1
|
Diaz MC, Oses C, Vázquez Lareu A, Roberti SL, Guberman AS, Levi V. A Simple Method for Generating Light-induced Clusters of Transcription Factors: Effects on the Nuclear Distribution of OCT4 and on its Interactions With Chromatin. J Mol Biol 2025; 437:169118. [PMID: 40174669 DOI: 10.1016/j.jmb.2025.169118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
In recent years, a wealth of evidence revealed that many transcription-related molecules concentrate in membrane less nuclear compartments which are now recognized as relevant for transcription regulation. However, many aspects of this relationship remain unclear partly due to the experimental challenges of manipulating the distribution of transcription factors (TFs) in a controlled fashion. Here, we introduce a simple procedure to generate in live cells light-induced clusters (LICs) of TFs labeled with Janelia Fluor® probes through the HaloTag. When irradiated with the appropriate laser, the photooxidation/photobleaching of fluorescent molecules leads to the formation of a cluster which grows by incorporating other TF molecules, some through weak interactions. While the method was mostly tested with OCT4, other TFs such as SOX2 and the hormone-stimulated glucocorticoid receptor also form LICs. Relevantly, the inactive receptor in stem cells fails to form LICs suggesting that the process requires certain TF conformations and/or cellular contexts. Finally, we show that the recruitment of OCT4 to large LICs lowers its nucleoplasmic concentration and modifies both the overall distribution of the TF and its interactions with chromatin. In contrast, the generation of smaller LICs triggers the dissolution of nearby natural condensates of OCT4 but does not affect its nucleoplasmic concentration and OCT4-chromatin interactions. These results suggest that OCT4 condensates act as reservoirs, buffering variations in the nucleoplasmic concentration of this TF. This new method could be a valuable tool for exploring the relation between TFs distribution, landscape of interactions with chromatin and transcriptional output.
Collapse
Affiliation(s)
- Maria Candelaria Diaz
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Alejo Vázquez Lareu
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Sabrina Lorena Roberti
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Alejandra Sonia Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires C1428EGA, Argentina
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
2
|
Lei I, Sicim H, Gao W, Huang W, Noly PE, Pergande MR, Wilson MC, Lee A, Liu L, Abou El Ela A, Jiang M, Saddoughi SA, Pober JS, Platt JL, Cascalho M, Pagani FD, Chen YE, Pitt B, Wang Z, Mortensen RM, Ge Y, Tang PC. Mineralocorticoid receptor phase separation modulates cardiac preservation. NATURE CARDIOVASCULAR RESEARCH 2025:10.1038/s44161-025-00653-x. [PMID: 40389663 DOI: 10.1038/s44161-025-00653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/11/2025] [Indexed: 05/21/2025]
Abstract
Heart transplantation is the gold standard treatment for patients with end-stage heart failure. However, there is a shortage of donor hearts available. The short tolerable cold ischemic time for delivering donor hearts to matching recipients is closely responsible for this shortage. Here we uncover the phenomenon of mineralocorticoid receptor (MR) phase separation, which exacerbates injury to the murine and human donor heart during cold storage and can be modulated with pharmacological inhibition to improve preservation quality. Interestingly, donor cardiomyocytes strongly expressed MR, which undergoes preservation-related phase separation. The phenomenon of macromolecular phase separation is not limited to the heart or MR during preservation. Cold preservation of the lung, liver and kidney also displays phase separation of other transcriptional regulators including histone deacetylase 1 (HDAC1), bromodomain-containing 4 (BRD4) and MR. Our results reveal an understudied area of preservation biology that may be further exploited to improve the preservation of multiple solid organs.
Collapse
Grants
- HL164416 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL166140 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL159871 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL134569 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL109946 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163672 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL139735 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL109810 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 930124 American Heart Association (American Heart Association, Inc.)
- GM135119 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U01-AI132895 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- AI151588 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- AI173950 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
Collapse
Affiliation(s)
- Ienglam Lei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MI, USA
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MI, USA
| | - Hüseyin Sicim
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MI, USA
| | - Wenbin Gao
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MI, USA
| | - Wei Huang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Melissa R Pergande
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, USA
| | - Mallory C Wilson
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Aurora Lee
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MI, USA
| | - Liu Liu
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ashraf Abou El Ela
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Mulan Jiang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Sahar A Saddoughi
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MI, USA
| | - Jordan S Pober
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Jeffrey L Platt
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Marilia Cascalho
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Francis D Pagani
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Bertram Pitt
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Zhong Wang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard M Mortensen
- Department of Molecular and Integrative Physiology, Internal Medicine, Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, USA
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Paul C Tang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MI, USA.
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA.
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MI, USA.
| |
Collapse
|
3
|
Naghilou A, Evers TMJ, Armbruster O, Satarifard V, Mashaghi A. Synthesis and Characterization of Phase-Separated Extracellular Condensates in Interactions with Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644961. [PMID: 40196562 PMCID: PMC11974749 DOI: 10.1101/2025.03.24.644961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Biomolecular condensates formed through liquid-liquid phase separation play key roles in intracellular organization and signaling, yet their function in extracellular environments remains largely unexplored. Here, we establish a model using heparan sulfate, a key component of the extracellular matrix, to study extracellular condensate-cell interactions. We demonstrate that heparan sulfate can form condensates with a positively charged counterpart in serum-containing solutions, mimicking the complexity of extracellular fluid, and supporting cell viability. We observe that these condensates adhere to cell membranes and remain stable, enabling a versatile platform for examining extracellular condensate dynamics and quantifying their rheological properties as well as their adhesion forces with cellular surfaces. Our findings and methodology open new avenues for understanding the organizational roles of condensates beyond cellular boundaries.
Collapse
|
4
|
Geller M, Cao Y, Simon C, Stielow B, Xu J, Wei P, Nist A, Rohner I, Jeude LM, Huber T, Stiewe T, Wang Z, Liefke R. Cooperation of a polymerizing SAM domain and an intrinsically disordered region enables full SAMD1 function on chromatin. Nucleic Acids Res 2025; 53:gkaf259. [PMID: 40183636 PMCID: PMC11969672 DOI: 10.1093/nar/gkaf259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/30/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
Transcription factors orchestrate gene expression through a myriad of complex mechanisms, encompassing collaborations with other transcription factors and the formation of multimeric complexes. The chromatin-binding protein SAMD1 [sterile alpha motif (SAM) domain-containing protein 1] binds to unmethylated CpG-rich DNA utilizing its N-terminal winged-helix (WH) domain. Additionally, its C-terminal SAM domain, which mediates interactions with itself and with L3MBTL3, is crucial for chromatin binding. The precise role of the SAM domain in this process remains unclear. Using structural analyses, we elucidated the distinct homopolymerization modes within the SAM domains of L3MBTL3 and SAMD1, alongside their heterodimerization architecture. Interestingly, SAMD1 necessitates not only the WH and SAM domain but also a proline/alanine-rich intrinsically disordered region (IDR) for efficient chromatin binding. The IDR is essential for the ability of SAMD1 to form large polymers, with its functionality determined by integrity rather than the specific sequence. Mutagenesis studies underscore the critical role of arginines within the IDR for polymerization, chromatin binding, and the biological function of SAMD1. These findings propose a model in which structured and unstructured regions of SAMD1 cooperate in a coordinated fashion to facilitate chromatin binding. This work provides new insights into the diverse mechanisms transcription factors employ to interact with chromatin and regulate gene expression.
Collapse
Affiliation(s)
- Merle Geller
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Yinghua Cao
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Clara Simon
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Bastian Stielow
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Jingfei Xu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Pengshuai Wei
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg 35043, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen 35392, Germany
| | - Iris Rohner
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Lea Marie Jeude
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Theresa Huber
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg 35043, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen 35392, Germany
| | - Zhanxin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
- Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, Marburg 35043, Germany
| |
Collapse
|
5
|
Fu Y, Yang X, Li S, Ma C, An Y, Cheng T, Liang Y, Sun S, Cheng T, Zhao Y, Wang J, Wang X, Xu P, Yin Y, Liang H, Liu N, Zou W, Chen B. Dynamic properties of transcriptional condensates modulate CRISPRa-mediated gene activation. Nat Commun 2025; 16:1640. [PMID: 39952932 PMCID: PMC11828908 DOI: 10.1038/s41467-025-56735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
CRISPR activation (CRISPRa) is a powerful tool for endogenous gene activation, yet the mechanisms underlying its optimal transcriptional activation remain unclear. By monitoring real-time transcriptional bursts, we find that CRISPRa modulates both burst duration and amplitude. Our quantitative imaging reveals that CRISPR-SunTag activators, with three tandem VP64-p65-Rta (VPR), form liquid-like transcriptional condensates and exhibit high activation potency. Although visible CRISPRa condensates are associated with some RNA bursts, the overall levels of phase separation do not correlate with transcriptional bursting or activation strength in individual cells. When the number of SunTag scaffolds is increased to 10 or more, solid-like condensates form, sequestering co-activators such as p300 and MED1. These condensates display low dynamicity and liquidity, resulting in ineffective gene activation. Overall, our studies characterize various phase-separated CRISPRa systems for gene activation, highlighting the foundational principles for engineering CRISPR-based programmable synthetic condensates with appropriate properties to effectively modulate gene expression.
