1
|
Cao Z, Yang Y, Zhang S, Zhang T, Lü P, Chen K. Liquid-liquid phase separation in viral infection: From the occurrence and function to treatment potentials. Colloids Surf B Biointerfaces 2025; 246:114385. [PMID: 39561518 DOI: 10.1016/j.colsurfb.2024.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Liquid-liquid phase separation (LLPS) of biomacromolecules, as a widespread cellular functional mechanism, is closely related to life processes, and is also commonly present in the lifecycle of viruses. Viral infection often leads to the recombination and redistribution of intracellular components to form biomacromolecule condensates assembled from viral replication-related proteins and intracellular components, which plays an important role in the process of viral infection. In this review, the key and influencing factors of LLPS are generalized, which mainly depend on various molecular interactions and environmental conditions in solution. Meanwhile, some examples of viruses utilizing LLPS are summarized, which are conducive to further understanding the subtle and complex biological regulatory processes between phase condensation and viruses. Finally, some representative antiviral drugs targeting phase separation that have been discovered are also outlined. In conclusion, in-depth study of the role of LLPS in viral infection is helpful to understand the mechanisms of virus-related diseases from a new perspective, and also provide a new therapeutic strategy for future treatments.
Collapse
Affiliation(s)
- Zhaoxiao Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Simeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Tiancheng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Luo L, Ji S, Wu Q, Xu G, Zhao J, Liu Y, Chen L, Liu M, Jiang L, Li C. Protein Condensates Unfold G-Quadruplex Resembling a Helicase Activity. Chembiochem 2025; 26:e202400791. [PMID: 39505696 DOI: 10.1002/cbic.202400791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/08/2024]
Abstract
Membrane-less organelles, formed by liquid-liquid phase separation, participate in many vital cellular processes and have received extensive attention recently. A notable form of noncanonical nucleic acid secondary structure, G-quadruplex (G4), interacts with the scaffolding proteins in these membrane-less organelles and becomes an integral part of this condensed phase. However, the structure and stability features of the integrated G4 remain poorly characterized. Herein, we employed NMR along with other biophysical methods to investigate the conformation of a G4 within condensates formed by a disordered protein known as DDX4N1. We discovered that the human telomeric sequence MHT24, which forms a G4 structure in a non-condensed phase solution of protein DDX4N1, unfolds when it is within DDX4N1 condensates due to phase separation. Our findings provide an instance of a protein acquiring new functionality through phase separation process, which deepen our understanding of how protein condensates regulate G4 structure and their functions.
Collapse
Affiliation(s)
- Liang Luo
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shixia Ji
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiajing Zhao
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yixiang Liu
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lang Chen
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| |
Collapse
|
3
|
Madheswaran M, Ventserova N, D’Abrosca G, Salzano G, Celauro L, Cazzaniga FA, Isernia C, Malgieri G, Moda F, Russo L, Legname G, Fattorusso R. Unfolding Mechanism and Fibril Formation Propensity of Human Prion Protein in the Presence of Molecular Crowding Agents. Int J Mol Sci 2024; 25:9916. [PMID: 39337404 PMCID: PMC11432716 DOI: 10.3390/ijms25189916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The pathological process of prion diseases implicates that the normal physiological cellular prion protein (PrPC) converts into misfolded abnormal scrapie prion (PrPSc) through post-translational modifications that increase β-sheet conformation. We recently demonstrated that HuPrP(90-231) thermal unfolding is partially irreversible and characterized by an intermediate state (β-PrPI), which has been revealed to be involved in the initial stages of PrPC fibrillation, with a seeding activity comparable to that of human infectious prions. In this study, we report the thermal unfolding characterization, in cell-mimicking conditions, of the truncated (HuPrP(90-231)) and full-length (HuPrP(23-231)) human prion protein by means of CD and NMR spectroscopy, revealing that HuPrP(90-231) thermal unfolding is characterized by two successive transitions, as in buffer solution. The amyloidogenic propensity of HuPrP(90-231) under crowded conditions has also been investigated. Our findings show that although the prion intermediate, structurally very similar to β-PrPI, forms at a lower temperature compared to when it is dissolved in buffer solution, in cell-mimicking conditions, the formation of prion fibrils requires a longer incubation time, outlining how molecular crowding influences both the equilibrium states of PrP and its kinetic pathways of folding and aggregation.
