1
|
Hibshman GN, Taylor DW. Structural basis for a dual-function type II-B CRISPR-Cas9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.22.619592. [PMID: 39990493 PMCID: PMC11844402 DOI: 10.1101/2024.10.22.619592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Cas9 from Streptococcus pyogenes (SpCas9) revolutionized genome editing by enabling programmable DNA cleavage guided by an RNA. However, SpCas9 tolerates mismatches in the DNA-RNA duplex, which can lead to deleterious off-target editing. Here, we reveal that Cas9 from Francisella novicida (FnCas9) possesses a unique structural feature-the REC3 clamp-that underlies its intrinsic high-fidelity DNA targeting. Through kinetic and structural analyses, we show that the REC3 clamp forms critical contacts with the PAM-distal region of the R-loop, thereby imposing a novel checkpoint during enzyme activation. Notably, F. novicida encodes a non-canonical small CRISPR-associated RNA (scaRNA) that enables FnCas9 to repress an endogenous bacterial lipoprotein gene, subverting host immune detection. Structures of FnCas9 with scaRNA illustrate how partial R-loop complementarity hinders REC3 clamp docking and prevents cleavage in favor of transcriptional repression. The REC3 clamp is conserved in type II-B CRISPR-Cas9 systems, pointing to a potential path for engineering precise genome editors or developing novel antibacterial strategies. These findings reveal the dual mechanisms of high specificity and virulence by FnCas9, with broad implications for biotechnology and therapeutic development.
Collapse
|
2
|
Tan YY, Liew YY, Lee RRQ, Castel B, Chan NM, Wan WL, Zhang Y, Hu D, Chan P, Kim ST, Chae E. Generation of Inheritable A-to-G Transitions Using Adenine Base Editing and NG-PAM Cas9 in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:30-42. [PMID: 39585742 DOI: 10.1094/mpmi-10-24-0127-ta] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Towards precise genome editing, base editors have been developed by fusing catalytically compromised Cas9 with deaminase components, mediating C-to-T (cytosine base editors) or A-to-G (adenine base editors) transition. We developed a set of vectors consisting of a 5'-NG-3' PAM-recognizing variant of SpCas9 with adenosine deaminases TadA7.10 or TadA8e. Using a phenotype-based screen in Arabidopsis thaliana targeting multiple PDS3 intron splice sites, we achieved up to 81% somatic A-to-G editing in primary transformants at a splice acceptor site with NGG PAM, while 35% was achieved for the same target adenine with NGA PAM. Among tested vectors, pECNUS4 (Addgene #184887), carrying TadA8e, showed the highest adenine base editor (ABE) efficiency. With pECNUS4, we recreated a naturally occurring allele of DANGEROUS MIX3 (DM3) in two generations, transgene-free, for NGC PAM. We also simultaneously base-edited four redundant DM1/SSI4 homologs, encoding nucleotide-binding leucine-rich repeat (NLR) proteins, using a single gRNA with NGA PAM targeting the conserved yet functionally crucial P-loop motif of NLR proteins. We found fixation of A-to-G in three NLR genes for all three possible adenine sites within base-editing window 3-9, as the edited genes segregate in T2. Multigene targeting succeeded in rescuing the previously reported autoimmune phenotype in two generations. Mediating desired ABE on seven NLR genes simultaneously was successful as well; above 77% editing was achieved in six of the seven possible targets in a T1 plant, with the remaining having a moderately high (32%) editing. ABE application to specifically inactivate functional motifs is anticipated to expedite the discovery of novel roles for proteins. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Yi Yun Tan
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Yin Yin Liew
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Rachelle R Q Lee
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Baptiste Castel
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Nga Man Chan
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Wei-Lin Wan
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Yizhong Zhang
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Donghui Hu
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Persis Chan
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Sang-Tae Kim
- Department of Medical & Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
3
|
Kiernan K, Kwon J, Merrill B, Simonović M. Structural basis of Cas9 DNA interrogation with a 5' truncated sgRNA. Nucleic Acids Res 2025; 53:gkae1164. [PMID: 39657754 PMCID: PMC11724282 DOI: 10.1093/nar/gkae1164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
The efficiency and accuracy of CRISPR-Cas9 targeting varies considerably across genomic targets and remains a persistent issue for using this system in cells. Studies have shown that the use of 5' truncated single guide RNAs (sgRNAs) can reduce the rate of unwanted off-target recognition while still maintaining on-target specificity. However, it is not well-understood how reducing target complementarity enhances specificity or how truncation past 15 nucleotides (nts) prevents full Cas9 activation without compromising on-target binding. Here, we use biochemistry and cryogenic electron microscopy to investigate Cas9 structure and activity when bound to a 14-nt sgRNA. Our structures reveal that the shortened path of the displaced non-target strand (NTS) sterically occludes docking of the HNH L1 linker and prevents proper positioning of the nuclease domains. We show that cleavage inhibition can be alleviated by either artificially melting the protospacer adjacent motif (PAM)-distal duplex or providing a supercoiled substrate. Even though Cas9 forms a stable complex with its target, we find that plasmid cleavage is ∼1000-fold slower with a 14-nt sgRNA than with a full-length 20-nt sgRNA. Our results provide a structural basis for Cas9 target binding with 5' truncated sgRNAs and underline the importance of PAM-distal NTS availability in promoting Cas9 activation.
