1
|
Duran C, Kinateder T, Hiefinger C, Sterner R, Osuna S. Altering Active-Site Loop Dynamics Enhances Standalone Activity of the Tryptophan Synthase Alpha Subunit. ACS Catal 2024; 14:16986-16995. [PMID: 39569152 PMCID: PMC11574760 DOI: 10.1021/acscatal.4c04587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 11/22/2024]
Abstract
The α-subunit (TrpA) of the allosterically regulated bifunctional tryptophan synthase αββα enzyme catalyzes the retro-aldol cleavage of indole-glycerol phosphate (IGP) to d-glyceraldehyde 3-phosphate (G3P) and indole. The activity of the enzyme is highly dependent on the β-subunit (TrpB), which allosterically regulates and activates TrpA for enhanced function. This contrasts with the homologous BX1 enzyme from Zea mays that can catalyze the same reaction as TrpA without requiring the presence of any additional binding partner. In this study, we computationally evaluated and compared the conformational landscapes of the homologous ZmBX1 and ZmTrpA enzymes. Our results indicate that enhanced TrpA standalone activity requires the modulation of the conformational dynamics of two relevant active-site loops, loop 6 and 2, that need to be synchronized for accessing the catalytically activated closed state for IGP cleavage, as well as open states for favoring indole/G3P release. Taking as inspiration the evolutionary blueprint ZmBX1 and using our developed correlation-based tool shortest path map focused on the rate-determining conformational transition leading to the catalytically activated closed state, we computationally designed a variant named ZmTrpASPM4-L6BX1, which displays a 163-fold improvement in catalytic efficiency for the retro-aldol cleavage of IGP. This study showcases the importance of fine-tuning the conformational dynamics of active-site loops for altering and improving function, especially in those cases in which a conformational change is rate determining.
Collapse
Affiliation(s)
- Cristina Duran
- Institut de Química Computacional i Catàlisi and Departament de Química, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Thomas Kinateder
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Caroline Hiefinger
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi and Departament de Química, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
2
|
Cao L, Zhang J, Chen J, Li M, Chen H, Wang C, Gong C. Tryptophan production by catalysis of a putative tryptophan synthase protein. Arch Microbiol 2024; 206:390. [PMID: 39222088 DOI: 10.1007/s00203-024-04123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Essential amino acid, tryptophan which intake from food plays a critical role in numerous metabolic functions, exhibiting extensive biological functions and applications. Tryptophan is beneficial for the food sector by enhancing nutritional content and promoting the development of functional foods. A putative gene encoding tryptophan synthase was the first identified in Sphingobacterium soilsilvae Em02, a cellulosic bacterium making it inherently more environmentally friendly. The gene was cloned and expressed in exogenous host Escherichia coli, to elucidate its function. The recombinant tryptophan synthase with a molecular weight 42 KDa was expressed in soluble component. The enzymatic activity to tryptophan synthase in vivo was assessed using indole and L-serine and purified tryptophan synthase. The optimum enzymatic activity for tryptophan synthase was recorded at 50 ºC and pH 7.0, which was improved in the presence of metal ions Mg2+, Sr2+ and Mn2+, whereas Cu2+, Zn2+ and Co2+ proved to be inhibitory. Using site-directed mutagenesis, the consensus pattern HK-S-[GGGSN]-E-S in the tryptophan synthase was demonstrated with K100Q, S202A, G246A, E361A and S385A as the active sites. Tryptophan synthase has been demonstrated to possess the defining characteristics of the β-subunits. The tryptophan synthase may eventually be useful for tryptophan production on a larger scale. Its diverse applications highlight the potential for improving both the quality and health benefits of food products, making it an essential component in advancing food science and technology.
