1
|
Lopes BV, Maron GK, Masteghin MG, Balboni RDC, Silva SRP, Carreno NLV. Direct-detection of glyphosate in drinking water via a scalable and low-cost laser-induced graphene sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:808-815. [PMID: 39713940 DOI: 10.1039/d4ay01549e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The use of pesticides has significantly increased and proliferated following the technological advancements established by the green revolution, aimed at boosting agricultural productivity. The extensive use of man-made chemicals as fertilizer and pesticides has consequently led to large-scale application, which has led to a number of environmental and human health problems. This study has helped to develop a laser-induced graphene (LIG) sensor for the detection of the most widely used herbicide in the world, glyphosate. The electrochemical sensor developed is based on a three-dimensional porous and fibrous structure with nanosheets, making it suitable for scalable manufacture. The study was conducted utilising a linear voltammetry technique and demonstrates the potential to identify glyphosate with good sensitivity. The sensor exhibited detection and quantification limits of 2.7 μmol L-1 and 9.0 μmol L-1, respectively, and showed good selectivity without significant interference from other elements. The sensor presents advantages suitable for scalable production, with case studies in screening of glyphosate-contaminated samples.
Collapse
Affiliation(s)
- Bruno Vasconcellos Lopes
- Competence Centre on Digital Agriculture, São Leopoldo, RS, Brazil
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Federal University of Pelotas, Pelotas, RS, Brazil.
| | - Guilherme Kurz Maron
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Federal University of Pelotas, Pelotas, RS, Brazil.
| | | | | | - S Ravi P Silva
- Advanced Technology Institute, University of Surrey, Guildford, Surrey, UK
| | - Neftali Lenin Villarreal Carreno
- Competence Centre on Digital Agriculture, São Leopoldo, RS, Brazil
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
2
|
Barros RE, Reis MM, Tuffi Santos LD, Fernandes Tiago JP, Gonçalves Lopes ÉM, Silva Donato LM. Root exudation of glyphosate in Eucalyptus urophylla S.T. Blake. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:749-757. [PMID: 39506241 DOI: 10.1080/03601234.2024.2422719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Glyphosate stands out in the eucalyptus management, which makes it essential to know its behavior, its effects on the plant, and possible environmental impacts. This study aimed to identify and quantify the root exudation of glyphosate and aminomethylphosphonic acid (AMPA) by Eucalyptus urophylla with chromatographic and biological methods. The five glyphosate doses were tested (0, 360, 720, 1080 and 1440 g a.e ha-1) on E. urophylla plants. The physiological and intoxication evaluations were performed after herbicide application. Water samples remaining from the pots were used for chemical quantification of root exudation of glyphosate and AMPA in high-performance liquid chromatography. Cucurbita pepo plants were used as bioindicators of glyphosate in the water remaining in the pots after applying herbicide. The increase in glyphosate doses promoted linear growth in E. urophylla intoxication and significantly reduced total dry mass and root production. E. urophylla plants had their photosynthetic, transpiratory, and stomatal conductance rates reduced as the herbicide doses increased. The AMPA root exudation was not detected, but it was possible to identify the presence of glyphosate by bioassay and chemical methods. Root exudation of glyphosate by eucalyptus can result in lesser herbicide action in plant control and cause contamination of deeper soil layers.
