity, suggesting that this Cheytin preferentially binds to the Kaz active site.
Collapse
|
7
|
Dmitrieva DA, Kotova TV, Safronova NA, Sadova AA, Dashevskii DE, Mishin AV. Protein Design Strategies for the Structural–Functional Studies of G Protein-Coupled Receptors. BIOCHEMISTRY (MOSCOW) 2023; 88:S192-S226. [PMID: 37069121 DOI: 10.1134/s0006297923140110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are an important family of membrane proteins responsible for many physiological functions in human body. High resolution GPCR structures are required to understand their molecular mechanisms and perform rational drug design, as GPCRs play a crucial role in a variety of diseases. That is difficult to obtain for the wild-type proteins because of their low stability. In this review, we discuss how this problem can be solved by using protein design strategies developed to obtain homogeneous stabilized GPCR samples for crystallization and cryoelectron microscopy.
Collapse
Affiliation(s)
- Daria A Dmitrieva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Tatiana V Kotova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Nadezda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexandra A Sadova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| |
Collapse
|
8
|
Robertson MJ, Papasergi-Scott MM, He F, Seven AB, Meyerowitz JG, Panova O, Peroto MC, Che T, Skiniotis G. Structure determination of inactive-state GPCRs with a universal nanobody. Nat Struct Mol Biol 2022; 29:1188-1195. [PMID: 36396979 PMCID: PMC12014012 DOI: 10.1038/s41594-022-00859-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022]
Abstract
Cryogenic electron microscopy (cryo-EM) has widened the field of structure-based drug discovery by allowing for routine determination of membrane protein structures previously intractable. Despite representing one of the largest classes of therapeutic targets, most inactive-state G protein-coupled receptors (GPCRs) have remained inaccessible for cryo-EM because their small size and membrane-embedded nature impedes projection alignment for high-resolution map reconstructions. Here we demonstrate that the same single-chain camelid antibody (nanobody) recognizing a grafted intracellular loop can be used to obtain cryo-EM structures of inactive-state GPCRs at resolutions comparable or better than those obtained by X-ray crystallography. Using this approach, we obtained structures of neurotensin 1 receptor bound to antagonist SR48692, μ-opioid receptor bound to alvimopan, apo somatostatin receptor 2 and histamine receptor 2 bound to famotidine. We expect this rapid, straightforward approach to facilitate the broad exploration of GPCR inactive states without the need for extensive engineering and crystallization.
Collapse
Affiliation(s)
- Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Makaía M Papasergi-Scott
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Feng He
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alpay B Seven
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin G Meyerowitz
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ouliana Panova
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria Claudia Peroto
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tao Che
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Miclot T, Bignon E, Terenzi A, Grandemange S, Barone G, Monari A. G-Quadruplex Recognition by DARPIns through Epitope/Paratope Analogy. Chemistry 2022; 28:e202201824. [PMID: 35791808 PMCID: PMC9804223 DOI: 10.1002/chem.202201824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/05/2023]
Abstract
We investigated the mechanisms leading to the specific recognition of Guanine Guadruplex (G4) by DARPins peptides, which can lead to the design of G4 s specific sensors. To this end we carried out all-atom molecular dynamic simulations to unravel the interactions between specific nucleic acids, including human-telomeric (h-telo), Bcl-2, and c-Myc, with different peptides, forming a DARPin/G4 complex. By comparing the sequences of DARPin with that of a peptide known for its high affinity for c-Myc, we show that the recognition cannot be ascribed to sequence similarity but, instead, depends on the complementarity between the three-dimensional arrangement of the molecular fragments involved: the α-helix/loops domain of DARPin and the G4 backbone. Our results reveal that DARPins tertiary structure presents a charged hollow region in which G4 can be hosted, thus the more complementary the structural shapes, the more stable the interaction.