Collapse
Affiliation(s)
- Kaitlyn A Kiernan
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, 900 S Ashland Ave, Chicago, IL 60607, USA
| | - Jieun Kwon
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, 900 S Ashland Ave, Chicago, IL 60607, USA
| | - Bradley J Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, 900 S Ashland Ave, Chicago, IL 60607, USA
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, 900 S Ashland Ave, Chicago, IL 60607, USA
| |
Collapse
|
4
|
Hiraizumi M, Perry NT, Durrant MG, Soma T, Nagahata N, Okazaki S, Athukoralage JS, Isayama Y, Pai JJ, Pawluk A, Konermann S, Yamashita K, Hsu PD, Nishimasu H. Structural mechanism of bridge RNA-guided recombination. Nature 2024; 630:994-1002. [PMID: 38926616 PMCID: PMC11208158 DOI: 10.1038/s41586-024-07570-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
Insertion sequence (IS) elements are the simplest autonomous transposable elements found in prokaryotic genomes1. We recently discovered that IS110 family elements encode a recombinase and a non-coding bridge RNA (bRNA) that confers modular specificity for target DNA and donor DNA through two programmable loops2. Here we report the cryo-electron microscopy structures of the IS110 recombinase in complex with its bRNA, target DNA and donor DNA in three different stages of the recombination reaction cycle. The IS110 synaptic complex comprises two recombinase dimers, one of which houses the target-binding loop of the bRNA and binds to target DNA, whereas the other coordinates the bRNA donor-binding loop and donor DNA. We uncovered the formation of a composite RuvC-Tnp active site that spans the two dimers, positioning the catalytic serine residues adjacent to the recombination sites in both target and donor DNA. A comparison of the three structures revealed that (1) the top strands of target and donor DNA are cleaved at the composite active sites to form covalent 5'-phosphoserine intermediates, (2) the cleaved DNA strands are exchanged and religated to create a Holliday junction intermediate, and (3) this intermediate is subsequently resolved by cleavage of the bottom strands. Overall, this study reveals the mechanism by which a bispecific RNA confers target and donor DNA specificity to IS110 recombinases for programmable DNA recombination.
Collapse
Affiliation(s)
- Masahiro Hiraizumi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Nicholas T Perry
- Arc Institute, Palo Alto, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | - Teppei Soma
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Naoto Nagahata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Sae Okazaki
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | | - Yukari Isayama
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | | | | - Silvana Konermann
- Arc Institute, Palo Alto, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Keitaro Yamashita
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Patrick D Hsu
- Arc Institute, Palo Alto, CA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
| | - Hiroshi Nishimasu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
- Inamori Research Institute for Science, Kyoto, Japan.