Collapse
Affiliation(s)
- Rodrigo Eduardo Barros
- Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais, Montes Claros, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Ciobotaru IC, Oprea D, Ciobotaru CC, Enache TA. Low-Cost Plant-Based Metal and Metal Oxide Nanoparticle Synthesis and Their Use in Optical and Electrochemical (Bio)Sensors. BIOSENSORS 2023; 13:1031. [PMID: 38131791 PMCID: PMC10741781 DOI: 10.3390/bios13121031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Technological progress has led to the development of analytical tools that promise a huge socio-economic impact on our daily lives and an improved quality of life for all. The use of plant extract synthesized nanoparticles in the development and fabrication of optical or electrochemical (bio)sensors presents major advantages. Besides their low-cost fabrication and scalability, these nanoparticles may have a dual role, serving as a transducer component and as a recognition element, the latter requiring their functionalization with specific components. Different approaches, such as surface modification techniques to facilitate precise biomolecule attachment, thereby augmenting recognition capabilities, or fine tuning functional groups on nanoparticle surfaces are preferred for ensuring stable biomolecule conjugation while preserving bioactivity. Size optimization, maximizing surface area, and tailored nanoparticle shapes increase the potential for robust interactions and enhance the transduction. This article specifically aims to illustrate the adaptability and effectiveness of these biosensing platforms in identifying precise biological targets along with their far-reaching implications across various domains, spanning healthcare diagnostics, environmental monitoring, and diverse bioanalytical fields. By exploring these applications, the article highlights the significance of prioritizing the use of natural resources for nanoparticle synthesis. This emphasis aligns with the worldwide goal of envisioning sustainable and customized biosensing solutions, emphasizing heightened sensitivity and selectivity.
Collapse
Affiliation(s)
- Iulia Corina Ciobotaru
- National Institute of Materials Physics, 405A Atomistilor, 077125 Magurele, Romania; (I.C.C.); (D.O.); (C.C.C.)
| | - Daniela Oprea
- National Institute of Materials Physics, 405A Atomistilor, 077125 Magurele, Romania; (I.C.C.); (D.O.); (C.C.C.)
- Faculty of Physics, University of Bucharest, 405 Atomistilor, 077125 Magurele, Romania
| | | | - Teodor Adrian Enache
- National Institute of Materials Physics, 405A Atomistilor, 077125 Magurele, Romania; (I.C.C.); (D.O.); (C.C.C.)
| |
Collapse
|
4
|
Geana EI, Baracu AM, Stoian MC, Brincoveanu O, Pachiu C, Dinu LA. Hybrid nanomaterial-based indirect electrochemical sensing of glyphosate in surface water: a promising approach for environmental monitoring. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2057-2066. [PMID: 37870161 DOI: 10.1039/d3em00355h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Glyphosate (GLY), a widely utilized pesticide, poses a significant threat to human health even at minute concentrations. In this study, we propose an innovative electrochemical sensor for the indirect detection of GLY in surface water samples. The sensor incorporates a nanohybrid material composed of multi-layer graphene decorated with gold nanoparticles (AuNPs), synthesized in a single-step electrochemical process. To ensure portability and on-site measurements, the sensor is developed on a screen-printed electrode, chosen for its integration and miniaturization capabilities. The proposed sensor demonstrates remarkable sensitivity and selectivity for GLY detection in surface water samples, with an exceptional limit of detection (LOD) of 0.03 parts per billion (ppb) in both buffer and surface water matrices. Moreover, it exhibits a remarkably high sensitivity of 0.15 μA ppb-1. This electrochemical sensor offers a promising approach for accurate GLY monitoring, addressing the urgent need for reliable pesticide detection in environmental samples. The proposed sensor showed high selectivity towards GLY, when analysed in the presence of other pesticides such as phosmet, chlorpyrifos and glufosinate-ammonium. The recovery percentages of GLY from spiked surface water samples were between 93.8 and 98.9%. The study's broader implications extend to revolutionizing the way environmental chemistry addresses pesticide contamination, water quality assessment, and sustainable management of environmental pollutants. By pushing the boundaries of detection capabilities and offering practical solutions, this research contributes to the advancement of knowledge and practices that are essential for preserving and protecting our environment.
Collapse
Affiliation(s)
- Elisabeta-Irina Geana
- National Institute for Research and Development for Isotopic and Cryogenic Technologies, 4th Uzinei Street 240002, Râmnicu-Vâlcea, Romania
| | - Angela Mihaela Baracu
- National Institute for Research and Development in Microtechnologies (IMT Bucharest), 126A Erou Iancu Nicolae Street, 077190 Voluntari, Ilfov, Romania.
| | - Marius C Stoian
- National Institute for Research and Development in Microtechnologies (IMT Bucharest), 126A Erou Iancu Nicolae Street, 077190 Voluntari, Ilfov, Romania.