Collapse
Affiliation(s)
- Tom Miclot
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversità degli Studi di PalermoViale delle Scienze90128PalermoItaly,Université de Lorraine and CNRS LPCT UMR 701954000NancyFrance
| | | | - Alessio Terenzi
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversità degli Studi di PalermoViale delle Scienze90128PalermoItaly
| | | | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversità degli Studi di PalermoViale delle Scienze90128PalermoItaly
| | - Antonio Monari
- Université de Lorraine and CNRS LPCT UMR 701954000NancyFrance,Université Paris Cité and CNRS, ITODYS75006ParisFrance
| |
Collapse
|
10
|
León-González JA, Flatet P, Juárez-Ramírez MS, Farías-Rico JA. Folding and Evolution of a Repeat Protein on the Ribosome. Front Mol Biosci 2022; 9:851038. [PMID: 35707224 PMCID: PMC9189291 DOI: 10.3389/fmolb.2022.851038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Life on earth is the result of the work of proteins, the cellular nanomachines that fold into elaborated 3D structures to perform their functions. The ribosome synthesizes all the proteins of the biosphere, and many of them begin to fold during translation in a process known as cotranslational folding. In this work we discuss current advances of this field and provide computational and experimental data that highlight the role of ribosome in the evolution of protein structures. First, we used the sequence of the Ankyrin domain from the Drosophila Notch receptor to launch a deep sequence-based search. With this strategy, we found a conserved 33-residue motif shared by different protein folds. Then, to see how the vectorial addition of the motif would generate a full structure we measured the folding on the ribosome of the Ankyrin repeat protein. Not only the on-ribosome folding data is in full agreement with classical in vitro biophysical measurements but also it provides experimental evidence on how folded proteins could have evolved by duplication and fusion of smaller fragments in the RNA world. Overall, we discuss how the ribosomal exit tunnel could be conceptualized as an active site that is under evolutionary pressure to influence protein folding.
Collapse
Affiliation(s)
- José Alberto León-González
- Synthetic Biology Program, Center for Genome Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - Perline Flatet
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - María Soledad Juárez-Ramírez
- Synthetic Biology Program, Center for Genome Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - José Arcadio Farías-Rico
- Synthetic Biology Program, Center for Genome Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
- *Correspondence: José Arcadio Farías-Rico,
| |
Collapse
|
11
|
Kim Y, Wang J, Clemens EG, Grab DJ, Dumler JS. Anaplasma phagocytophilum Ankyrin A Protein (AnkA) Enters the Nucleus Using an Importin-β-, RanGTP-Dependent Mechanism. Front Cell Infect Microbiol 2022; 12:828605. [PMID: 35719343 PMCID: PMC9204287 DOI: 10.3389/fcimb.2022.828605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
Anaplasma phagocytophilum, a tick-borne obligately intracellular bacterium of neutrophils, causes human granulocytic anaplasmosis. Ankyrin A (AnkA), an effector protein with multiple ankyrin repeats (AR) is injected via type IV-secretion into the host neutrophil to gain access to the nucleus where it modifies the epigenome to promote microbial fitness and propagation. AR proteins transported into the host cell nucleus must use at least one of two known eukaryotic pathways, the classical importin β-dependent pathway, and/or the RanGDP- and AR (ankyrin-repeat)-dependent importin β-independent (RaDAR) pathway. Truncation of the first four AnkA N-terminal ARs (AR1-4), but not other regions, prevents AnkA nuclear accumulation. To investigate the mechanism of nuclear import, we created point mutations of AnkA N-terminal ARs, predicted to interfere with RaDAR protein import, and used importazole, a specific inhibitor of the importin α/β, RanGTP-dependent pathway. Nuclear colocalization analysis shows that nuclear localization of AnkA is unaffected by single AR1-4 mutations but is significantly reduced by single mutations in consecutive ARs suggesting RaDAR protein nuclear import. However, AnkA nuclear localization was also decreased with importazole, and with GTPγS. Furthermore, A. phagocytophilum growth in HL-60 cells was completely suppressed with importazole, indicating that A. phagocytophilum propagation requires a β-importin-dependent pathway. A typical classical NLS overlapping AR4 was subsequently identified suggesting the primacy of the importin-α/β system in AnkA nuclear localization. Whether the mutational studies of putative key residues support RaDAR NLS function or simply reflect structural changes that diminish engagement of an AR-NLS-importin pathway needs to be resolved through careful structure-function studies.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Jianyang Wang