Collapse
Affiliation(s)
- Yujuan Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xiaoxuan Yang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Sihui Li
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Chenyang Ma
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao An
- Center of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Cheng
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Liang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Shengbai Sun
- Center of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyi Cheng
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yongyang Zhao
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jianghu Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Xiaoyue Wang
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Pengfei Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yafei Yin
- Center of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqing Liang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Liu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
- Insititute of Translational Medicine, Zhejiang University, Hangzhou, China.
| | - Baohui Chen
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China.
| |
Collapse
|
6
|
Delaforge E, Due A, Theisen F, Morffy N, O’Shea C, Blackledge M, Strader L, Skriver K, Kragelund B. Allovalent scavenging of activation domains in the transcription factor ANAC013 gears transcriptional regulation. Nucleic Acids Res 2025; 53:gkaf065. [PMID: 39933695 PMCID: PMC11811731 DOI: 10.1093/nar/gkaf065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
Transcriptional regulation involves interactions between transcription factors, coregulators, and DNA. Intrinsic disorder is a major player in this regulation, but mechanisms driven by disorder remain elusive. Here, we address molecular communication within the stress-regulating Arabidopsis thaliana transcription factor ANAC013. Through high-throughput screening of ANAC013 for transcriptional activation activity, we identify three activation domains within its C-terminal intrinsically disordered region. Two of these overlap with acidic islands and form dynamic interactions with the DNA-binding domain and are released, not only upon binding of target promoter DNA, but also by nonspecific DNA. We show that independently of DNA binding, the RST (RCD--SRO--TAF4) domain of the negative regulator RCD1 (Radical-induced Cell Death1) scavenges the two acidic activation domains positioned vis-à-vis through allovalent binding, leading to dynamic occupation at enhanced affinity. We propose an allovalency model for transcriptional regulation, where sequentially close activation domains in both DNA-bound and DNA-free states allow for efficient regulation. The model is likely relevant for many transcription factor systems, explaining the functional advantage of carrying sequentially close activation domains.
Collapse
Affiliation(s)
- Elise Delaforge
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Linderstrøm-Lang Centre for Protein Science and Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Amanda D Due
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Linderstrøm-Lang Centre for Protein Science and Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Frederik Friis Theisen
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Linderstrøm-Lang Centre for Protein Science and Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Nicolas Morffy
- Department of Biology, Duke University, 27708 Durham, NC, United States
| | - Charlotte O’Shea
- Linderstrøm-Lang Centre for Protein Science and Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Martin Blackledge
- Université Grenoble Alpes, Le Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Lucia C Strader
- Department of Biology, Duke University, 27708 Durham, NC, United States
| | - Karen Skriver
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Linderstrøm-Lang Centre for Protein Science and Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Birthe B Kragelund
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Linderstrøm-Lang Centre for Protein Science and Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
7
|
Miao J, Chong S. Roles of intrinsically disordered protein regions in transcriptional regulation and genome organization. Curr Opin Genet Dev 2025; 90:102285. [PMID: 39631290 DOI: 10.1016/j.gde.2024.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
Eukaryotic transcription is a complex process regulated by transcription factors (TFs), coactivators, and RNA polymerase machineries, many of which contain sizable intrinsically disordered regions (IDRs). Many TFs activate transcription through multivalent IDR-IDR interactions. Optimal levels of such multivalent interactions associated with appropriate IDR concentrations, interaction strengths, or interaction valencies are required for effective transcriptional activation. The interaction selectivity of IDRs is crucial for the precise regulation of transcription, and this selectivity is dependent on the IDR sequences. Furthermore, IDRs modulate gene expression by bringing chromatin sites together to form transcriptionally active chromatin hubs. Mutations in IDRs may cause dysregulation of their multivalent interactions, contributing to diseases, including cancers and neurodegenerative disorders. Understanding the effects of IDR-related mutations on transcription control and genome organization opens new opportunities for developing targeted therapeutic strategies. In this review, we discuss recent reports documenting important functions of IDRs in transcriptional regulation and their implications for human health and disease.
Collapse
Affiliation(s)
- Jiapei Miao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shasha Chong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
8
|
Luo M, Zhu S, Dang H, Wen Q, Niu R, Long J, Wang Z, Tong Y, Ning Y, Yuan M, Xu G. Genetically-encoded targeted protein degradation technology to remove endogenous condensation-prone proteins and improve crop performance. Nat Commun 2025; 16:1159. [PMID: 39880812 PMCID: PMC11779824 DOI: 10.1038/s41467-025-56570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Effective modulation of gene expression in plants is achievable through tools like CRISPR and RNA interference, yet methods for directly modifying endogenous proteins remain lacking. Here, we identify the E3 ubiquitin ligase E3TCD1 and develope a Targeted Condensation-prone-protein Degradation (TCD) strategy. The X-E3TCD1 fusion protein acts as a genetically engineered degrader, selectively targeting endogenous proteins prone to condensation. For example, a transgenic E3TCD1 fusion with Teosinte branched 1 (TB1) degrades the native TB1 protein, resulting in increased tiller numbers in rice. Additionally, conditional degradation of the negative defense regulator Early Flowering 3 via a pathogen-responsive ProTBF1-uORFsTBF1 cassette enhances rice blast resistance without affecting flowering time in the absence of pathogen. Unlike prevailing targeted protein degradation strategies, the TCD system does not rely on small molecules, antibodies, or genetic knock-in fusion tags, demonstrating its promise as a transgene-based approach for optimizing crop performance.
Collapse
Affiliation(s)
- Ming Luo
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Sitao Zhu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Hua Dang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Qing Wen
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Jiawei Long
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- RNA Institute, Wuhan University, Wuhan, Hubei, China
| | - Yongjia Tong
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Yuan
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, China.
- RNA Institute, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Wagh K, Stavreva DA, Hager GL. Transcription dynamics and genome organization in the mammalian nucleus: Recent advances. Mol Cell 2025; 85:208-224. [PMID: 39413793 PMCID: PMC11741928 DOI: 10.1016/j.molcel.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
Single-molecule tracking (SMT) has emerged as the dominant technology to investigate the dynamics of chromatin-transcription factor (TF) interactions. How long a TF needs to bind to a regulatory site to elicit a transcriptional response is a fundamentally important question. However, highly divergent estimates of TF binding have been presented in the literature, stemming from differences in photobleaching correction and data analysis. TF movement is often interpreted as specific or non-specific association with chromatin, yet the dynamic nature of the chromatin polymer is often overlooked. In this perspective, we highlight how recent SMT studies have reshaped our understanding of TF dynamics, chromatin mobility, and genome organization in the mammalian nucleus, focusing on the technical details and biological implications of these approaches. In a remarkable convergence of fixed and live-cell imaging, we show how super-resolution and SMT studies of chromatin have dovetailed to provide a convincing nanoscale view of genome organization.
Collapse
Affiliation(s)
- Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Li J, Chen H, Bai L, Tang H. Utilizing liquid-liquid biopolymer regulators to predict the prognosis and drug sensitivity of hepatocellular carcinoma. Biol Direct 2025; 20:2. [PMID: 39762905 PMCID: PMC11705666 DOI: 10.1186/s13062-025-00592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Liquid-liquid phase separation (LLPS) is essential for the formation of membraneless organelles and significantly influences cellular compartmentalization, chromatin remodeling, and gene regulation. Previous research has highlighted the critical function of liquid-liquid biopolymers in the development of hepatocellular carcinoma (HCC). METHODS This study conducted a comprehensive review of 3,685 liquid-liquid biopolymer regulators, leading to the development of a LLPS related Prognostic Risk Score (LPRS) for HCC through bootstrap-based univariate Cox, Random Survival Forest (RSF), and LASSO analyses. A prognostic nomogram for HCC patients was developed using LPRS and other clinicopathological factors. We utilized SurvSHAP to identify key genes within the LPRS influencing HCC prognosis. To validate our findings, we collected 49 HCC cases along with adjacent tissue samples and confirmed the correlation between DCAF13 expression and HCC progression through qRT-PCR analysis and in vitro experiments. RESULTS LPRS was established with 8 LLPS-related genes (TXN, CBX2, DCAF13, SLC2A1, KPNA2, FTCD, MAPT, and SAC3D1). Further research indicated that a high LPRS is closely associated with vascular invasion, histological grade (G3-G4), and TNM stage (III-IV) in HCC, concurrently establishing LPRS as an independent risk factor for prognosis. A nomogram that integrates LPRS with TNM staging and patient age markedly improves the predictive accuracy of survival outcomes for HCC patients. Our findings suggest that increased DCAF13 expression in HCC plays a crucial role in cancer progression and angiogenesis. Navitoclax has emerged as a promising treatment for HCC patients with high LPRS levels, offering a novel therapeutic direction by targeting LLPS. CONCLUSION We have formulated a novel LPRS model that is capable of accurately predicting the clinical prognosis and drug sensitivity of HCC. DCAF13 might play a pivotal role in malignant progression mediated by LLPS.
Collapse
Affiliation(s)
- Jianhao Li
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Wang Q, Sun N, Li J, Huang F, Zhang Z. Liquid-Liquid Phase Separation in the Prognosis of Lung Adenocarcinoma: An Integrated Analysis. Curr Cancer Drug Targets 2025; 25:323-334. [PMID: 39506421 DOI: 10.2174/0115680096345676241001081051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a highly lethal malignancy. Liquid- Liquid Phase Separation (LLPS) plays a crucial role in targeted therapies for lung cancer and in the progression of lung squamous cell carcinoma. However, the role of LLPS in the progression and prognosis of LUAD remains insufficiently explored. METHODS This study employed a multi-step approach to identify LLPS prognosis-related genes in LUAD. First, differential analysis, univariate Cox regression analysis, Random Survival Forest (RSF) method, and Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis were utilized to identify five LLPS prognosis-related genes. Subsequently, LASSO Cox regression was performed to establish a prognostic score termed the LLPS-related prognosis score (LPRS). Comprehensive analyses were then conducted based on the LPRS, including survival analysis, clinical feature analysis, functional enrichment analysis, and tumor microenvironment assessment. The LPRS was integrated with additional clinicopathological factors to develop a prognostic nomogram for LUAD patients. Immunohistochemical validation was performed on clinical tissue samples to further validate the findings. Finally, the relationship between KRT6A, one of the identified genes, and epidermal growth factor receptor (EGFR) mutations was investigated. RESULTS The LPRS was established using five LLPS-related genes: IGF2BP1, KRT6A, LDHA, PKP2, and PLK1. Higher LPRS was closely associated with poor survival outcomes, gender, progression-free survival (PFS), and advanced TNM stage. Furthermore, LPRS emerged as an independent prognostic factor for LUAD. A nomogram integrating LPRS, TNM stage, and age demonstrated remarkable predictive accuracy for prognosis among patients with LUAD. LLPS likely influences LUAD prognosis through the activity of IGF2BP1, KRT6A, LDHA, PKP2, and PLK1. KRT6A exhibits significant upregulation in LUAD, particularly in patients with EGFR mutations. CONCLUSION This study introduces a novel LPRS model that demonstrates high accuracy in predicting the clinical prognosis of LUAD. Moreover, the findings suggest that KRT6A may play a critical role in the LLPS-mediated malignant progression of LUAD.