| | - Oana Brincoveanu
- National Institute for Research and Development in Microtechnologies (IMT Bucharest), 126A Erou Iancu Nicolae Street, 077190 Voluntari, Ilfov, Romania.
| | - Cristina Pachiu
- National Institute for Research and Development in Microtechnologies (IMT Bucharest), 126A Erou Iancu Nicolae Street, 077190 Voluntari, Ilfov, Romania.
| | - Livia Alexandra Dinu
- National Institute for Research and Development in Microtechnologies (IMT Bucharest), 126A Erou Iancu Nicolae Street, 077190 Voluntari, Ilfov, Romania.
| |
Collapse
|
5
|
Scandurra A, Iacono V, Boscarino S, Scalese S, Grimaldi MG, Ruffino F. Model of Chronoamperometric Response towards Glucose Sensing by Arrays of Gold Nanostructures Obtained by Laser, Thermal and Wet Processes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1163. [PMID: 37049255 PMCID: PMC10097189 DOI: 10.3390/nano13071163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Non-enzymatic electrochemical glucose sensors are of great importance in biomedical applications, for the realization of portable diabetic testing kits and continuous glucose monitoring systems. Nanostructured materials show a number of advantages in the applications of analytical electrochemistry, compared to macroscopic electrodes, such as great sensitivity and little dependence on analyte diffusion close to the electrode-solution interface. Obtaining electrodes based on nanomaterials without using expensive lithographic techniques represents a great added value. In this paper, we modeled the chronoamperometric response towards glucose determination by four electrodes consisting of nanostructured gold onto graphene paper (GP). The nanostructures were obtained by electrochemical etch, thermal and laser processes of thin gold layer. We addressed experiments obtaining different size and shape of gold nanostructures. Electrodes have been characterized by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry, and chronoamperometry. We modeled the current-time response at the potential corresponding to two-electrons oxidation process of glucose by the different nanostructured gold systems. The finest nanostructures of 10-200 nm were obtained by laser dewetting of 17 nm thin and 300 °C thermal dewetting of 8 nm thin gold layers, and they show that semi-infinite linear diffusion mechanism predominates over radial diffusion. Electrochemical etching and 17 nm thin gold layer dewetted at 400 °C consist of larger gold islands up to 1 μm. In the latter case, the current-time curves can be fitted by a two-phase exponential decay function that relies on the mixed second-order formation of adsorbed glucose intermediate followed by its first-order decay to gluconolactone.
Collapse
Affiliation(s)
- Antonino Scandurra
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, via Santa Sofia 64, 95123 Catania, Italy; (V.I.); (S.B.); (M.G.G.); (F.R.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM, Catania University Unit), via Santa Sofia 64, 95123 Catania, Italy
- Research Unit of the University of Catania, National Interuniversity Consortium of Materials Science and Technology (INSTM-UdR of Catania), via S. Sofia 64, 95125 Catania, Italy
| | - Valentina Iacono
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, via Santa Sofia 64, 95123 Catania, Italy; (V.I.); (S.B.); (M.G.G.); (F.R.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM, Catania University Unit), via Santa Sofia 64, 95123 Catania, Italy
| | - Stefano Boscarino
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, via Santa Sofia 64, 95123 Catania, Italy; (V.I.); (S.B.); (M.G.G.); (F.R.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM, Catania University Unit), via Santa Sofia 64, 95123 Catania, Italy
| | - Silvia Scalese
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Ottava Strada, 5 (Zona Industriale), 95121 Catania, Italy;
| | - Maria Grazia Grimaldi
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, via Santa Sofia 64, 95123 Catania, Italy; (V.I.); (S.B.); (M.G.G.); (F.R.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM, Catania University Unit), via Santa Sofia 64, 95123 Catania, Italy
| | - Francesco Ruffino
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, via Santa Sofia 64, 95123 Catania, Italy; (V.I.); (S.B.); (M.G.G.); (F.R.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM, Catania University Unit), via Santa Sofia 64, 95123 Catania, Italy
- Research Unit of the University of Catania, National Interuniversity Consortium of Materials Science and Technology (INSTM-UdR of Catania), via S. Sofia 64, 95125 Catania, Italy
| |
Collapse
|