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Emily G. Clemens
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Dennis J. Grab
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - J. Stephen Dumler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States,*Correspondence: J. Stephen Dumler,
| |
Collapse
|
12
|
Nawarathnage S, Soleimani S, Mathis MH, Bezzant BD, Ramírez DT, Gajjar P, Bunn DR, Stewart C, Smith T, Pedroza Romo MJ, Brown S, Doukov T, Moody JD. Crystals of TELSAM-target protein fusions that exhibit minimal crystal contacts and lack direct inter-TELSAM contacts. Open Biol 2022; 12:210271. [PMID: 35232248 PMCID: PMC8889177 DOI: 10.1098/rsob.210271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
While conducting pilot studies into the usefulness of fusion to TELSAM polymers as a potential protein crystallization strategy, we observed novel properties in crystals of two TELSAM-target protein fusions, as follows. (i) A TELSAM-target protein fusion can crystallize more rapidly and with greater propensity than the same target protein alone. (ii) TELSAM-target protein fusions can be crystallized at low protein concentrations. This unprecedented observation suggests a route to crystallize proteins that can only be produced in microgram amounts. (iii) The TELSAM polymers themselves need not directly contact one another in the crystal lattice in order to form well-diffracting crystals. This novel observation is important because it suggests that TELSAM may be able to crystallize target proteins too large to allow direct inter-polymer contacts. (iv) Flexible TELSAM-target protein linkers can allow target proteins to find productive binding modes against the TELSAM polymer. (v) TELSAM polymers can adjust their helical rise to allow fused target proteins to make productive crystal contacts. (vi). Fusion to TELSAM polymers can stabilize weak inter-target protein crystal contacts. We report features of these TELSAM-target protein crystal structures and outline future work needed to validate TELSAM as a crystallization chaperone and determine best practices for its use.
Collapse
Affiliation(s)
| | - Sara Soleimani
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Moriah H. Mathis
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Braydan D. Bezzant
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Diana T. Ramírez
- Department of Natural Sciences, California State University Chico, Chico, CA, USA
| | - Parag Gajjar
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Derick R. Bunn
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Cameron Stewart
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Tobin Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | | | - Seth Brown
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Tzanko Doukov
- Macromolecular Crystallography Group, Structural Molecular Biology Resource, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, USA
| | - James D. Moody
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| |
Collapse
|
13
|
Deluigi M, Morstein L, Schuster M, Klenk C, Merklinger L, Cridge RR, de Zhang LA, Klipp A, Vacca S, Vaid TM, Mittl PRE, Egloff P, Eberle SA, Zerbe O, Chalmers DK, Scott DJ, Plückthun A. Crystal structure of the α 1B-adrenergic receptor reveals molecular determinants of selective ligand recognition. Nat Commun 2022; 13:382. [PMID: 35046410 PMCID: PMC8770593 DOI: 10.1038/s41467-021-27911-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022] Open
Abstract
α-adrenergic receptors (αARs) are G protein-coupled receptors that regulate vital functions of the cardiovascular and nervous systems. The therapeutic potential of αARs, however, is largely unexploited and hampered by the scarcity of subtype-selective ligands. Moreover, several aminergic drugs either show off-target binding to αARs or fail to interact with the desired subtype. Here, we report the crystal structure of human α1BAR bound to the inverse agonist (+)-cyclazosin, enabled by the fusion to a DARPin crystallization chaperone. The α1BAR structure allows the identification of two unique secondary binding pockets. By structural comparison of α1BAR with α2ARs, and by constructing α1BAR-α2CAR chimeras, we identify residues 3.29 and 6.55 as key determinants of ligand selectivity. Our findings provide a basis for discovery of α1BAR-selective ligands and may guide the optimization of aminergic drugs to prevent off-target binding to αARs, or to elicit a selective interaction with the desired subtype. This study reports the X-ray structure of the α1B-adrenergic G protein-coupled receptor bound to an inverse agonist, and unveils key determinants of subtype-selective ligand binding that may help the design of aminergic drugs with fewer side-effects.