Collapse
Affiliation(s)
- Qilong Wang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Nannan Sun
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jianhao Li
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Fengxiang Huang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhao Zhang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
12
|
Good KV, Kalani L, Vincent JB, Ausió J. Multifaceted roles of MeCP2 in cellular regulation and phase separation: implications for neurodevelopmental disorders, depression, and oxidative stress. Biochem Cell Biol 2025; 103:1-12. [PMID: 39761540 DOI: 10.1139/bcb-2024-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) is a chromatin-associated protein that remains enigmatic despite more than 30 years of research, primarily due to the ever-growing list of its molecular functions, and, consequently, its related pathologies. Loss of function MECP2 mutations cause the neurodevelopmental disorder Rett syndrome (RTT); in addition, dysregulation of MeCP2 expression and/ or function are involved in numerous other pathologies, but the mechanisms of MeCP2 regulation are unclear. Advancing technologies and burgeoning mechanistic theories assist our understanding of the complexity of MeCP2 but may inadvertently cloud it if not rigorously tested. Here, rather than focus on RTT, we examine relatively underexplored aspects of MeCP2, such as its dosage homeostasis at the gene and protein levels, its controversial participation in phase separation, and its overlooked role in depression and oxidative stress. All these factors may be essential to understanding the full scope of MeCP2 function in healthy and diseased states, but are relatively infrequently studied and require further criticism. The aim of this review is to discuss the esoteric facets of MeCP2 at the molecular and pathological levels and to consider to what extent they may be necessary for general MeCP2 function.
Collapse
Affiliation(s)
- Katrina V Good
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Ladan Kalani
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
13
|
Zhao X, Xia M, Peng Z, Du Q, Liu Y, Xia Y, Lv P, Zhang X, Yuan S, Xie X, Wang J, Sun S, Yang XP, He R. TFEB Phase Separation Mediates the Amelioration Effect of Intermittent Fasting on Inflammatory Colitis. Inflammation 2024:10.1007/s10753-024-02202-3. [PMID: 39729151 DOI: 10.1007/s10753-024-02202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
Intermittent fasting (IF) has been shown to ameliorate inflammation including DSS-induced colitis. It is well known that autophagy can limit inflammation and TFEB is a master transcriptional factor that regulates the processes of autophagy. However, whether TFEB is involved in the regulation of IF-mediated amelioration of inflammation and its mechanism remained unclear. In this study, we found that IF ameliorated DSS-induced colitis and induced TFEB. Nutrition deprivation induced TFEB puncta formation, which processes the characteristics of liquid-liquid phase separation (LLPS) showed by fluorescence recovery after photobleaching (FRAP) assay and 1,6-hexanediol treatment. We found the 24-33 amino acids of Coiled-Coil (CC) domain located in N terminus is essential for TFEB phase separation. Deletion of 24-33 amino acids within the CC domain inhibited TFEB-mediated target gene expression. In addition, we found transcription co-activators, EP300 and MED1, co-localized with TFEB condensate to formed a transcriptional hub that promotes the efficient expression of target genes. More importantly, TFEB inhibitor with ability to suppress TFEB puncta formation abolished the IF-mediated amelioration of DSS colitis. Together, these findings revealed a critical role of TFEB phase separation in the regulation of its transcriptional activity and anti-inflammatory functions induced by IF.
Collapse
Affiliation(s)
- Xiujuan Zhao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou, 510260, China
| | - Minghui Xia
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Laboratory Medicine, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Zhengxin Peng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyang Du
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xia
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Panjing Lv
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijie Yuan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaorong Xie
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Ping Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou, 510260, China
| | - Ran He
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Wang H, Tang J, Yan S, Li C, Li Z, Xiong Z, Li Z, Tu C. Liquid-liquid Phase Separation in Aging: Novel Insights in the Pathogenesis and Therapeutics. Ageing Res Rev 2024; 102:102583. [PMID: 39566743 DOI: 10.1016/j.arr.2024.102583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The intricate organization of distinct cellular compartments is paramount for the maintenance of normal biological functions and the orchestration of complex biochemical reactions. These compartments, whether membrane-bound organelles or membraneless structures like Cajal bodies and RNA transport granules, play crucial roles in cellular function. Liquid-liquid phase separation (LLPS) serves as a reversible process that elucidates the genesis of membranelles structures through the self-assembly of biomolecules. LLPS has been implicated in a myriad of physiological and pathological processes, encompassing immune response and tumor genesis. But the association between LLPS and aging has not been clearly clarified. A recent advancement in the realm of aging research involves the introduction of a new edition outlining the twelve hallmarks of aging, categorized into three distinct groups. By delving into the role and mechanism of LLPS in the formation of membraneless structures at a molecular level, this review encapsulates an exploration of the interaction between LLPS and these aging hallmarks, aiming to offer novel perspectives of the intricate mechanisms underlying the aging process and deeper insights into aging therapeutics.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Shuxiang Yan
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zhaoqi Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zijian Xiong
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Engineering Research Center of Artificial Intelligence-Driven Medical Device, The Second Xiangya Hospital of Central South University Changsha 410011, China, Changsha 410011, China; Shenzhen Research Institute of Central South University, Shenzhen 518063, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China; Changsha Medical University, Changsha 410219, China
| |
Collapse
|
15
|
Tang Y, Chen F, Fang G, Zhang H, Zhang Y, Zhu H, Zhang X, Han Y, Cao Z, Guo F, Wang W, Ye D, Ju J, Tan L, Li C, Zhao Y, Zhou Z, An L, Jiao S. A cofactor-induced repressive type of transcription factor condensation can be induced by synthetic peptides to suppress tumorigenesis. EMBO J 2024; 43:5586-5612. [PMID: 39358623 PMCID: PMC11574045 DOI: 10.1038/s44318-024-00257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Transcriptional factors (TFs) act as key determinants of cell death and survival by differentially modulating gene expression. Here, we identified many TFs, including TEAD4, that form condensates in stressed cells. In contrast to YAP-induced transcription-activating condensates of TEAD4, we found that co-factors such as VGLL4 and RFXANK alternatively induced repressive TEAD4 condensates to trigger cell death upon glucose starvation. Focusing on VGLL4, we demonstrated that heterotypic interactions between TEAD4 and VGLL4 favor the oligomerization and assembly of large TEAD4 condensates with a nonclassical inhibitory function, i.e., causing DNA/chromatin to be aggregated and entangled, which eventually impede gene expression. Based on these findings, we engineered a peptide derived from the TEAD4-binding motif of VGLL4 to selectively induce TEAD4 repressive condensation. This "glue" peptide displayed a strong antitumor effect in genetic and xenograft mouse models of gastric cancer via inhibition of TEAD4-related gene transcription. This new type of repressive TF phase separation exemplifies how cofactors can orchestrate opposite functions of a given TF, and offers potential new antitumor strategies via artificial induction of repressive condensation.
Collapse
Grants
- 2020YFA0803200 MOST | National Key Research and Development Program of China (NKPs)
- 2023YFC2505903 MOST | National Key Research and Development Program of China (NKPs)
- 32270747,92168116, 22077002, 82222052 MOST | National Natural Science Foundation of China (NSFC)
- 32200567, 31930026, 82150112 MOST | National Natural Science Foundation of China (NSFC)
- 32070710, 82372613 MOST | National Natural Science Foundation of China (NSFC)
- 82361168638, 32170706, 82002493 MOST | National Natural Science Foundation of China (NSFC)
- 22ZR1448100, 22QA1407200, 23ZR1448900 STCSM | Natural Science Foundation of Shanghai Municipality ()
- 22QA1407300, 23ZR1480400, 23YF1432900 STCSM | Natural Science Foundation of Shanghai Municipality ()
- STCSM | Natural Science Foundation of Shanghai Municipality (上海市自然科学基金)
Collapse
Affiliation(s)
- Yang Tang
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Gemin Fang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hui Zhang
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai, 200040, China
| | - Yanni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hanying Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xinru Zhang
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yi Han
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhifa Cao
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fenghua Guo
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai, 200040, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Dan Ye
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Junyi Ju
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lijie Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Chuanchuan Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Liwei An
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
16
|
Yavuz S, Abraham TE, Houtsmuller AB, van Royen ME. Phase Separation Mediated Sub-Nuclear Compartmentalization of Androgen Receptors. Cells 2024; 13:1693. [PMID: 39451211 PMCID: PMC11506798 DOI: 10.3390/cells13201693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
The androgen receptor (AR), a member of the nuclear steroid hormone receptor family of transcription factors, plays a crucial role not only in the development of the male phenotype but also in the development and growth of prostate cancer. While AR structure and AR interactions with coregulators and chromatin have been studied in detail, improving our understanding of AR function in gene transcription regulation, the spatio-temporal organization and the role of microscopically discernible AR foci in the nucleus are still underexplored. This review delves into the molecular mechanisms underlying AR foci formation, focusing on liquid-liquid phase separation and its role in spatially organizing ARs and their binding partners within the nucleus at transcription sites, as well as the influence of 3D-genome organization on AR-mediated gene transcription.