Collapse
Affiliation(s)
- Manoj Madheswaran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Nataliia Ventserova
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Gianluca D’Abrosca
- Department of Clinical and Experimental Medicine, Università degli Studi di Foggia, 71122 Foggia, Italy
| | - Giulia Salzano
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Luigi Celauro
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Federico Angelo Cazzaniga
- Division of Neurology 5–Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Fabio Moda
- SSD Laboratory Medicine, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| |
Collapse
|
4
|
Yu Y, Liu Q, Zeng J, Tan Y, Tang Y, Wei G. Multiscale simulations reveal the driving forces of p53C phase separation accelerated by oncogenic mutations. Chem Sci 2024; 15:12806-12818. [PMID: 39148776 PMCID: PMC11323318 DOI: 10.1039/d4sc03645j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024] Open
Abstract
Liquid-Liquid phase separation (LLPS) of p53 to form liquid condensates has been implicated in cellular functions and dysfunctions. The p53 condensates may serve as amyloid fibril precursors to initiate p53 aggregation, which is associated with oncogenic gain-of-function and various human cancers. M237I and R249S mutations located in p53 core domain (p53C) have been detected respectively in glioblastomas and hepatocellular carcinoma. Interestingly, these p53C mutants can also undergo LLPS and liquid-to-solid phase transition, which are faster than wild type p53C. However, the underlying molecular basis governing the accelerated LLPS and liquid-to-solid transition of p53C remain poorly understood. Herein, we explore the M237I/R249S mutation-induced structural alterations and phase separation behavior of p53C by employing multiscale molecular dynamics simulations. All-atom simulations revealed conformational disruptions in the zinc-binding domain of the M237I mutant and in both loop3 and zinc-binding domain of the R249S mutant. The two mutations enhance hydrophobic exposure of those regions and attenuate intramolecular interactions, which may hasten the LLPS and aggregation of p53C. Martini 3 coarse-grained simulations demonstrated spontaneous phase separation of p53C and accelerated effects of M237I/R249S mutations on the phase separation of p53C. Importantly, we find that the regions with enhanced intermolecular interactions observed in coarse-grained simulations coincide with the disrupted regions with weakened intramolecular interactions observed in all-atom simulations, indicating that M237I/R249S mutation-induced local structural disruptions expedite the LLPS of p53C. This study unveils the molecular mechanisms underlying the two cancer-associated mutation-accelerated LLPS and aggregation of p53C, providing avenues for anticancer therapy by targeting the phase separation process.
Collapse
Affiliation(s)
- Yawei Yu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Qian Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Jiyuan Zeng
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Yuan Tan
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| |
Collapse
|
5
|
Zhao Y, Guo L, Hu J, Ren Z, Li Y, Hu M, Zhang X, Bi L, Li D, Ma H, Liu C, Sun B. Phase-separated ParB enforces diverse DNA compaction modes and stabilizes the parS-centered partition complex. Nucleic Acids Res 2024; 52:8385-8398. [PMID: 38908027 PMCID: PMC11317135 DOI: 10.1093/nar/gkae533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
The tripartite ParABS system mediates chromosome segregation in the majority of bacterial species. Typically, DNA-bound ParB proteins around the parS sites condense the chromosomal DNA into a higher-order multimeric nucleoprotein complex for the ParA-driven partition. Despite extensive studies, the molecular mechanism underlying the dynamic assembly of the partition complex remains unclear. Herein, we demonstrate that Bacillus subtilis ParB (Spo0J), through the multimerization of its N-terminal domain, forms phase-separated condensates along a single DNA molecule, leading to the concurrent organization of DNA into a compact structure. Specifically, in addition to the co-condensation of ParB dimers with DNA, the engagement of well-established ParB condensates with DNA allows for the compression of adjacent DNA and the looping of distant DNA. Notably, the presence of CTP promotes the formation of condensates by a low amount of ParB at parS sites, triggering two-step DNA condensation. Remarkably, parS-centered ParB-DNA co-condensate constitutes a robust nucleoprotein architecture capable of withstanding disruptive forces of tens of piconewton. Overall, our findings unveil diverse modes of DNA compaction enabled by phase-separated ParB and offer new insights into the dynamic assembly and maintenance of the bacterial partition complex.