Collapse
Affiliation(s)
- Lulu Cao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111", Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, PR China
| | - Jiaqi Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111", Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jia Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111", Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, PR China
| | - Mei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111", Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, PR China
| | - Hao Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111", Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, PR China
| | - Chongju Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111", Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, PR China
| | - Chunjie Gong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111", Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, PR China.
| |
Collapse
|
3
|
Dalwani S, Metz A, Huschmann FU, Weiss MS, Wierenga RK, Venkatesan R. Crystallographic fragment-binding studies of the Mycobacterium tuberculosis trifunctional enzyme suggest binding pockets for the tails of the acyl-CoA substrates at its active sites and a potential substrate-channeling path between them. Acta Crystallogr D Struct Biol 2024; 80:605-619. [PMID: 39012716 DOI: 10.1107/s2059798324006557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
The Mycobacterium tuberculosis trifunctional enzyme (MtTFE) is an α2β2 tetrameric enzyme in which the α-chain harbors the 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) active sites, and the β-chain provides the 3-ketoacyl-CoA thiolase (KAT) active site. Linear, medium-chain and long-chain 2E-enoyl-CoA molecules are the preferred substrates of MtTFE. Previous crystallographic binding and modeling studies identified binding sites for the acyl-CoA substrates at the three active sites, as well as the NAD binding pocket at the HAD active site. These studies also identified three additional CoA binding sites on the surface of MtTFE that are different from the active sites. It has been proposed that one of these additional sites could be of functional relevance for the substrate channeling (by surface crawling) of reaction intermediates between the three active sites. Here, 226 fragments were screened in a crystallographic fragment-binding study of MtTFE crystals, resulting in the structures of 16 MtTFE-fragment complexes. Analysis of the 121 fragment-binding events shows that the ECH active site is the `binding hotspot' for the tested fragments, with 41 binding events. The mode of binding of the fragments bound at the active sites provides additional insight into how the long-chain acyl moiety of the substrates can be accommodated at their proposed binding pockets. In addition, the 20 fragment-binding events between the active sites identify potential transient binding sites of reaction intermediates relevant to the possible channeling of substrates between these active sites. These results provide a basis for further studies to understand the functional relevance of the latter binding sites and to identify substrates for which channeling is crucial.
Collapse
Affiliation(s)
- Subhadra Dalwani
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Alexander Metz
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Franziska U Huschmann
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Berlin, Germany
| | - Rik K Wierenga
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Rajaram Venkatesan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
4
|
Martins NF, Viana MJA, Maigret B. Fungi Tryptophan Synthases: What Is the Role of the Linker Connecting the α and β Structural Domains in Hemileia vastatrix TRPS? A Molecular Dynamics Investigation. Molecules 2024; 29:756. [PMID: 38398508 PMCID: PMC10893352 DOI: 10.3390/molecules29040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Tryptophan synthase (TRPS) is a complex enzyme responsible for tryptophan biosynthesis. It occurs in bacteria, plants, and fungi as an αββα heterotetramer. Although encoded by independent genes in bacteria and plants, in fungi, TRPS is generated by a single gene that concurrently expresses the α and β entities, which are linked by an elongated peculiar segment. We conducted 1 µs all-atom molecular dynamics simulations on Hemileia vastatrix TRPS to address two questions: (i) the role of the linker segment and (ii) the comparative mode of action. Since there is not an experimental structure, we started our simulations with homology modeling. Based on the results, it seems that TRPS makes use of an already-existing tunnel that can spontaneously move the indole moiety from the α catalytic pocket to the β one. Such behavior was completely disrupted in the simulation without the linker. In light of these results and the αβ dimer's low stability, the full-working TRPS single genes might be the result of a particular evolution. Considering the significant losses that Hemileia vastatrix causes to coffee plantations, our next course of action will be to use the TRPS to look for substances that can block tryptophan production and therefore control the disease.
Collapse
Affiliation(s)
- Natália F Martins
- EMBRAPA Agroindústria Tropical, Planalto do Pici, Fortaleza 60511-110, CE, Brazil
| | - Marcos J A Viana
- EMBRAPA Agroindústria Tropical, Planalto do Pici, Fortaleza 60511-110, CE, Brazil
| | - Bernard Maigret
- LORIA, UMR 7504 CNRS, Université de Lorraine, 54000 Vandoeuvre les Nancy, France
| |
Collapse
|