Collapse
Affiliation(s)
- Selçuk Yavuz
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
| | - Tsion E. Abraham
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.E.A.)
| | - Adriaan B. Houtsmuller
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.E.A.)
| | - Martin E. van Royen
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
| |
Collapse
|
17
|
Xuan H, Li Y, Liu Y, Zhao J, Chen J, Shi N, Zhou Y, Pi L, Li S, Xu G, Yang H. The H1/H5 domain contributes to OsTRBF2 phase separation and gene repression during rice development. THE PLANT CELL 2024; 36:3787-3808. [PMID: 38976557 PMCID: PMC11483615 DOI: 10.1093/plcell/koae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/27/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Transcription factors (TFs) tightly control plant development by regulating gene expression. The phase separation of TFs plays a vital role in gene regulation. Many plant TFs have the potential to form phase-separated protein condensates; however, little is known about which TFs are regulated by phase separation and how it affects their roles in plant development. Here, we report that the rice (Oryza sativa) single Myb TF TELOMERE REPEAT-BINDING FACTOR 2 (TRBF2) is highly expressed in fast-growing tissues at the seedling stage. TRBF2 is a transcriptional repressor that binds to the transcriptional start site of thousands of genes. Mutation of TRBF2 leads to pleiotropic developmental defects and misexpression of many genes. TRBF2 displays characteristics consistent with phase separation in vivo and forms phase-separated condensates in vitro. The H1/H5 domain of TRBF2 plays a crucial role in phase separation, chromatin targeting, and gene repression. Replacing the H1/H5 domain by a phase-separated intrinsically disordered region from Arabidopsis (Arabidopsis thaliana) AtSERRATE partially recovers the function of TRBF2 in gene repression in vitro and in transgenic plants. We also found that TRBF2 is required for trimethylation of histone H3 Lys27 (H3K27me3) deposition at specific genes and genome wide. Our findings reveal that phase separation of TRBF2 facilitates gene repression in rice development.
Collapse
Affiliation(s)
- Hua Xuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jingze Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jianhao Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Nan Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Limin Pi
- Hubei Hongshan Laboratory, Wuhan 430070, China
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Guoyong Xu
- Hubei Hongshan Laboratory, Wuhan 430070, China
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- RNA Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
18
|
Stewart RA, Ding Z, Jeon US, Goodman LB, Tran JJ, Zientko JP, Sabu M, Cadigan KM. Wnt target gene activation requires β-catenin separation into biomolecular condensates. PLoS Biol 2024; 22:e3002368. [PMID: 39316611 PMCID: PMC11460698 DOI: 10.1371/journal.pbio.3002368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/08/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
The Wnt/β-catenin signaling pathway plays numerous essential roles in animal development and tissue/stem cell maintenance. The activation of genes regulated by Wnt/β-catenin signaling requires the nuclear accumulation of β-catenin, a transcriptional co-activator. β-catenin is recruited to many Wnt-regulated enhancers through direct binding to T-cell factor/lymphoid enhancer factor (TCF/LEF) family transcription factors. β-catenin has previously been reported to form phase-separated biomolecular condensates (BMCs), which was implicated as a component of β-catenin's mechanism of action. This function required aromatic amino acid residues in the intrinsically disordered regions (IDRs) at the N- and C-termini of the protein. In this report, we further explore a role for β-catenin BMCs in Wnt target gene regulation. We find that β-catenin BMCs are miscible with LEF1 BMCs in vitro and in cultured cells. We characterized a panel of β-catenin mutants with different combinations of aromatic residue mutations in human cell culture and Drosophila melanogaster. Our data support a model in which aromatic residues across both IDRs contribute to BMC formation and signaling activity. Although different Wnt targets have different sensitivities to loss of β-catenin's aromatic residues, the activation of every target examined was compromised by aromatic substitution. These mutants are not defective in nuclear import or co-immunoprecipitation with several β-catenin binding partners. In addition, residues in the N-terminal IDR with no previously known role in signaling are clearly required for the activation of various Wnt readouts. Consistent with this, deletion of the N-terminal IDR results in a loss of signaling activity, which can be rescued by the addition of heterologous IDRs enriched in aromatic residues. Overall, our work supports a model in which the ability of β-catenin to form biomolecular condensates in the nucleus is tightly linked to its function as a transcriptional co-regulator.
Collapse
Affiliation(s)
- Richard A. Stewart
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zhihao Ding
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ung Seop Jeon
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lauren B. Goodman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jeannine J. Tran
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John P. Zientko
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Malavika Sabu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ken M. Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
19
|
Dhatterwal P, Sharma N, Prasad M. Decoding the functionality of plant transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4745-4759. [PMID: 38761104 DOI: 10.1093/jxb/erae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
Transcription factors (TFs) intricately govern cellular processes and responses to external stimuli by modulating gene expression. TFs help plants to balance the trade-off between stress tolerance and growth, thus ensuring their long-term survival in challenging environments. Understanding the factors and mechanisms that define the functionality of plant TFs is of paramount importance for unravelling the intricate regulatory networks governing development, growth, and responses to environmental stimuli in plants. This review provides a comprehensive understanding of these factors and mechanisms defining the activity of TFs. Understanding the dynamic nature of TFs has practical implications for modern molecular breeding programmes, as it provides insights into how to manipulate gene expression to optimize desired traits in crops. Moreover, recent studies also report the functional duality of TFs, highlighting their ability to switch between activation and repression modes; this represents an important mechanism for attuning gene expression. Here we discuss what the possible reasons for the dual nature of TFs are and how this duality instructs the cell fate decision during development, and fine-tunes stress responses in plants, enabling them to adapt to various environmental challenges.
Collapse
Affiliation(s)
| | | | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
- Department of Genetics, University of Delhi South Campus, New Delhi, India
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
20
|
Chen R, Shi X, Yao X, Gao T, Huang G, Ning D, Cao Z, Xu Y, Liang W, Tian SZ, Zhu Q, Fang L, Zheng M, Hu Y, Cui H, Chen W. Specific multivalent molecules boost CRISPR-mediated transcriptional activation. Nat Commun 2024; 15:7222. [PMID: 39174527 PMCID: PMC11341856 DOI: 10.1038/s41467-024-51694-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
CRISPR/Cas-based transcriptional activators can be enhanced by intrinsically disordered regions (IDRs). However, the underlying mechanisms are still debatable. Here, we examine 12 well-known IDRs by fusing them to the dCas9-VP64 activator, of which only seven can augment activation, albeit independently of their phase separation capabilities. Moreover, modular domains (MDs), another class of multivalent molecules, though ineffective in enhancing dCas9-VP64 activity on their own, show substantial enhancement in transcriptional activation when combined with dCas9-VP64-IDR. By varying the number of gRNA binding sites and fusing dCas9-VP64 with different IDRs/MDs, we uncover that optimal, rather than maximal, cis-trans cooperativity enables the most robust activation. Finally, targeting promoter-enhancer pairs yields synergistic effects, which can be further amplified via enhancing chromatin interactions. Overall, our study develops a versatile platform for efficient gene activation and sheds important insights into CRIPSR-based transcriptional activators enhanced with multivalent molecules.
Collapse
Affiliation(s)
- Rui Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Innovative Center for RNA Therapeutics (ICRT), School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Xinyao Shi
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xiangrui Yao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Tong Gao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Guangyu Huang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Duo Ning
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zemin Cao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Youxin Xu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Weizheng Liang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Simon Zhongyuan Tian
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Innovative Center for RNA Therapeutics (ICRT), School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Qionghua Zhu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Innovative Center for RNA Therapeutics (ICRT), School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Liang Fang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Innovative Center for RNA Therapeutics (ICRT), School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Meizhen Zheng
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Innovative Center for RNA Therapeutics (ICRT), School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuhui Hu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Huanhuan Cui
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Innovative Center for RNA Therapeutics (ICRT), School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China.
| | - Wei Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Innovative Center for RNA Therapeutics (ICRT), School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
21
|
Ma H, Qu J, Pang Z, Luo J, Yan M, Xu W, Zhuang H, Liu L, Qu Q. Super-enhancer omics in stem cell. Mol Cancer 2024; 23:153. [PMID: 39090713 PMCID: PMC11293198 DOI: 10.1186/s12943-024-02066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
The hallmarks of stem cells, such as proliferation, self-renewal, development, differentiation, and regeneration, are critical to maintain stem cell identity which is sustained by genetic and epigenetic factors. Super-enhancers (SEs), which consist of clusters of active enhancers, play a central role in maintaining stemness hallmarks by specifically transcriptional model. The SE-navigated transcriptional complex, including SEs, non-coding RNAs, master transcriptional factors, Mediators and other co-activators, forms phase-separated condensates, which offers a toggle for directing diverse stem cell fate. With the burgeoning technologies of multiple-omics applied to examine different aspects of SE, we firstly raise the concept of "super-enhancer omics", inextricably linking to Pan-omics. In the review, we discuss the spatiotemporal organization and concepts of SEs, and describe links between SE-navigated transcriptional complex and stem cell features, such as stem cell identity, self-renewal, pluripotency, differentiation and development. We also elucidate the mechanism of stemness and oncogenic SEs modulating cancer stem cells via genomic and epigenetic alterations hijack in cancer stem cell. Additionally, we discuss the potential of targeting components of the SE complex using small molecule compounds, genome editing, and antisense oligonucleotides to treat SE-associated organ dysfunction and diseases, including cancer. This review also provides insights into the future of stem cell research through the paradigm of SEs.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
- Hunan key laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Zicheng Pang
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Min Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Weixin Xu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Haihui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|
22
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
23
|
Presman DM, Benítez B, Lafuente AL, Vázquez Lareu A. Chromatin structure and dynamics: one nucleosome at a time. Histochem Cell Biol 2024; 162:79-90. [PMID: 38607419 DOI: 10.1007/s00418-024-02281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Eukaryotic genomes store information on many levels, including their linear DNA sequence, the posttranslational modifications of its constituents (epigenetic modifications), and its three-dimensional folding. Understanding how this information is stored and read requires multidisciplinary collaborations from many branches of science beyond biology, including physics, chemistry, and computer science. Concurrent recent developments in all these areas have enabled researchers to image the genome with unprecedented spatial and temporal resolution. In this review, we focus on what single-molecule imaging and tracking of individual proteins in live cells have taught us about chromatin structure and dynamics. Starting with the basics of single-molecule tracking (SMT), we describe some advantages over in situ imaging techniques and its current limitations. Next, we focus on single-nucleosome studies and what they have added to our current understanding of the relationship between chromatin dynamics and transcription. In celebration of Robert Feulgen's ground-breaking discovery that allowed us to start seeing the genome, we discuss current models of chromatin structure and future challenges ahead.