| |
Collapse
|
5
|
Bhattacharya S, Agarwal A, Muniyappa K. Deciphering the Substrate Specificity Reveals that CRISPR-Cas12a Is a Bifunctional Enzyme with Both Endo- and Exonuclease Activities. J Mol Biol 2024; 436:168550. [PMID: 38575054 DOI: 10.1016/j.jmb.2024.168550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
The class 2 CRISPR-Cas9 and CRISPR-Cas12a systems, originally described as adaptive immune systems of bacteria and archaea, have emerged as versatile tools for genome-editing, with applications in biotechnology and medicine. However, significantly less is known about their substrate specificity, but such knowledge may provide instructive insights into their off-target cleavage and previously unrecognized mechanism of action. Here, we document that the Acidaminococcus sp. Cas12a (AsCas12a) binds preferentially, and independently of crRNA, to a suite of branched DNA structures, such as the Holliday junction (HJ), replication fork and D-loops, compared with single- or double-stranded DNA, and promotes their degradation. Further, our study revealed that AsCas12a binds to the HJ, specifically at the crossover region, protects it from DNase I cleavage and renders a pair of thymine residues in the HJ homologous core hypersensitive to KMnO4 oxidation, suggesting DNA melting and/or distortion. Notably, these structural changes enabled AsCas12a to resolve HJ into nonligatable intermediates, and subsequently their complete degradation. We further demonstrate that crRNA impedes HJ cleavage by AsCas12a, and that of Lachnospiraceae bacterium Cas12a, without affecting their DNA-binding ability. We identified a separation-of-function variant, which uncouples DNA-binding and DNA cleavage activities of AsCas12a. Importantly, we found robust evidence that AsCas12a endonuclease also has 3'-to-5' and 5'-to-3' exonuclease activity, and that these two activities synergistically promote degradation of DNA, yielding di- and mononucleotides. Collectively, this study significantly advances knowledge about the substrate specificity of AsCas12a and provides important insights into the degradation of different types of DNA substrates.
Collapse
Affiliation(s)
- Supreet Bhattacharya
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Ankit Agarwal
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
6
|
Yuan YG, Liu SZ, Farhab M, Lv MY, Zhang T, Cao SX. Genome editing: An insight into disease resistance, production efficiency, and biomedical applications in livestock. Funct Integr Genomics 2024; 24:81. [PMID: 38709433 DOI: 10.1007/s10142-024-01364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
One of the primary concerns for the survival of the human species is the growing demand for food brought on by an increasing global population. New developments in genome-editing technology present promising opportunities for the growth of wholesome and prolific farm animals. Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. Genome editing entails modifying genetic material by removing, adding, or manipulating particular DNA sequences from a particular locus in a way that does not happen naturally. The three primary genome editors are CRISPR/Cas 9, TALENs, and ZFNs. Each of these enzymes is capable of precisely severing nuclear DNA at a predetermined location. One of the most effective inventions is base editing, which enables single base conversions without the requirement for a DNA double-strand break (DSB). As reliable methods for precise genome editing in studies involving animals, cytosine and adenine base editing are now well-established. Effective zygote editing with both cytosine and adenine base editors (ABE) has resulted in the production of animal models. Both base editors produced comparable outcomes for the precise editing of point mutations in somatic cells, advancing the field of gene therapy. This review focused on the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of ZFNs, TALENs, and CRISPR/Cas9 base editors, and prime editing in diverse lab and farm animals. Additionally, we address the methodologies that can be used for gene regulation, base editing, and epigenetic alterations, as well as the significance of genome editing in animal models to better reflect real disease. We also look at methods designed to increase the effectiveness and precision of gene editing tools. Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. This review is an overview of the existing knowledge of the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of zinc finger nucleases (ZFNs), transcription-activator-like endonucleases (TALENs), and clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR/Cas 9), base editors and prime editing in diverse lab and farm animals, which will offer better and healthier products for the entire human race.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Song-Zi Liu
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Muhammad Farhab
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Mei-Yun Lv
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ting Zhang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212499, China
| | - Shao-Xiao Cao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Jiangsu Provincial Engineering Research Center for Precision animal Breeding, Nanjing, 210014, China
| |
Collapse
|
7
|
Pedrazzoli E, Demozzi M, Visentin E, Ciciani M, Bonuzzi I, Pezzè L, Lucchetta L, Maule G, Amistadi S, Esposito F, Lupo M, Miccio A, Auricchio A, Casini A, Segata N, Cereseto A. CoCas9 is a compact nuclease from the human microbiome for efficient and precise genome editing. Nat Commun 2024; 15:3478. [PMID: 38658578 PMCID: PMC11043407 DOI: 10.1038/s41467-024-47800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
The expansion of the CRISPR-Cas toolbox is highly needed to accelerate the development of therapies for genetic diseases. Here, through the interrogation of a massively expanded repository of metagenome-assembled genomes, mostly from human microbiomes, we uncover a large variety (n = 17,173) of type II CRISPR-Cas loci. Among these we identify CoCas9, a strongly active and high-fidelity nuclease with reduced molecular size (1004 amino acids) isolated from an uncultivated Collinsella species. CoCas9 is efficiently co-delivered with its sgRNA through adeno associated viral (AAV) vectors, obtaining efficient in vivo editing in the mouse retina. With this study we uncover a collection of previously uncharacterized Cas9 nucleases, including CoCas9, which enriches the genome editing toolbox.