Collapse
Affiliation(s)
- Mattia Deluigi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Lena Morstein
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Matthias Schuster
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Christoph Klenk
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Lisa Merklinger
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark
| | - Riley R Cridge
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Lazarus A de Zhang
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.,Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alexander Klipp
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, CH-8093, Zurich, Switzerland
| | - Santiago Vacca
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Tasneem M Vaid
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Peer R E Mittl
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Pascal Egloff
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Stefanie A Eberle
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - David K Chalmers
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
14
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Structural, Functional, and Evolutionary Characteristics of Proteins with Repeats. Mol Biol 2021. [DOI: 10.1134/s0026893321040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Folding and Stability of Ankyrin Repeats Control Biological Protein Function. Biomolecules 2021; 11:biom11060840. [PMID: 34198779 PMCID: PMC8229355 DOI: 10.3390/biom11060840] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
Ankyrin repeat proteins are found in all three kingdoms of life. Fundamentally, these proteins are involved in protein-protein interaction in order to activate or suppress biological processes. The basic architecture of these proteins comprises repeating modules forming elongated structures. Due to the lack of long-range interactions, a graded stability among the repeats is the generic properties of this protein family determining both protein folding and biological function. Protein folding intermediates were frequently found to be key for the biological functions of repeat proteins. In this review, we discuss most recent findings addressing this close relation for ankyrin repeat proteins including DARPins, Notch receptor ankyrin repeat domain, IκBα inhibitor of NFκB, and CDK inhibitor p19INK4d. The role of local folding and unfolding and gradual stability of individual repeats will be discussed during protein folding, protein-protein interactions, and post-translational modifications. The conformational changes of these repeats function as molecular switches for biological regulation, a versatile property for modern drug discovery.
Collapse
|
16
|
Siegel PM, Bojti I, Bassler N, Holien J, Flierl U, Wang X, Waggershauser P, Tonnar X, Vedecnik C, Lamprecht C, Stankova I, Li T, Helbing T, Wolf D, Anto-Michel N, Mitre LS, Ehrlich J, Orlean L, Bender I, Przewosnik A, Mauler M, Hollederer L, Moser M, Bode C, Parker MW, Peter K, Diehl P. A DARPin targeting activated Mac-1 is a novel diagnostic tool and potential anti-inflammatory agent in myocarditis, sepsis and myocardial infarction. Basic Res Cardiol 2021; 116:17. [PMID: 33721106 PMCID: PMC7960600 DOI: 10.1007/s00395-021-00849-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022]
Abstract
The monocyte β2-integrin Mac-1 is crucial for leukocyte–endothelium interaction, rendering it an attractive therapeutic target for acute and chronic inflammation. Using phage display, a Designed-Ankyrin-Repeat-Protein (DARPin) was selected as a novel binding protein targeting and blocking the αM I-domain, an activation-specific epitope of Mac-1. This DARPin, named F7, specifically binds to activated Mac-1 on mouse and human monocytes as determined by flow cytometry. Homology modelling and docking studies defined distinct interaction sites which were verified by mutagenesis. Intravital microscopy showed reduced leukocyte–endothelium adhesion in mice treated with this DARPin. Using mouse models of sepsis, myocarditis and ischaemia/reperfusion injury, we demonstrate therapeutic anti-inflammatory effects. Finally, the activated Mac-1-specific DARPin is established as a tool to detect monocyte activation in patients receiving extra-corporeal membrane oxygenation, as well as suffering from sepsis and ST-elevation myocardial infarction. The activated Mac-1-specific DARPin F7 binds preferentially to activated monocytes, detects inflammation in critically ill patients, and inhibits monocyte and neutrophil function as an efficient new anti-inflammatory agent.
