1
|
Blokland G, Maleki N, Jovicich J, Mesholam-Gately R, DeLisi L, Turner J, Shenton M, Voineskos A, Kahn R, Roffman J, Holt D, Ehrlich S, Kikinis Z, Dazzan P, Murray R, Lee J, Sim K, Lam M, de Zwarte S, Walton E, Kelly S, Picchioni M, Bramon E, Makris N, David A, Mondelli V, Reinders A, Oykhman E, Morris D, Gill M, Corvin A, Cahn W, Ho N, Liu J, Gollub R, Manoach D, Calhoun V, Sponheim S, Buka S, Cherkerzian S, Thermenos H, Dickie E, Ciufolini S, Reis Marques T, Crossley N, Purcell S, Smoller J, van Haren N, Toulopoulou T, Donohoe G, Goldstein J, Keshavan M, Petryshen T, del Re E. MIR137 polygenic risk for schizophrenia and ephrin-regulated pathway: Role in lateral ventricles and corpus callosum volume. Int J Clin Health Psychol 2024; 24:100458. [PMID: 38623146 PMCID: PMC11017057 DOI: 10.1016/j.ijchp.2024.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Background/Objective. Enlarged lateral ventricle (LV) volume and decreased volume in the corpus callosum (CC) are hallmarks of schizophrenia (SZ). We previously showed an inverse correlation between LV and CC volumes in SZ, with global functioning decreasing with increased LV volume. This study investigates the relationship between LV volume, CC abnormalities, and the microRNA MIR137 and its regulated genes in SZ, because of MIR137's essential role in neurodevelopment. Methods. Participants were 1224 SZ probands and 1466 unaffected controls from the GENUS Consortium. Brain MRI scans, genotype, and clinical data were harmonized across cohorts and employed in the analyses. Results. Increased LV volumes and decreased CC central, mid-anterior, and mid-posterior volumes were observed in SZ probands. The MIR137-regulated ephrin pathway was significantly associated with CC:LV ratio, explaining a significant proportion (3.42 %) of CC:LV variance, and more than for LV and CC separately. Other pathways explained variance in either CC or LV, but not both. CC:LV ratio was also positively correlated with Global Assessment of Functioning, supporting previous subsample findings. SNP-based heritability estimates were higher for CC central:LV ratio (0.79) compared to CC or LV separately. Discussion. Our results indicate that the CC:LV ratio is highly heritable, influenced in part by variation in the MIR137-regulated ephrin pathway. Findings suggest that the CC:LV ratio may be a risk indicator in SZ that correlates with global functioning.
Collapse
Affiliation(s)
- G.A.M. Blokland
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Netherlands
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - N. Maleki
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - J. Jovicich
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - R.I. Mesholam-Gately
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - L.E. DeLisi
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Cambridge Health Alliance, Cambridge, MA, United States
| | - J.A. Turner
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, United States
| | - M.E. Shenton
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton, MA, United States
| | - A.N. Voineskos
- Kimel Family Translational Imaging Genetics Laboratory, Department of Psychiatry, Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - R.S. Kahn
- Brain Centre Rudolf Magnus, Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - J.L. Roffman
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - D.J. Holt
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - S. Ehrlich
- Division of Psychological & Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Z. Kikinis
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - P. Dazzan
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - R.M. Murray
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - J. Lee
- Institute of Mental Health, Woodbridge Hospital, Singapore
| | - K. Sim
- Institute of Mental Health, Woodbridge Hospital, Singapore
| | - M. Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Institute of Mental Health, Woodbridge Hospital, Singapore
- Analytical & Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
| | - S.M.C. de Zwarte
- Brain Centre Rudolf Magnus, Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - E. Walton
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - S. Kelly
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
- Laboratory of NeuroImaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - M.M. Picchioni
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - E. Bramon
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Mental Health Neuroscience Research Department, UCL Division of Psychiatry, University College London, United Kingdom
| | - N. Makris
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - A.S. David
- Division of Psychiatry, University College London, London, United Kingdom
| | - V. Mondelli
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - A.A.T.S. Reinders
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - E. Oykhman
- Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - D.W. Morris
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging and Cognitive Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland, Galway, Ireland
| | - M. Gill