Collapse
Affiliation(s)
- Eleonora Pedrazzoli
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Michele Demozzi
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Elisabetta Visentin
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Matteo Ciciani
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Ilaria Bonuzzi
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | | | - Lorenzo Lucchetta
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Giulia Maule
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Simone Amistadi
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
- Université de Paris, Imagine Institute, Laboratory of chromatin and gene regulation during development, INSERM, UMR 1163, Paris, France
| | - Federica Esposito
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli (NA), Italy
| | - Mariangela Lupo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli (NA), Italy
| | - Annarita Miccio
- Université de Paris, Imagine Institute, Laboratory of chromatin and gene regulation during development, INSERM, UMR 1163, Paris, France
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli (NA), Italy
- Medical Genetics, Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131, Naples, Italy
| | | | - Nicola Segata
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| | - Anna Cereseto
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| |
Collapse
|
8
|
Del Moral-Sánchez I, Wee EG, Xian Y, Lee WH, Allen JD, Torrents de la Peña A, Fróes Rocha R, Ferguson J, León AN, Koekkoek S, Schermer EE, Burger JA, Kumar S, Zwolsman R, Brinkkemper M, Aartse A, Eggink D, Han J, Yuan M, Crispin M, Ozorowski G, Ward AB, Wilson IA, Hanke T, Sliepen K, Sanders RW. Triple tandem trimer immunogens for HIV-1 and influenza nucleic acid-based vaccines. NPJ Vaccines 2024; 9:74. [PMID: 38582771 PMCID: PMC10998906 DOI: 10.1038/s41541-024-00862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/14/2024] [Indexed: 04/08/2024] Open
Abstract
Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design, in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies.
Collapse
Affiliation(s)
- Iván Del Moral-Sánchez
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Edmund G Wee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yuejiao Xian
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Alba Torrents de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rebeca Fróes Rocha
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - James Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - André N León
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sylvie Koekkoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Edith E Schermer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Sanjeev Kumar
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Robby Zwolsman
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Mitch Brinkkemper
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Aafke Aartse
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
9
|
Tenjo-Castaño F, Montoya G, Carabias A. Transposons and CRISPR: Rewiring Gene Editing. Biochemistry 2023; 62:3521-3532. [PMID: 36130724 PMCID: PMC10734217 DOI: 10.1021/acs.biochem.2c00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Indexed: 11/30/2022]
Abstract
CRISPR-Cas is driving a gene editing revolution because of its simple reprogramming. However, off-target effects and dependence on the double-strand break repair pathways impose important limitations. Because homology-directed repair acts primarily in actively dividing cells, many of the current gene correction/replacement approaches are restricted to a minority of cell types. Furthermore, current approaches display low efficiency upon insertion of large DNA cargos (e.g., sequences containing multiple gene circuits with tunable functionalities). Recent research has revealed new links between CRISPR-Cas systems and transposons providing new scaffolds that might overcome some of these limitations. Here, we comment on two new transposon-associated RNA-guided mechanisms considering their potential as new gene editing solutions. Initially, we focus on a group of small RNA-guided endonucleases of the IS200/IS605 family of transposons, which likely evolved into class 2 CRISPR effector nucleases (Cas9s and Cas12s). We explore the diversity of these nucleases (named OMEGA, obligate mobile element-guided activity) and analyze their similarities with class 2 gene editors. OMEGA nucleases can perform gene editing in human cells and constitute promising candidates for the design of new compact RNA-guided platforms. Then, we address the co-option of the RNA-guided activity of different CRISPR effector nucleases by a specialized group of Tn7-like transposons to target transposon integration. We describe the various mechanisms used by these RNA-guided transposons for target site selection and integration. Finally, we assess the potential of these new systems to circumvent some of the current gene editing challenges.