Collapse
Affiliation(s)
- Diego M Presman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
| | - Belén Benítez
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
- Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
| | - Agustina L Lafuente
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
| | - Alejo Vázquez Lareu
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
- Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
24
|
Hao S, Lee YJ, Benhamou Goldfajn N, Flores E, Liang J, Fuehrer H, Demmerle J, Lippincott-Schwartz J, Liu Z, Sukenik S, Cai D. YAP condensates are highly organized hubs. iScience 2024; 27:109927. [PMID: 38784009 PMCID: PMC11111833 DOI: 10.1016/j.isci.2024.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 10/24/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
YAP/TEAD signaling is essential for organismal development, cell proliferation, and cancer progression. As a transcriptional coactivator, how YAP activates its downstream target genes is incompletely understood. YAP forms biomolecular condensates in response to hyperosmotic stress, concentrating transcription-related factors to activate downstream target genes. However, whether YAP forms condensates under other signals, how YAP condensates organize and function, and how YAP condensates activate transcription in general are unknown. Here, we report that endogenous YAP forms sub-micron scale condensates in response to Hippo pathway regulation and actin cytoskeletal tension. YAP condensates are stabilized by the transcription factor TEAD1, and recruit BRD4, a coactivator that is enriched at active enhancers. Using single-particle tracking, we found that YAP condensates slowed YAP diffusion within condensate boundaries, a possible mechanism for promoting YAP target search. These results reveal that YAP condensate formation is a highly regulated process that is critical for YAP/TEAD target gene expression.
Collapse
Affiliation(s)
- Siyuan Hao
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ye Jin Lee
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Nadav Benhamou Goldfajn
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Eduardo Flores
- Department of Chemistry and Chemical Biology, University of California, Merced, Merced, CA 95343, USA
| | - Jindayi Liang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Hannah Fuehrer
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Justin Demmerle
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Shahar Sukenik
- Department of Chemistry and Chemical Biology, University of California, Merced, Merced, CA 95343, USA
| | - Danfeng Cai
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| |
Collapse
|
25
|
Liu S, Dai W, Jin B, Jiang F, Huang H, Hou W, Lan J, Jin Y, Peng W, Pan J. Effects of super-enhancers in cancer metastasis: mechanisms and therapeutic targets. Mol Cancer 2024; 23:122. [PMID: 38844984 PMCID: PMC11157854 DOI: 10.1186/s12943-024-02033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Metastasis remains the principal cause of cancer-related lethality despite advancements in cancer treatment. Dysfunctional epigenetic alterations are crucial in the metastatic cascade. Among these, super-enhancers (SEs), emerging as new epigenetic regulators, consist of large clusters of regulatory elements that drive the high-level expression of genes essential for the oncogenic process, upon which cancer cells develop a profound dependency. These SE-driven oncogenes play an important role in regulating various facets of metastasis, including the promotion of tumor proliferation in primary and distal metastatic organs, facilitating cellular migration and invasion into the vasculature, triggering epithelial-mesenchymal transition, enhancing cancer stem cell-like properties, circumventing immune detection, and adapting to the heterogeneity of metastatic niches. This heavy reliance on SE-mediated transcription delineates a vulnerable target for therapeutic intervention in cancer cells. In this article, we review current insights into the characteristics, identification methodologies, formation, and activation mechanisms of SEs. We also elaborate the oncogenic roles and regulatory functions of SEs in the context of cancer metastasis. Ultimately, we discuss the potential of SEs as novel therapeutic targets and their implications in clinical oncology, offering insights into future directions for innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Shenglan Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Wei Dai
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Bei Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Feng Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Hao Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Wen Hou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Jinxia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Yanli Jin
- College of Pharmacy, Jinan University Institute of Tumor Pharmacology, Jinan University, Guangzhou, 510632, China
| | - Weijie Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
26
|
Strom AR, Eeftens JM, Polyachenko Y, Weaver CJ, Watanabe HF, Bracha D, Orlovsky ND, Jumper CC, Jacobs WM, Brangwynne CP. Interplay of condensation and chromatin binding underlies BRD4 targeting. Mol Biol Cell 2024; 35:ar88. [PMID: 38656803 PMCID: PMC11238092 DOI: 10.1091/mbc.e24-01-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
Nuclear compartments form via biomolecular phase separation, mediated through multivalent properties of biomolecules concentrated within condensates. Certain compartments are associated with specific chromatin regions, including transcriptional initiation condensates, which are composed of transcription factors and transcriptional machinery, and form at acetylated regions including enhancer and promoter loci. While protein self-interactions, especially within low-complexity and intrinsically disordered regions, are known to mediate condensation, the role of substrate-binding interactions in regulating the formation and function of biomolecular condensates is underexplored. Here, utilizing live-cell experiments in parallel with coarse-grained simulations, we investigate how chromatin interaction of the transcriptional activator BRD4 modulates its condensate formation. We find that both kinetic and thermodynamic properties of BRD4 condensation are affected by chromatin binding: nucleation rate is sensitive to BRD4-chromatin interactions, providing an explanation for the selective formation of BRD4 condensates at acetylated chromatin regions, and thermodynamically, multivalent acetylated chromatin sites provide a platform for BRD4 clustering below the concentration required for off-chromatin condensation. This provides a molecular and physical explanation of the relationship between nuclear condensates and epigenetically modified chromatin that results in their mutual spatiotemporal regulation, suggesting that epigenetic modulation is an important mechanism by which the cell targets transcriptional condensates to specific chromatin loci.
Collapse
Affiliation(s)
- Amy R. Strom
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Jorine M. Eeftens
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Radboud Institute for Molecular Life Sciences, Radboud University, 6525 XZ Nijmegen, Netherlands
| | - Yury Polyachenko
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Claire J. Weaver
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Department of Molecular and Cellular Biology, Princeton University, Princeton, NJ 08544
| | | | - Dan Bracha
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Department of Biotechnology and Food Engineering, Technion, Haifa 3200, Israel
| | - Natalia D. Orlovsky
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Biological and Biomedical Sciences Program, Harvard University, Boston, MA 02115
| | - Chanelle C. Jumper
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Nereid Therapeutics, Boston, MA
| | | | - Clifford P. Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
27
|
Wang W, Yang N, Wang L, Zhu Y, Chu X, Xu W, Li Y, Xu Y, Gao L, Zhang B, Zhang G, Sun Q, Wang W, Wang Q, Zhang W, Chen D. The TET-Sall4-BMP regulatory axis controls craniofacial cartilage development. Cell Rep 2024; 43:113873. [PMID: 38427557 DOI: 10.1016/j.celrep.2024.113873] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/25/2023] [Accepted: 02/12/2024] [Indexed: 03/03/2024] Open
Abstract
Craniofacial microsomia (CFM) is a congenital defect that usually results from aberrant development of embryonic pharyngeal arches. However, the molecular basis of CFM pathogenesis is largely unknown. Here, we employ the zebrafish model to investigate mechanisms of CFM pathogenesis. In early embryos, tet2 and tet3 are essential for pharyngeal cartilage development. Single-cell RNA sequencing reveals that loss of Tet2/3 impairs chondrocyte differentiation due to insufficient BMP signaling. Moreover, biochemical and genetic evidence reveals that the sequence-specific 5mC/5hmC-binding protein, Sall4, binds the promoter of bmp4 to activate bmp4 expression and control pharyngeal cartilage development. Mechanistically, Sall4 directs co-phase separation of Tet2/3 with Sall4 to form condensates that mediate 5mC oxidation on the bmp4 promoter, thereby promoting bmp4 expression and enabling sufficient BMP signaling. These findings suggest the TET-BMP-Sall4 regulatory axis is critical for pharyngeal cartilage development. Collectively, our study provides insights into understanding craniofacial development and CFM pathogenesis.
Collapse
Affiliation(s)
- Weigang Wang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Na Yang
- Institute of Biomedical Research, Yunnan University, Kunming, China; Department of Ultrasound, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liangliang Wang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Yuanxiang Zhu
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Xiao Chu
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Weijie Xu
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Yawei Li
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Yihai Xu
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Lina Gao
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Beibei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Guoqiang Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Qinmiao Sun
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Weihong Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China.
| | - Qiang Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Wenxin Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, China.
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming, China; Southwest United Graduate School, Kunming, China.
| |
Collapse
|
28
|
Stortz M, Presman DM, Levi V. Transcriptional condensates: a blessing or a curse for gene regulation? Commun Biol 2024; 7:187. [PMID: 38365945 PMCID: PMC10873363 DOI: 10.1038/s42003-024-05892-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Whether phase-separation is involved in the organization of the transcriptional machinery and if it aids or inhibits the transcriptional process is a matter of intense debate. In this Mini Review, we will cover the current knowledge regarding the role of transcriptional condensates on gene expression regulation. We will summarize the latest discoveries on the relationship between condensate formation, genome organization, and transcriptional activity, focusing on the strengths and weaknesses of the experimental approaches used to interrogate these aspects of transcription in living cells. Finally, we will discuss the challenges for future research.
Collapse
Grants
- PICT 2020-00818 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2018-1921 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT 2019-0397 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- 20020190100101BA University of Buenos Aires | Secretaría de Ciencia y Técnica, Universidad de Buenos Aires (Secretaría de Ciencia y Técnica de la Universidad de Buenos Aires)
- 2022-11220210100212CO Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
Collapse
Affiliation(s)
- Martin Stortz
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Diego M Presman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, C1428EGA, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina.