Collapse
Affiliation(s)
- Yilin Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lijuan Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiaojiao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiyun Ren
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Meng Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xia Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lulu Bi
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hanhui Ma
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
6
|
Vieira TCRG, Barros CA, Domingues R, Outeiro TF. PrP meets alpha-synuclein: Molecular mechanisms and implications for disease. J Neurochem 2024; 168:1625-1639. [PMID: 37855859 DOI: 10.1111/jnc.15992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 10/20/2023]
Abstract
The discovery of prions has challenged dogmas and has revolutionized our understanding of protein-misfolding diseases. The concept of self-propagation via protein conformational changes, originally discovered for the prion protein (PrP), also applies to other proteins that exhibit similar behavior, such as alpha-synuclein (aSyn), a central player in Parkinson's disease and in other synucleinopathies. aSyn pathology appears to spread from one cell to another during disease progression, and involves the misfolding and aggregation of aSyn. How the transfer of aSyn between cells occurs is still being studied, but one important hypothesis involves receptor-mediated transport. Interestingly, recent studies indicate that the cellular prion protein (PrPC) may play a crucial role in this process. PrPC has been shown to act as a receptor/sensor for protein aggregates in different neurodegenerative disorders, including Alzheimer's disease and amyotrophic lateral sclerosis. Here, we provide a comprehensive overview of the current state of knowledge regarding the interaction between aSyn and PrPC and discuss its role in synucleinopathies. We examine the properties of PrP and aSyn, including their structure, function, and aggregation. Additionally, we discuss the current understanding of PrPC's role as a receptor/sensor for aSyn aggregates and identify remaining unanswered questions in this area of research. Ultimately, we posit that exploring the interaction between aSyn and PrPC may offer potential treatment options for synucleinopathies.
Collapse
Affiliation(s)
- Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis and National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline A Barros
- Institute of Medical Biochemistry Leopoldo de Meis and National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Domingues
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| |
Collapse
|
7
|
Dai Z, Yang X. The regulation of liquid-liquid phase separated condensates containing nucleic acids. FEBS J 2024; 291:2320-2331. [PMID: 37735903 DOI: 10.1111/febs.16959] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Liquid-liquid phase separation (LLPS) has been recognized as a universal biological phenomenon. It plays an important role in life activities. LLPS is induced by weak interactions between intrinsically disordered regions or low complex domains. Nucleic acids are widely present in cells, and shown to be closely related to LLPS. Their structure and electronegativity provide the excellent platforms for the formation of phase-separated condensates. In this review, we summarize the interconnected regulation between nucleic acids and LLPS demonstrated in in vivo and in vitro studies. Beside homogeneous and single-phase condensates, complicated and multicompartment LLPS induced by nucleic acids is discussed as well. Recent advances about nucleic-acid-induced LLPS as a new pathogenic mechanism and drug design direction are highlighted, especially virus-mediated disease treatment and prevention.
Collapse
Affiliation(s)
- Zhuojun Dai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaorong Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Tao J, Zeng Y, Dai B, Liu Y, Pan X, Wang LQ, Chen J, Zhou Y, Lu Z, Xie L, Liang Y. Excess PrP C inhibits muscle cell differentiation via miRNA-enhanced liquid-liquid phase separation implicated in myopathy. Nat Commun 2023; 14:8131. [PMID: 38065962 PMCID: PMC10709375 DOI: 10.1038/s41467-023-43826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The cellular prion protein (PrPC) is required for skeletal muscle function. Here, we report that a higher level of PrPC accumulates in the cytoplasm of the skeletal muscle of six myopathy patients compared to controls. PrPC inhibits skeletal muscle cell autophagy, and blocks myoblast differentiation. PrPC selectively binds to a subset of miRNAs during myoblast differentiation, and the colocalization of PrPC and miR-214-3p was observed in the skeletal muscle of six myopathy patients with excessive PrPC. We demonstrate that PrPC is overexpressed in skeletal muscle cells under pathological conditions, inhibits muscle cell differentiation by physically interacting with a subset of miRNAs, and selectively recruits these miRNAs into its phase-separated condensate in living myoblasts, which in turn enhances liquid-liquid phase separation of PrPC, promotes pathological aggregation of PrP, and results in the inhibition of autophagy-related protein 5-dependent autophagy and muscle bundle formation in myopathy patients characterized by incomplete muscle regeneration.