Collapse
Affiliation(s)
- Francisco Tenjo-Castaño
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| | - Arturo Carabias
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| |
Collapse
|
10
|
Zhang YR, Yin TL, Zhou LQ. CRISPR/Cas9 technology: applications in oocytes and early embryos. J Transl Med 2023; 21:746. [PMID: 37875936 PMCID: PMC10594749 DOI: 10.1186/s12967-023-04610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
CRISPR/Cas9, a highly versatile genome-editing tool, has garnered significant attention in recent years. Despite the unique characteristics of oocytes and early embryos compared to other cell types, this technology has been increasing used in mammalian reproduction. In this comprehensive review, we elucidate the fundamental principles of CRISPR/Cas9-related methodologies and explore their wide-ranging applications in deciphering molecular intricacies during oocyte and early embryo development as well as in addressing associated diseases. However, it is imperative to acknowledge the limitations inherent to these technologies, including the potential for off-target effects, as well as the ethical concerns surrounding the manipulation of human embryos. Thus, a judicious and thoughtful approach is warranted. Regardless of these challenges, CRISPR/Cas9 technology undeniably represents a formidable tool for genome and epigenome manipulation within oocytes and early embryos. Continuous refinements in this field are poised to fortify its future prospects and applications.
Collapse
Affiliation(s)
- Yi-Ran Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tai-Lang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China.
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Ravichandran M, Maddalo D. Applications of CRISPR-Cas9 for advancing precision medicine in oncology: from target discovery to disease modeling. Front Genet 2023; 14:1273994. [PMID: 37908590 PMCID: PMC10613999 DOI: 10.3389/fgene.2023.1273994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system is a powerful tool that enables precise and efficient gene manipulation. In a relatively short time, CRISPR has risen to become the preferred gene-editing system due to its high efficiency, simplicity, and programmability at low costs. Furthermore, in the recent years, the CRISPR toolkit has been rapidly expanding, and the emerging advancements have shown tremendous potential in uncovering molecular mechanisms and new therapeutic strategies for human diseases. In this review, we provide our perspectives on the recent advancements in CRISPR technology and its impact on precision medicine, ranging from target identification, disease modeling, and diagnostics. We also discuss the impact of novel approaches such as epigenome, base, and prime editing on preclinical cancer drug discovery.
Collapse
Affiliation(s)
- Mirunalini Ravichandran
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA, United States
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
12
|
Zhang L, He W, Fu R, Wang S, Chen Y, Xu H. Guide-specific loss of efficiency and off-target reduction with Cas9 variants. Nucleic Acids Res 2023; 51:9880-9893. [PMID: 37615574 PMCID: PMC10570041 DOI: 10.1093/nar/gkad702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
High-fidelity clustered regularly interspaced palindromic repeats (CRISPR)-associated protein 9 (Cas9) variants have been developed to reduce the off-target effects of CRISPR systems at a cost of efficiency loss. To systematically evaluate the efficiency and off-target tolerance of Cas9 variants in complex with different single guide RNAs (sgRNAs), we applied high-throughput viability screens and a synthetic paired sgRNA-target system to assess thousands of sgRNAs in combination with two high-fidelity Cas9 variants HiFi and LZ3. Comparing these variants against wild-type SpCas9, we found that ∼20% of sgRNAs are associated with a significant loss of efficiency when complexed with either HiFi or LZ3. The loss of efficiency is dependent on the sequence context in the seed region of sgRNAs, as well as at positions 15-18 in the non-seed region that interacts with the REC3 domain of Cas9, suggesting that the variant-specific mutations in the REC3 domain account for the loss of efficiency. We also observed various degrees of sequence-dependent off-target reduction when different sgRNAs are used in combination with the variants. Given these observations, we developed GuideVar, a transfer learning-based computational framework for the prediction of on-target efficiency and off-target effects with high-fidelity variants. GuideVar facilitates the prioritization of sgRNAs in the applications with HiFi and LZ3, as demonstrated by the improvement of signal-to-noise ratios in high-throughput viability screens using these high-fidelity variants.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei He
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rongjie Fu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuyue Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Xu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
13
|
Shi L, Su J, Cho MJ, Song H, Dong X, Liang Y, Zhang Z. Promoter editing for the genetic improvement of crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4349-4366. [PMID: 37204916 DOI: 10.1093/jxb/erad175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/06/2023] [Indexed: 05/21/2023]
Abstract
Gene expression plays a fundamental role in the regulation of agronomically important traits in crop plants. The genetic manipulation of plant promoters through genome editing has emerged as an effective strategy to create favorable traits in crops by altering the expression pattern of the pertinent genes. Promoter editing can be applied in a directed manner, where nucleotide sequences associated with favorable traits are precisely generated. Alternatively, promoter editing can also be exploited as a random mutagenic approach to generate novel genetic variations within a designated promoter, from which elite alleles are selected based on their phenotypic effects. Pioneering studies have demonstrated the potential of promoter editing in engineering agronomically important traits as well as in mining novel promoter alleles valuable for plant breeding. In this review, we provide an update on the application of promoter editing in crops for increased yield, enhanced tolerance to biotic and abiotic stresses, and improved quality. We also discuss several remaining technical bottlenecks and how this strategy may be better employed for the genetic improvement of crops in the future.