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina.
| |
Collapse
|
29
|
Liu Q, Liu W, Niu Y, Wang T, Dong J. Liquid-liquid phase separation in plants: Advances and perspectives from model species to crops. PLANT COMMUNICATIONS 2024; 5:100663. [PMID: 37496271 PMCID: PMC10811348 DOI: 10.1016/j.xplc.2023.100663] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Membraneless biomolecular condensates play important roles in both normal biological activities and responses to environmental stimuli in living organisms. Liquid‒liquid phase separation (LLPS) is an organizational mechanism that has emerged in recent years to explain the formation of biomolecular condensates. In the past decade, advances in LLPS research have contributed to breakthroughs in disease fields. By contrast, although LLPS research in plants has progressed over the past 5 years, it has been concentrated on the model plant Arabidopsis, which has limited relevance to agricultural production. In this review, we provide an overview of recently reported advances in LLPS in plants, with a particular focus on photomorphogenesis, flowering, and abiotic and biotic stress responses. We propose that many potential LLPS proteins also exist in crops and may affect crop growth, development, and stress resistance. This possibility presents a great challenge as well as an opportunity for rigorous scientific research on the biological functions and applications of LLPS in crops.
Collapse
Affiliation(s)
- Qianwen Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
Wang J, Chen Y, Xiao Z, Liu X, Liu C, Huang K, Chen H. Phase Separation of Chromatin Structure-related Biomolecules: A Driving Force for Epigenetic Regulations. Curr Protein Pept Sci 2024; 25:553-566. [PMID: 38551058 DOI: 10.2174/0113892037296216240301074253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 07/25/2024]
Abstract
Intracellularly, membrane-less organelles are formed by spontaneous fusion and fission of macro-molecules in a process called phase separation, which plays an essential role in cellular activities. In certain disease states, such as cancers and neurodegenerative diseases, aberrant phase separations take place and participate in disease progression. Chromatin structure-related proteins, based on their characteristics and upon external stimuli, phase separate to exert functions like genome assembly, transcription regulation, and signal transduction. Moreover, many chromatin structure-related proteins, such as histones, histone-modifying enzymes, DNA-modifying enzymes, and DNA methylation binding proteins, are involved in epigenetic regulations through phase separation. This review introduces phase separation and how phase separation affects epigenetics with a focus on chromatin structure-related molecules.
Collapse
Affiliation(s)
- Jiao Wang
- Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zixuan Xiao
- ISA Wenhua Wuhan High School, Fenglin Road, Junshan New Town, Wuhan Economics & Technological Development Zone, Wuhan, Hubei 430119, China
| | - Xikai Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chengyu Liu
- Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
31
|
Yavuz S, Kabbech H, van Staalduinen J, Linder S, van Cappellen W, Nigg A, Abraham T, Slotman J, Quevedo M, Poot R, Zwart W, van Royen M, Grosveld F, Smal I, Houtsmuller A. Compartmentalization of androgen receptors at endogenous genes in living cells. Nucleic Acids Res 2023; 51:10992-11009. [PMID: 37791849 PMCID: PMC10639085 DOI: 10.1093/nar/gkad803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
A wide range of nuclear proteins are involved in the spatio-temporal organization of the genome through diverse biological processes such as gene transcription and DNA replication. Upon stimulation by testosterone and translocation to the nucleus, multiple androgen receptors (ARs) accumulate in microscopically discernable foci which are irregularly distributed in the nucleus. Here, we investigated the formation and physical nature of these foci, by combining novel fluorescent labeling techniques to visualize a defined chromatin locus of AR-regulated genes-PTPRN2 or BANP-simultaneously with either AR foci or individual AR molecules. Quantitative colocalization analysis showed evidence of AR foci formation induced by R1881 at both PTPRN2 and BANP loci. Furthermore, single-particle tracking (SPT) revealed three distinct subdiffusive fractional Brownian motion (fBm) states: immobilized ARs were observed near the labeled genes likely as a consequence of DNA-binding, while the intermediate confined state showed a similar spatial behavior but with larger displacements, suggesting compartmentalization by liquid-liquid phase separation (LLPS), while freely mobile ARs were diffusing in the nuclear environment. All together, we show for the first time in living cells the presence of AR-regulated genes in AR foci.
Collapse
Affiliation(s)
- Selçuk Yavuz
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hélène Kabbech
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jente van Staalduinen
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Simon Linder
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wiggert A van Cappellen
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alex L Nigg
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tsion E Abraham
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Johan A Slotman
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marti Quevedo
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ihor Smal
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
32
|
Yan K, Ji Q, Zhao D, Li M, Sun X, Wang Z, Liu X, Liu Z, Li H, Ding Y, Wang S, Belmonte JCI, Qu J, Zhang W, Liu GH. SGF29 nuclear condensates reinforce cellular aging. Cell Discov 2023; 9:110. [PMID: 37935676 PMCID: PMC10630320 DOI: 10.1038/s41421-023-00602-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/07/2023] [Indexed: 11/09/2023] Open
Abstract
Phase separation, a biophysical segregation of subcellular milieus referred as condensates, is known to regulate transcription, but its impacts on physiological processes are less clear. Here, we demonstrate the formation of liquid-like nuclear condensates by SGF29, a component of the SAGA transcriptional coactivator complex, during cellular senescence in human mesenchymal progenitor cells (hMPCs) and fibroblasts. The Arg 207 within the intrinsically disordered region is identified as the key amino acid residue for SGF29 to form phase separation. Through epigenomic and transcriptomic analysis, our data indicated that both condensate formation and H3K4me3 binding of SGF29 are essential for establishing its precise chromatin location, recruiting transcriptional factors and co-activators to target specific genomic loci, and initiating the expression of genes associated with senescence, such as CDKN1A. The formation of SGF29 condensates alone, however, may not be sufficient to drive H3K4me3 binding or achieve transactivation functions. Our study establishes a link between phase separation and aging regulation, highlighting nuclear condensates as a functional unit that facilitate shaping transcriptional landscapes in aging.
Collapse
Affiliation(s)
- Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongxin Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingheng Li
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Sun
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Zehua Wang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoqian Liu
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zunpeng Liu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongyu Li
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingjie Ding
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | - Jing Qu
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
33
|
Abstract
Cells must tightly regulate their gene expression programs and yet rapidly respond to acute biochemical and biophysical cues within their environment. This information is transmitted to the nucleus through various signaling cascades, culminating in the activation or repression of target genes. Transcription factors (TFs) are key mediators of these signals, binding to specific regulatory elements within chromatin. While live-cell imaging has conclusively proven that TF-chromatin interactions are highly dynamic, how such transient interactions can have long-term impacts on developmental trajectories and disease progression is still largely unclear. In this review, we summarize our current understanding of the dynamic nature of TF functions, starting with a historical overview of early live-cell experiments. We highlight key factors that govern TF dynamics and how TF dynamics, in turn, affect downstream transcriptional bursting. Finally, we conclude with open challenges and emerging technologies that will further our understanding of transcriptional regulation.
Collapse
Affiliation(s)
- Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; , ,
- Department of Physics, University of Maryland, College Park, Maryland, USA;
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; , ,
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, Maryland, USA;
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; , ,
| |
Collapse
|
34
|
Mark KG, Kolla S, Aguirre JD, Garshott DM, Schmitt S, Haakonsen DL, Xu C, Kater L, Kempf G, Martínez-González B, Akopian D, See SK, Thomä NH, Rapé M. Orphan quality control shapes network dynamics and gene expression. Cell 2023; 186:3460-3475.e23. [PMID: 37478862 DOI: 10.1016/j.cell.2023.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
All eukaryotes require intricate protein networks to translate developmental signals into accurate cell fate decisions. Mutations that disturb interactions between network components often result in disease, but how the composition and dynamics of complex networks are established remains poorly understood. Here, we identify the E3 ligase UBR5 as a signaling hub that helps degrade unpaired subunits of multiple transcriptional regulators that act within a network centered on the c-Myc oncoprotein. Biochemical and structural analyses show that UBR5 binds motifs that only become available upon complex dissociation. By rapidly turning over unpaired transcription factor subunits, UBR5 establishes dynamic interactions between transcriptional regulators that allow cells to effectively execute gene expression while remaining receptive to environmental signals. We conclude that orphan quality control plays an essential role in establishing dynamic protein networks, which may explain the conserved need for protein degradation during transcription and offers opportunities to modulate gene expression in disease.
Collapse
Affiliation(s)
- Kevin G Mark
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - SriDurgaDevi Kolla
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Jacob D Aguirre
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Danielle M Garshott
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Stefan Schmitt
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Diane L Haakonsen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Christina Xu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Lukas Kater
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Brenda Martínez-González
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - David Akopian
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Stephanie K See
- Center for Emerging and Neglected Diseases, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | - Michael Rapé
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
35
|
Ochiai H, Ohishi H, Sato Y, Kimura H. Organization of transcription and 3D genome as revealed by live-cell imaging. Curr Opin Struct Biol 2023; 81:102615. [PMID: 37257205 DOI: 10.1016/j.sbi.2023.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 05/01/2023] [Indexed: 06/02/2023]
Abstract
Higher-order genomic structures play a critical role in regulating gene expression by influencing the spatial proximity of promoters and enhancers. Live-cell imaging studies have demonstrated that three-dimensional genome structures undergo dynamic changes over time. Transcription is also dynamic, with genes frequently switching between active and inactive states. Recent observations suggest that the formation of condensates, composed of transcription-related factors, RNA, and RNA-binding proteins, around genes can regulate transcription. Advancements in technology have facilitated the visualization of the intricate spatiotemporal relationship between higher-order genomic structures, condensate formation, and transcriptional activity in living cells.