Collapse
Affiliation(s)
- Jing Tao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanping Zeng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bin Dai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yin Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaohan Pan
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Li-Qiang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liwei Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
9
|
Cordeiro Y, Freire MHO, Wiecikowski AF, do Amaral MJ. (Dys)functional insights into nucleic acids and RNA-binding proteins modulation of the prion protein and α-synuclein phase separation. Biophys Rev 2023; 15:577-589. [PMID: 37681103 PMCID: PMC10480379 DOI: 10.1007/s12551-023-01067-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 09/09/2023] Open
Abstract
Prion diseases are prototype of infectious diseases transmitted by a protein, the prion protein (PrP), and are still not understandable at the molecular level. Heterogenous species of aggregated PrP can be generated from its monomer. α-synuclein (αSyn), related to Parkinson's disease, has also shown a prion-like pathogenic character, and likewise PrP interacts with nucleic acids (NAs), which in turn modulate their aggregation. Recently, our group and others have characterized that NAs and/or RNA-binding proteins (RBPs) modulate recombinant PrP and/or αSyn condensates formation, and uncontrolled condensation might precede pathological aggregation. Tackling abnormal phase separation of neurodegenerative disease-related proteins has been proposed as a promising therapeutic target. Therefore, understanding the mechanism by which polyanions, like NAs, modulate phase transitions intracellularly, is key to assess their role on toxicity promotion and neuronal death. Herein we discuss data on the nucleic acids binding properties and phase separation ability of PrP and αSyn with a special focus on their modulation by NAs and RBPs. Furthermore, we provide insights into condensation of PrP and/or αSyn in the light of non-trivial subcellular locations such as the nuclear and cytosolic environments.
Collapse
Affiliation(s)
- Yraima Cordeiro
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| | - Maria Heloisa O. Freire
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| | - Adalgisa Felippe Wiecikowski
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| | - Mariana Juliani do Amaral
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho 373, bloco B, subsolo Sala 36, Rio de Janeiro, RJ 21941-902 Brazil
| |
Collapse
|
10
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
11
|
Alemasova EE, Lavrik OI. Poly(ADP-ribose) in Condensates: The PARtnership of Phase Separation and Site-Specific Interactions. Int J Mol Sci 2022; 23:14075. [PMID: 36430551 PMCID: PMC9694962 DOI: 10.3390/ijms232214075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Biomolecular condensates are nonmembrane cellular compartments whose formation in many cases involves phase separation (PS). Despite much research interest in this mechanism of macromolecular self-organization, the concept of PS as applied to a live cell faces certain challenges. In this review, we discuss a basic model of PS and the role of site-specific interactions and percolation in cellular PS-related events. Using a multivalent poly(ADP-ribose) molecule as an example, which has high PS-driving potential due to its structural features, we consider how site-specific interactions and network formation are involved in the formation of phase-separated cellular condensates.
Collapse
Affiliation(s)
- Elizaveta E. Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
12
|
The chameleonic behavior of p53 in health and disease: the transition from a client to an aberrant condensate scaffold in cancer. Essays Biochem 2022; 66:1023-1033. [DOI: 10.1042/ebc20220064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
Abstract
In 1972, the Weber statement, “The multiplicity of interactions and the variety of effects that follow from them show that multimer proteins are unlikely to be limited to a minimal number of allowed conformations,” first addressed the dynamic nature of proteins. This idea serves as a foundation for understanding why several macromolecules, such as p53, exhibit the properties of a molecular chameleon. Functionally competent states comprise a myriad of p53 three-dimensional arrangements depending on the stimuli. For instance, the interaction of p53 with nuclear components could induce liquid–liquid phase separation (LLPS) and the formation of membraneless organelles. The functional or deleterious role of p53 in liquid droplets is still unclear. Functional aspects display p53 interconverting between droplets and tetramer with its functional abilities maintained. In contrast, the aberrant phase separation is likely to fuel the aggregation path, usually associated with the onset and progression of age-related neurodegenerative diseases and cancer. Here, we gathered the most relevant aspects that lead p53 to phase separation and the resulting structural effects, attempting to understand p53’s functional and disease-relevant processes. Aberrant phase separation and aggregation of mutant p53 have become important therapeutic targets against cancer.