Collapse
Affiliation(s)
- Lu Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
| | - Myeong-Je Cho
- Innovative Genomics Institute, University of California, Berkeley, CA 94704, USA
| | - Hao Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Ying Liang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhiyong Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
14
|
Stampone E, Bencivenga D, Capellupo MC, Roberti D, Tartaglione I, Perrotta S, Della Ragione F, Borriello A. Genome editing and cancer therapy: handling the hypoxia-responsive pathway as a promising strategy. Cell Mol Life Sci 2023; 80:220. [PMID: 37477829 PMCID: PMC10361942 DOI: 10.1007/s00018-023-04852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023]
Abstract
The precise characterization of oxygen-sensing pathways and the identification of pO2-regulated gene expression are both issues of critical importance. The O2-sensing system plays crucial roles in almost all the pivotal human processes, including the stem cell specification, the growth and development of tissues (such as embryogenesis), the modulation of intermediate metabolism (including the shift of the glucose metabolism from oxidative to anaerobic ATP production and vice versa), and the control of blood pressure. The solid cancer microenvironment is characterized by low oxygen levels and by the consequent activation of the hypoxia response that, in turn, allows a complex adaptive response characterized mainly by neoangiogenesis and metabolic reprogramming. Recently, incredible advances in molecular genetic methodologies allowed the genome editing with high efficiency and, above all, the precise identification of target cells/tissues. These new possibilities and the knowledge of the mechanisms of adaptation to hypoxia suggest the effective development of new therapeutic approaches based on the manipulation, targeting, and exploitation of the oxygen-sensor system molecular mechanisms.
Collapse
Affiliation(s)
- Emanuela Stampone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Maria Chiara Capellupo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Domenico Roberti
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Immacolata Tartaglione
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Silverio Perrotta
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy.
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy.
| |
Collapse
|
15
|
Zhang L, He W, Fu R, Xu H. Guide-specific loss of efficiency and off-target reduction with Cas9 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532856. [PMID: 36993488 PMCID: PMC10055116 DOI: 10.1101/2023.03.16.532856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
High-fidelity Cas9 variants have been developed to reduce the off-target effects of CRISPR systems at a cost of efficiency loss. To systematically evaluate the efficiency and off-target tolerance of Cas9 variants in complex with different single guide RNAs (sgRNAs), we applied high-throughput viability screens and a synthetic paired sgRNA-target system to assess thousands of sgRNAs in combination with two high-fidelity Cas9 variants HiFi and LZ3. Comparing these variants against WT SpCas9, we found that ~20% of sgRNAs are associated with a significant loss of efficiency when complexed with either HiFi or LZ3. The loss of efficiency is dependent on the sequence context in the seed region of sgRNAs, as well as at positions 15-18 in the non-seed region that interacts with the REC3 domain of Cas9, suggesting that the variant-specific mutations in REC3 domain account for the loss of efficiency. We also observed various degrees of sequencedependent off-target reduction when different sgRNAs are used in combination with the variants. Given these observations, we developed GuideVar, a transfer-learning-based computational framework for the prediction of on-target efficiency and off-target effect with high-fidelity variants. GuideVar facilitates the prioritization of sgRNAs in the applications with HiFi and LZ3, as demonstrated by the improvement of signal-to-noise ratios in high-throughput viability screens using these high-fidelity variants.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wei He
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rongjie Fu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Han Xu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
16
|
The genome editing revolution. Trends Biotechnol 2023; 41:396-409. [PMID: 36709094 DOI: 10.1016/j.tibtech.2022.12.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023]
Abstract
A series of spectacular scientific discoveries and technological advances in the second half of the 20th century have provided the basis for the ongoing genome editing revolution. The elucidation of structural and functional features of DNA and RNA was followed by pioneering studies on genome editing: Molecular biotechnology was born. Since then, four decades followed during which progress of scientific insights and technological methods continued at an overwhelming pace. Fundamental insights into microbial host-virus interactions led to the development of tools for genome editing using restriction enzymes or the revolutionary CRISPR-Cas technology. In this review, we provide a historical overview of milestones that led to the genome editing revolution and speculate about future trends in biotechnology.