Collapse
Affiliation(s)
- Hiroshi Ochiai
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-0054, Japan.
| | - Hiroaki Ohishi
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-0054, Japan
| | - Yuko Sato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan; Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Hiroshi Kimura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan; Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
| |
Collapse
|
36
|
Bejjani F, Evanno E, Mahfoud S, Tolza C, Zibara K, Piechaczyk M, Jariel-Encontre I. Multiple Fra-1-bound enhancers showing different molecular and functional features can cooperate to repress gene transcription. Cell Biosci 2023; 13:129. [PMID: 37464380 DOI: 10.1186/s13578-023-01077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND How transcription factors (TFs) down-regulate gene expression remains ill-understood, especially when they bind to multiple enhancers contacting the same gene promoter. In particular, it is not known whether they exert similar or significantly different molecular effects at these enhancers. RESULTS To address this issue, we used a particularly well-suited study model consisting of the down-regulation of the TGFB2 gene by the TF Fra-1 in Fra-1-overexpressing cancer cells, as Fra-1 binds to multiple enhancers interacting with the TGFB2 promoter. We show that Fra-1 does not repress TGFB2 transcription via reducing RNA Pol II recruitment at the gene promoter but by decreasing the formation of its transcription-initiating form. This is associated with complex long-range chromatin interactions implicating multiple molecularly and functionally heterogeneous Fra-1-bound transcriptional enhancers distal to the TGFB2 transcriptional start site. In particular, the latter display differential requirements upon the presence and the activity of the lysine acetyltransferase p300/CBP. Furthermore, the final transcriptional output of the TGFB2 gene seems to depend on a balance between the positive and negative effects of Fra-1 at these enhancers. CONCLUSION Our work unveils complex molecular mechanisms underlying the repressive actions of Fra-1 on TGFB2 gene expression. This has consequences for our general understanding of the functioning of the ubiquitous transcriptional complex AP-1, of which Fra-1 is the most documented component for prooncogenic activities. In addition, it raises the general question of the heterogeneity of the molecular functions of TFs binding to different enhancers regulating the same gene.
Collapse
Affiliation(s)
- Fabienne Bejjani
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- DSST, ER045, PRASE, Lebanese University, Beirut, Lebanon
| | | | - Samantha Mahfoud
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- DSST, ER045, PRASE, Lebanese University, Beirut, Lebanon
| | - Claire Tolza
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Kazem Zibara
- DSST, ER045, PRASE, Lebanese University, Beirut, Lebanon
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | | | - Isabelle Jariel-Encontre
- IGMM, Univ Montpellier, CNRS, Montpellier, France.
- Institut de Recherche en Cancérologie de Montpellier, IRCM, INSERM U1194, ICM, Université de Montpellier, Montpellier, France.
| |
Collapse
|
37
|
Schaeffer M, Nollmann M. Contributions of 3D chromatin structure to cell-type-specific gene regulation. Curr Opin Genet Dev 2023; 79:102032. [PMID: 36893484 DOI: 10.1016/j.gde.2023.102032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 03/09/2023]
Abstract
Eukaryotic genomes are organized in 3D in a multiscale manner, and different mechanisms acting at each of these scales can contribute to transcriptional regulation. However, the large single-cell variability in 3D chromatin structures represents a challenge to understand how transcription may be differentially regulated between cell types in a robust and efficient manner. Here, we describe the different mechanisms by which 3D chromatin structure was shown to contribute to cell-type-specific transcriptional regulation. Excitingly, several novel methodologies able to measure 3D chromatin conformation and transcription in single cells in their native tissue context, or to detect the dynamics of cis-regulatory interactions, are starting to allow quantitative dissection of chromatin structure noise and relate it to how transcription may be regulated between different cell types and cell states.
Collapse
Affiliation(s)
- Marie Schaeffer
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, Montpellier, France
| | - Marcelo Nollmann
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, Montpellier, France.
| |
Collapse
|
38
|
Kim YW, Kang J, Kim A. Hematopoietic/erythroid enhancers activate nearby target genes by extending histone H3K27ac and transcribing intergenic RNA. FASEB J 2023; 37:e22870. [PMID: 36929052 DOI: 10.1096/fj.202201891r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Enhancers activate gene transcription remotely, which requires tissue specific transcription factors binding to them. GATA1 and TAL1 are hematopoietic/erythroid-specific factors and often bind together to enhancers, activating target genes. Interestingly, we found that some hematopoietic/erythroid genes are transcribed in a GATA1-dependent but TAL1-independnet manner. They appear to have enhancers within a relatively short distance. In this study, we paired highly transcribed hematopoietic/erythroid genes with the nearest GATA1/TAL1-binding enhancers and analyzed these putative enhancer-gene pairs depending on distance between them. Enhancers located at various distances from genes in the pairs, which was not related to transcription level of the genes. However, genes with enhancers at short distances away tended to be transcriptionally unaffected by TAL1 depletion. Histone H3K27ac extended from the enhancers to target genes. The H3K27ac extension was maintained without TAL1, even though it disappeared owing to the loss of GATA1. Intergenic RNA was highly transcribed from the enhancers to nearby target genes, independent of TAL1. Taken together, TAL1-independent transcription of hematopoietic/erythroid genes appears to be promoted by enhancers present in a short distance. These enhancers are likely to activate nearby target genes by tracking the intervening regions.
Collapse
Affiliation(s)
- Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, South Korea
- Department of Biomedical Laboratory Science, College of Healthcare Medical Science and Engineering, Inje University, Gimhae, South Korea
| | - Jin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, South Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
39
|
Tan C, Niitsu A, Sugita Y. Highly Charged Proteins and Their Repulsive Interactions Antagonize Biomolecular Condensation. JACS AU 2023; 3:834-848. [PMID: 37006777 PMCID: PMC10052238 DOI: 10.1021/jacsau.2c00646] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 06/19/2023]
Abstract
Biomolecular condensation is involved in various cellular processes; therefore, regulation of condensation is crucial to prevent deleterious protein aggregation and maintain a stable cellular environment. Recently, a class of highly charged proteins, known as heat-resistant obscure (Hero) proteins, was shown to protect other client proteins from pathological aggregation. However, the molecular mechanisms by which Hero proteins protect other proteins from aggregation remain unknown. In this study, we performed multiscale molecular dynamics (MD) simulations of Hero11, a Hero protein, and the C-terminal low-complexity domain (LCD) of the transactive response DNA-binding protein 43 (TDP-43), a client protein of Hero11, under various conditions to examine their interactions with each other. We found that Hero11 permeates into the condensate formed by the LCD of TDP-43 (TDP-43-LCD) and induces changes in conformation, intermolecular interactions, and dynamics of TDP-43-LCD. We also examined possible Hero11 structures in atomistic and coarse-grained MD simulations and found that Hero11 with a higher fraction of disordered region tends to assemble on the surface of the condensates. Based on the simulation results, we have proposed three possible mechanisms for Hero11's regulatory function: (i) In the dense phase, TDP-43-LCD reduces contact with each other and shows faster diffusion and decondensation due to the repulsive Hero11-Hero11 interactions. (ii) In the dilute phase, the saturation concentration of TDP-43-LCD is increased, and its conformation is relatively more extended and variant, induced by the attractive Hero11-TDP-43-LCD interactions. (iii) Hero11 on the surface of small TDP-43-LCD condensates can contribute to avoiding their fusion due to repulsive interactions. The proposed mechanisms provide new insights into the regulation of biomolecular condensation in cells under various conditions.
Collapse
Affiliation(s)
- Cheng Tan
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Ai Niitsu
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Yuji Sugita
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, Kobe, Hyogo 650-0047, Japan
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, Wako, Saitama 351-0198, Japan
- Laboratory
for Biomolecular Function Simulation, RIKEN
Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
40
|
Pinheiro EDS, Preato AM, Petrucci TVB, dos Santos LS, Glezer I. Phase-separation: a possible new layer for transcriptional regulation by glucocorticoid receptor. Front Endocrinol (Lausanne) 2023; 14:1160238. [PMID: 37124728 PMCID: PMC10145926 DOI: 10.3389/fendo.2023.1160238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Glucocorticoids (GCs) are hormones involved in circadian adaptation and stress response, and it is also noteworthy that these steroidal molecules present potent anti-inflammatory action through GC receptors (GR). Upon ligand-mediated activation, GR translocates to the nucleus, and regulates gene expression related to metabolism, acute-phase response and innate immune response. GR field of research has evolved considerably in the last decades, providing varied mechanisms that contributed to the understanding of transcriptional regulation and also impacted drug design for treating inflammatory diseases. Liquid-liquid phase separation (LLPS) in cellular processes represents a recent topic in biology that conceptualizes membraneless organelles and microenvironments that promote, or inhibit, chemical reactions and interactions of protein or nucleic acids. The formation of these molecular condensates has been implicated in gene expression control, and recent evidence shows that GR and other steroid receptors can nucleate phase separation (PS). Here we briefly review the varied mechanisms of transcriptional control by GR, which are largely studied in the context of inflammation, and further present how PS can be involved in the control of gene expression. Lastly, we consider how the reported advances on LLPS during transcription control, specially for steroid hormone receptors, could impact the different modalities of GR action on gene expression, adding a new plausible molecular event in glucocorticoid signal transduction.
Collapse
|
41
|
SOX2 Modulates the Nuclear Organization and Transcriptional Activity of the Glucocorticoid Receptor. J Mol Biol 2022; 434:167869. [PMID: 36309135 DOI: 10.1016/j.jmb.2022.167869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Steroid receptors (SRs) are ligand-dependent transcription factors (TFs) relevant to key cellular processes in both physiology and pathology, including some types of cancer. SOX2 is a master TF of pluripotency and self-renewal of embryonic stem cells, and its dysregulation is also associated with various types of human cancers. A potential crosstalk between these TFs could be relevant in malignant cells yet, to the best of our knowledge, no formal study has been performed thus far. Here we show, by quantitative live-cell imaging microscopy, that ectopic expression of SOX2 disrupts the formation of hormone-dependent intranuclear condensates of many steroid receptors (SRs), including those formed by the glucocorticoid receptor (GR). SOX2 also reduces GR's binding to specific DNA targets and modulates its transcriptional activity. SOX2-driven effects on GR condensates do not require the intrinsically disordered N-terminal domain of the receptor and, surprisingly, neither relies on GR/SOX2 interactions. SOX2 also alters the intranuclear dynamics and compartmentalization of the SR coactivator NCoA-2 and impairs GR/NCoA-2 interactions. These results suggest an indirect mechanism underlying SOX2-driven effects on SRs involving this coactivator. Together, these results highlight that the transcriptional program elicited by GR relies on its nuclear organization and is intimately linked to the distribution of other GR partners, such as the NCoA-2 coactivator. Abnormal expression of SOX2, commonly observed in many tumors, may alter the biological action of GR and, probably, other SRs as well. Understanding this crosstalk may help to improve steroid hormone-based therapies in cancers with elevated SOX2 expression.