Collapse
|
13
|
Alemasova EE, Lavrik OI. A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates. Nucleic Acids Res 2022; 50:10817-10838. [PMID: 36243979 PMCID: PMC9638928 DOI: 10.1093/nar/gkac866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022] Open
Abstract
Condensates are biomolecular assemblies that concentrate biomolecules without the help of membranes. They are morphologically highly versatile and may emerge via distinct mechanisms. Nucleic acids-DNA, RNA and poly(ADP-ribose) (PAR) play special roles in the process of condensate organization. These polymeric scaffolds provide multiple specific and nonspecific interactions during nucleation and 'development' of macromolecular assemblages. In this review, we focus on condensates formed with PAR. We discuss to what extent the literature supports the phase separation origin of these structures. Special attention is paid to similarities and differences between PAR and RNA in the process of dynamic restructuring of condensates during their functioning.
Collapse
Affiliation(s)
- Elizaveta E Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
14
|
p53 Isoforms as Cancer Biomarkers and Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14133145. [PMID: 35804915 PMCID: PMC9264937 DOI: 10.3390/cancers14133145] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The well-known tumor suppressor protein p53 plays important roles in tumor prevention through transcriptional regulation of its target genes. Reactivation of p53 activity has been a potent strategy for cancer treatment. Accumulating evidences indicate that p53 isoforms truncated/modified in the N- or C-terminus can modulate the p53 pathway in a p53-dependent or p53-independent manner. It is thus imperative to characterize the roles of the p53 isoforms in cancer development. This review illustrates how p53 isoforms participate in tumor development and/or suppression. It also summarizes the knowledge about the p53 isoforms as promising cancer biomarkers and therapeutic targets. Abstract This review aims to summarize the implications of the major isoforms of the tumor suppressor protein p53 in aggressive cancer development. The current knowledge of p53 isoforms, their involvement in cell-signaling pathways, and their interactions with other cellular proteins or factors suggests the existence of an intricate molecular network that regulates their oncogenic function. Moreover, existing literature about the involvement of the p53 isoforms in various cancers leads to the proposition of therapeutic solutions by altering the cellular levels of the p53 isoforms. This review thus summarizes how the major p53 isoforms Δ40p53α/β/γ, Δ133p53α/β/γ, and Δ160p53α/β/γ might have clinical relevance in the diagnosis and effective treatments of cancer.
Collapse
|
15
|
Marques MA, de Andrade GC, Silva JL, de Oliveira GAP. Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Front Mol Biosci 2022; 9:944955. [PMID: 36090037 PMCID: PMC9452956 DOI: 10.3389/fmolb.2022.944955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022] Open
Abstract
The p53 protein is a pleiotropic regulator working as a tumor suppressor and as an oncogene. Depending on the cellular insult and the mutational status, p53 may trigger opposing activities such as cell death or survival, senescence and cell cycle arrest or proliferative signals, antioxidant or prooxidant activation, glycolysis, or oxidative phosphorylation, among others. By augmenting or repressing specific target genes or directly interacting with cellular partners, p53 accomplishes a particular set of activities. The mechanism in which p53 is activated depends on increased stability through post-translational modifications (PTMs) and the formation of higher-order structures (HOS). The intricate cell death and metabolic p53 response are reviewed in light of gaining stability via PTM and HOS formation in health and disease.
Collapse
Affiliation(s)
- Mayra A. Marques
- *Correspondence: Mayra A. Marques, ; Guilherme A. P. de Oliveira,
| | | | | | | |
Collapse
|