Collapse
|
17
|
Bravo JP, Hibshman GN, Taylor DW. Constructing next-generation CRISPR-Cas tools from structural blueprints. Curr Opin Biotechnol 2022; 78:102839. [PMID: 36371895 DOI: 10.1016/j.copbio.2022.102839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022]
Abstract
Clustered regularly interspaced short palindromic repeats - CRISPR-associated protein (CRISPR-Cas) systems are a critical component of the bacterial adaptive immune response. Since the discovery that they can be reengineered as programmable RNA-guided nucleases, there has been significant interest in using these systems to perform diverse and precise genetic manipulations. Here, we outline recent advances in the mechanistic understanding of CRISPR-Cas9, how these findings have been leveraged in the rational redesign of Cas9 variants with altered activities, and how these novel tools can be exploited for biotechnology and therapeutics. We also discuss the potential of the ubiquitous, yet often-overlooked, multisubunit CRISPR effector complexes for large-scale genomic deletions. Furthermore, we highlight how future structural studies will bolster these technologies.
Collapse
Affiliation(s)
- Jack Pk Bravo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| | - Grace N Hibshman
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX, USA
| | - David W Taylor
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA; Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA; Livestrong Cancer Institutes, Dell Medical School, Austin, TX, USA
| |
Collapse
|
18
|
Tan J, Forner J, Karcher D, Bock R. DNA base editing in nuclear and organellar genomes. Trends Genet 2022; 38:1147-1169. [PMID: 35853769 DOI: 10.1016/j.tig.2022.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/12/2022] [Accepted: 06/24/2022] [Indexed: 01/24/2023]
Abstract
Genome editing continues to revolutionize biological research. Due to its simplicity and flexibility, CRISPR/Cas-based editing has become the preferred technology in most systems. Cas nucleases tolerate fusion to large protein domains, thus allowing combination of their DNA recognition properties with new enzymatic activities. Fusion to nucleoside deaminase or reverse transcriptase domains has produced base editors and prime editors that, instead of generating double-strand breaks in the target sequence, induce site-specific alterations of single (or a few adjacent) nucleotides. The availability of protein-only genome editing reagents based on transcription activator-like effectors has enabled the extension of base editing to the genomes of chloroplasts and mitochondria. In this review, we summarize currently available base editing methods for nuclear and organellar genomes. We highlight recent advances with improving precision, specificity, and efficiency and discuss current limitations and future challenges. We also provide a brief overview of applications in agricultural biotechnology and gene therapy.
Collapse
Affiliation(s)
- Junjie Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Innovation Center for Genome Editing and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Joachim Forner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
19
|
Structural rearrangements allow nucleic acid discrimination by type I-D Cascade. Nat Commun 2022; 13:2829. [PMID: 35595728 PMCID: PMC9123187 DOI: 10.1038/s41467-022-30402-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/27/2022] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems are adaptive immune systems that protect prokaryotes from foreign nucleic acids, such as bacteriophages. Two of the most prevalent CRISPR-Cas systems include type I and type III. Interestingly, the type I-D interference proteins contain characteristic features of both type I and type III systems. Here, we present the structures of type I-D Cascade bound to both a double-stranded (ds)DNA and a single-stranded (ss)RNA target at 2.9 and 3.1 Å, respectively. We show that type I-D Cascade is capable of specifically binding ssRNA and reveal how PAM recognition of dsDNA targets initiates long-range structural rearrangements that likely primes Cas10d for Cas3′ binding and subsequent non-target strand DNA cleavage. These structures allow us to model how binding of the anti-CRISPR protein AcrID1 likely blocks target dsDNA binding via competitive inhibition of the DNA substrate engagement with the Cas10d active site. This work elucidates the unique mechanisms used by type I-D Cascade for discrimination of single-stranded and double stranded targets. Thus, our data supports a model for the hybrid nature of this complex with features of type III and type I systems. I-D CRISPR-Cascade can target both single-stranded and double-stranded nucleic acids. Here, Schwartz et. al determine these structures and reveal large-scale rearrangements that allow for target discrimination and destruction.