Collapse
|
42
|
Shi X, Zhuang Y, Chen Z, Xu M, Kuang J, Sun XL, Gao L, Kuang X, Zhang H, Li W, Wong SZH, Liu C, Liu L, Jiang D, Pei D, Lin Y, Wu QF. Hierarchical deployment of Tbx3 dictates the identity of hypothalamic KNDy neurons to control puberty onset. SCIENCE ADVANCES 2022; 8:eabq2987. [PMID: 36383654 PMCID: PMC9668310 DOI: 10.1126/sciadv.abq2987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/23/2022] [Indexed: 05/17/2023]
Abstract
The neuroendocrine system consists of a heterogeneous collection of neuropeptidergic neurons in the brain, among which hypothalamic KNDy neurons represent an indispensable cell subtype controlling puberty onset. Although neural progenitors and neuronal precursors along the cell lineage hierarchy adopt a cascade diversification strategy to generate hypothalamic neuronal heterogeneity, the cellular logic operating within the lineage to specify a subtype of neuroendocrine neurons remains unclear. As human genetic studies have recently established a link between TBX3 mutations and delayed puberty onset, we systematically studied Tbx3-derived neuronal lineage and Tbx3-dependent neuronal specification and found that Tbx3 hierarchically established and maintained the identity of KNDy neurons for triggering puberty. Apart from the well-established lineage-dependent fate determination, we uncovered rules of interlineage interaction and intralineage retention operating through neuronal differentiation in the absence of Tbx3. Moreover, we revealed that human TBX3 mutations disturbed the phase separation of encoded proteins and impaired transcriptional regulation of key neuropeptides, providing a pathological mechanism underlying TBX3-associated puberty disorders.
Collapse
Affiliation(s)
- Xiang Shi
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yanrong Zhuang
- IDG/McGovern Institute for Brain Research, Tsinghua–Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Mingrui Xu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Junqi Kuang
- University of Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xue-Lian Sun
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lisen Gao
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xia Kuang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huairen Zhang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Samuel Zheng Hao Wong
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chuanyu Liu
- BGI-ShenZhen, Shenzhen 518103, China
- Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Longqi Liu
- BGI-ShenZhen, Shenzhen 518103, China
- Shenzhen Bay Laboratory, Shenzhen 518000, China
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Danhua Jiang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yi Lin
- IDG/McGovern Institute for Brain Research, Tsinghua–Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Corresponding author. (Q.-F.W.); (Y.L.)
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese Institute for Brain Research, Beijing 102206, China
- Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- Corresponding author. (Q.-F.W.); (Y.L.)
| |
Collapse
|
43
|
Vicioso-Mantis M, Balbás MAM. Spatial genome organization, TGFβ, and biomolecular condensates: Do they talk during development? Bioessays 2022; 44:e2200145. [PMID: 36253122 DOI: 10.1002/bies.202200145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022]
Abstract
Cis-regulatory elements govern gene expression programs to determine cell identity during development. Recently, the possibility that multiple enhancers are orchestrated in clusters of enhancers has been suggested. How these elements are arranged in the 3D space to control the activation of a specific promoter remains unclear. Our recent work revealed that the TGFβ pathway drives the assembly of enhancer clusters and precise gene activation during neurogenesis. We discovered that the TGFβ pathway coactivator JMJD3 was essential in maintaining these structures in the 3D space. To do that, JMJD3 required an intrinsically disordered region involved in forming phase-separated biomolecular condensates found in the enhancer clusters. Our data support the existence of a relationship between 3D-conformation of the chromatin, biomolecular condensates, and TGFβ-driven response during mammalian neurogenesis. In this review, we discuss how signaling (TGFβ), epigenetics (JMJD3), and biochemical properties (biomolecular condensates nucleation) are coordinated to modulate the genome structure to guarantee proper neural development. Moreover, we comment on the potential underlying mechanisms and implications of the enhancer-mediated regulation. Finally, we point out the knowledge gaps that still need to be addressed.
Collapse
Affiliation(s)
- Marta Vicioso-Mantis
- Department of Molecular Genomics. Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Marian A Martínez Balbás
- Department of Molecular Genomics. Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
44
|
Vicioso-Mantis M, Fueyo R, Navarro C, Cruz-Molina S, van Ijcken WFJ, Rebollo E, Rada-Iglesias Á, Martínez-Balbás MA. JMJD3 intrinsically disordered region links the 3D-genome structure to TGFβ-dependent transcription activation. Nat Commun 2022; 13:3263. [PMID: 35672304 PMCID: PMC9174158 DOI: 10.1038/s41467-022-30614-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
Enhancers are key regulatory elements that govern gene expression programs in response to developmental signals. However, how multiple enhancers arrange in the 3D-space to control the activation of a specific promoter remains unclear. To address this question, we exploited our previously characterized TGFβ-response model, the neural stem cells, focusing on a ~374 kb locus where enhancers abound. Our 4C-seq experiments reveal that the TGFβ pathway drives the assembly of an enhancer-cluster and precise gene activation. We discover that the TGFβ pathway coactivator JMJD3 is essential to maintain these structures. Using live-cell imaging techniques, we demonstrate that an intrinsically disordered region contained in JMJD3 is involved in the formation of phase-separated biomolecular condensates, which are found in the enhancer-cluster. Overall, in this work we uncover novel functions for the coactivator JMJD3, and we shed light on the relationships between the 3D-conformation of the chromatin and the TGFβ-driven response during mammalian neurogenesis. Here the authors demonstrate that TGFβ drives multi-enhancer contacts and ultimately gene activation during neuronal commitment, and that this requires the intrinsically disordered region (IDR) of the histone demethylase JMJD3 likely through its role in promoting phase-separated biomolecular condensates.
Collapse
|
45
|
Zheng J, Wu Z, Qiu Y, Wang X, Jiang X. An integrative multi-omics analysis based on liquid–liquid phase separation delineates distinct subtypes of lower-grade glioma and identifies a prognostic signature. J Transl Med 2022; 20:55. [PMID: 35093128 PMCID: PMC8800244 DOI: 10.1186/s12967-022-03266-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Abstract
Background
Emerging evidences have indicated that the aberrant liquid–liquid phase separation (LLPS) leads to the dysfunction of biomolecular condensates, thereby contributing to the tumorigenesis and progression. Nevertheless, it remains unclear whether or how the LLPS of specific molecules affects the prognosis and tumor immune microenvironment (TIME) of patients with lower-grade glioma (LGG).
Methods
We integrated the transcriptome information of 3585 LLPS-related genes to comprehensively evaluate the LLPS patterns of 423 patients with LGG in The Cancer Genome Atlas (TCGA) cohort. Then, we systematically demonstrated the differences among four LLPS subtypes based on multi-omics analyses. In addition, we constructed the LLPS-related prognostic risk score (LPRS) for individualized integrative assessment.
Results
Based on the expression profiles of 85 scaffolds, 355 regulators, and 3145 clients in LGG, we identified four LLPS subtypes, namely LS1, LS2, LS3 and LS4.
We confirmed that there were significant differences in prognosis, clinicopathological features, cancer hallmarks, genomic alterations, TIME patterns and immunotherapeutic responses among four LLPS subtypes. In addition, a prognostic signature called LPRS was constructed for individualized integrative assessment. LPRS exhibited a robust predictive capacity for prognosis of LGG patients in multiple cohorts. Moreover, LPRS was found to be correlated with clinicopathological features, cancer hallmarks, genomic alterations and TIME patterns of LGG patients. The predictive power of LPRS in response to immune checkpoint inhibitor (ICI) therapy was also prominent.
Conclusions
This study provided a novel classification of LGG patients based on LLPS. The constructed LPRS might facilitate individualized prognosis prediction and better immunotherapy options for LGG patients.
Collapse
|
46
|
Appelman MD, Hollaar EE, Schuijers J, van Mil SWC. Protein Condensation in the Nuclear Receptor Family; Implications for Transcriptional Output. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:243-253. [DOI: 10.1007/978-3-031-11836-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
47
|
Sołtys K, Ożyhar A. Transcription Regulators and Membraneless Organelles Challenges to Investigate Them. Int J Mol Sci 2021; 22:12758. [PMID: 34884563 PMCID: PMC8657783 DOI: 10.3390/ijms222312758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic cells are composed of different bio-macromolecules that are divided into compartments called organelles providing optimal microenvironments for many cellular processes. A specific type of organelles is membraneless organelles. They are formed via a process called liquid-liquid phase separation that is driven by weak multivalent interactions between particular bio-macromolecules. In this review, we gather crucial information regarding different classes of transcription regulators with the propensity to undergo liquid-liquid phase separation and stress the role of intrinsically disordered regions in this phenomenon. We also discuss recently developed experimental systems for studying formation and properties of membraneless organelles.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland;
| | | |
Collapse
|
48
|
Fassler JS, Skuodas S, Weeks DL, Phillips BT. Protein Aggregation and Disaggregation in Cells and Development. J Mol Biol 2021; 433:167215. [PMID: 34450138 PMCID: PMC8530975 DOI: 10.1016/j.jmb.2021.167215] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/01/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Protein aggregation is a feature of numerous neurodegenerative diseases. However, regulated, often reversible, formation of protein aggregates, also known as condensates, helps control a wide range of cellular activities including stress response, gene expression, memory, cell development and differentiation. This review presents examples of aggregates found in biological systems, how they are used, and cellular strategies that control aggregation and disaggregation. We include features of the aggregating proteins themselves, environmental factors, co-aggregates, post-translational modifications and well-known aggregation-directed activities that influence their formation, material state, stability and dissolution. We highlight the emerging roles of biomolecular condensates in early animal development, and disaggregation processing proteins that have recently been shown to play key roles in gametogenesis and embryogenesis.
Collapse
Affiliation(s)
- Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States.
| | - Sydney Skuodas
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@sskuodas
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Bryan T Phillips
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@bt4phillips
| |
Collapse
|