Collapse
Affiliation(s)
- Patrick M Siegel
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - István Bojti
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicole Bassler
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Jessica Holien
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Melbourne, Australia
| | - Ulrike Flierl
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia.,Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Philipp Waggershauser
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Xavier Tonnar
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christopher Vedecnik
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constanze Lamprecht
- BIOSS Centre for Biological Signalling Studies/Synthetic Biology of Signalling Processes, University of Freiburg, Freiburg, Germany
| | - Ivana Stankova
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tian Li
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Helbing
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nathaly Anto-Michel
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucia Sol Mitre
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Ehrlich
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Orlean
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ileana Bender
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Przewosnik
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Mauler
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Hollederer
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Moser
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Melbourne, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia. .,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia. .,Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia. .,Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Philipp Diehl
- Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
17
|
Deluigi M, Klipp A, Klenk C, Merklinger L, Eberle SA, Morstein L, Heine P, Mittl PRE, Ernst P, Kamenecka TM, He Y, Vacca S, Egloff P, Honegger A, Plückthun A. Complexes of the neurotensin receptor 1 with small-molecule ligands reveal structural determinants of full, partial, and inverse agonism. SCIENCE ADVANCES 2021; 7:7/5/eabe5504. [PMID: 33571132 PMCID: PMC7840143 DOI: 10.1126/sciadv.abe5504] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/09/2020] [Indexed: 05/15/2023]
Abstract
Neurotensin receptor 1 (NTSR1) and related G protein-coupled receptors of the ghrelin family are clinically unexploited, and several mechanistic aspects of their activation and inactivation have remained unclear. Enabled by a new crystallization design, we present five new structures: apo-state NTSR1 as well as complexes with nonpeptide inverse agonists SR48692 and SR142948A, partial agonist RTI-3a, and the novel full agonist SRI-9829, providing structural rationales on how ligands modulate NTSR1. The inverse agonists favor a large extracellular opening of helices VI and VII, undescribed so far for NTSR1, causing a constriction of the intracellular portion. In contrast, the full and partial agonists induce a binding site contraction, and their efficacy correlates with the ability to mimic the binding mode of the endogenous agonist neurotensin. Providing evidence of helical and side-chain rearrangements modulating receptor activation, our structural and functional data expand the mechanistic understanding of NTSR1 and potentially other peptidergic receptors.
Collapse
Affiliation(s)
- Mattia Deluigi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Alexander Klipp
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Christoph Klenk
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Lisa Merklinger
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Stefanie A Eberle
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Lena Morstein
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philipp Heine
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Peer R E Mittl
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Patrick Ernst
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Theodore M Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Yuanjun He
- Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Santiago Vacca
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Pascal Egloff
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Annemarie Honegger
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
18
|
Thompson MC, Yeates TO, Rodriguez JA. Advances in methods for atomic resolution macromolecular structure determination. F1000Res 2020; 9:F1000 Faculty Rev-667. [PMID: 32676184 PMCID: PMC7333361 DOI: 10.12688/f1000research.25097.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Recent technical advances have dramatically increased the power and scope of structural biology. New developments in high-resolution cryo-electron microscopy, serial X-ray crystallography, and electron diffraction have been especially transformative. Here we highlight some of the latest advances and current challenges at the frontiers of atomic resolution methods for elucidating the structures and dynamical properties of macromolecules and their complexes.
Collapse
Affiliation(s)
- Michael C. Thompson
- Department of Chemistry and Chemical Biology, University of California, Merced, CA, USA
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA
| | - Jose A. Rodriguez
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA
| |
Collapse
|
19
|
Steyaert J, Yeates TO. Editorial overview: Engineered proteins as tools in structural biology. Curr Opin Struct Biol 2020; 60:v-vi. [DOI: 10.1016/j.sbi.2020.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|