Collapse
|
20
|
Sun W, Wang Y. SuperFi-Cas9: High Fidelity Meets High Activity. CRISPR J 2022; 5:171-173. [PMID: 35438514 DOI: 10.1089/crispr.2022.29146.ywa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Wei Sun
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanli Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Bravo JPK, Liu MS, Hibshman GN, Dangerfield TL, Jung K, McCool RS, Johnson KA, Taylor DW. Structural basis for mismatch surveillance by CRISPR–Cas9. Nature 2022. [DOI: 10.1038/s41586-022-04470-1 (2022)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractCRISPR–Cas9 as a programmable genome editing tool is hindered by off-target DNA cleavage1–4, and the underlying mechanisms by which Cas9 recognizes mismatches are poorly understood5–7. Although Cas9 variants with greater discrimination against mismatches have been designed8–10, these suffer from substantially reduced rates of on-target DNA cleavage5,11. Here we used kinetics-guided cryo-electron microscopy to determine the structure of Cas9 at different stages of mismatch cleavage. We observed a distinct, linear conformation of the guide RNA–DNA duplex formed in the presence of mismatches, which prevents Cas9 activation. Although the canonical kinked guide RNA–DNA duplex conformation facilitates DNA cleavage, we observe that substrates that contain mismatches distal to the protospacer adjacent motif are stabilized by reorganization of a loop in the RuvC domain. Mutagenesis of mismatch-stabilizing residues reduces off-target DNA cleavage but maintains rapid on-target DNA cleavage. By targeting regions that are exclusively involved in mismatch tolerance, we provide a proof of concept for the design of next-generation high-fidelity Cas9 variants.
Collapse
|
22
|
Bravo JPK, Liu MS, Hibshman GN, Dangerfield TL, Jung K, McCool RS, Johnson KA, Taylor DW. Structural basis for mismatch surveillance by CRISPR-Cas9. Nature 2022; 603:343-347. [PMID: 35236982 PMCID: PMC8907077 DOI: 10.1038/s41586-022-04470-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/25/2022] [Indexed: 11/09/2022]
Abstract
CRISPR-Cas9 as a programmable genome editing tool is hindered by off-target DNA cleavage1-4, and the underlying mechanisms by which Cas9 recognizes mismatches are poorly understood5-7. Although Cas9 variants with greater discrimination against mismatches have been designed8-10, these suffer from substantially reduced rates of on-target DNA cleavage5,11. Here we used kinetics-guided cryo-electron microscopy to determine the structure of Cas9 at different stages of mismatch cleavage. We observed a distinct, linear conformation of the guide RNA-DNA duplex formed in the presence of mismatches, which prevents Cas9 activation. Although the canonical kinked guide RNA-DNA duplex conformation facilitates DNA cleavage, we observe that substrates that contain mismatches distal to the protospacer adjacent motif are stabilized by reorganization of a loop in the RuvC domain. Mutagenesis of mismatch-stabilizing residues reduces off-target DNA cleavage but maintains rapid on-target DNA cleavage. By targeting regions that are exclusively involved in mismatch tolerance, we provide a proof of concept for the design of next-generation high-fidelity Cas9 variants.
Collapse
Affiliation(s)
- Jack P K Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Mu-Sen Liu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Grace N Hibshman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, USA
| | - Tyler L Dangerfield
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, USA
| | - Kyungseok Jung
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Ryan S McCool
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, USA
| | - Kenneth A Johnson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, USA.
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
23
|
Advances in engineering and synthetic biology toward improved therapeutic immune cells. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|