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - A.P. Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - W. Cahn
- Brain Centre Rudolf Magnus, Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - N. Ho
- Institute of Mental Health, Woodbridge Hospital, Singapore
| | - J. Liu
- Genome Institute, Singapore
| | - R.L. Gollub
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - D.S. Manoach
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - V.D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, United States
| | - S.R. Sponheim
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
| | - S.L. Buka
- Department of Epidemiology, Brown University, Providence, RI, United States
| | - S. Cherkerzian
- Department of Medicine, Division of Women's Health, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - H.W. Thermenos
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - E.W. Dickie
- Kimel Family Translational Imaging Genetics Laboratory, Department of Psychiatry, Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - S. Ciufolini
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - T. Reis Marques
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - N.A. Crossley
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - S.M. Purcell
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
- Division of Psychiatric Genomics, Departments of Psychiatry and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - J.W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - N.E.M. van Haren
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - T. Toulopoulou
- Department of Psychology & National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Centre (ASBAM), Bilkent University, Ankara, Turkey
- Department of Psychiatry, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - G. Donohoe
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging and Cognitive Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland, Galway, Ireland
| | - J.M. Goldstein
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Department of Medicine, Division of Women's Health, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - M.S. Keshavan
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - T.L. Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - E.C. del Re
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton, MA, United States
| |
Collapse
|
2
|
Grycel K, Larsen NY, Feng Y, Qvortrup K, Jensen PH, Fayyaz M, Madsen MG, Midtgaard J, Xu Z, Hasselholt S, Nyengaard JR. CRMP2 conditional knockout changes axonal function and ultrastructure of axons in mice corpus callosum. Mol Cell Neurosci 2023; 126:103882. [PMID: 37479154 DOI: 10.1016/j.mcn.2023.103882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023] Open
Abstract
Collapsin response mediator protein 2 (CRMP2) is a member of a protein family, which is highly involved in neurodevelopment, but most of its members become heavily downregulated in adulthood. CRMP2 is an important factor in neuronal polarization, axonal formation and growth cone collapse. The protein remains expressed in adulthood, but is more region specific. CRMP2 is present in adult corpus callosum (CC) and in plastic areas like prefrontal cortex and hippocampus. CRMP2 has been implicated as one of the risk-genes for Schizophrenia (SZ). Here, a CRMP2 conditional knockout (CRMP2-cKO) mouse was used as a model of SZ to investigate how it could affect the white matter and therefore brain connectivity. Multielectrode electrophysiology (MEA) was used to study the function of corpus callosum showing an increase in conduction velocity (CV) measured as Compound Action Potentials (CAPs) in acute brain slices. Light- and electron-microscopy, specifically Serial Block-face Scanning Electron Microscopy (SBF-SEM), methods were used to study the structure of CC in CRMP2-cKO mice. A decrease in CC volume of CRMP2-cKO mice as compared to controls was observed. No differences were found in numbers nor in the size of CC oligodendrocytes (OLs). Similarly, no differences were found in myelin thickness or in node of Ranvier (NR) structure. In contrast, abnormally smaller axons were measured in the CRMP2-cKO mice. Using these state-of-the-art methods it was possible to shed light on specific parts of the dysconnectivity aspect of deletion of CRMP2 related to SZ and add details to previous findings helping further understanding the disease. This paper substantiates the white matter changes in the absence of CRMP2 and ties it to the role it plays in this complex disorder.
Collapse
Affiliation(s)
- Katarzyna Grycel
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; Sino-Danish College (SDC), University of Chinese Academy of Sciences, China.
| | - Nick Y Larsen
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| | - Yinghang Feng
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Klaus Qvortrup
- Core Facility for Integrated Microscopy, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Poul Henning Jensen
- DANDRITE, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark.
| | - Mishal Fayyaz
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; Sino-Danish College (SDC), University of Chinese Academy of Sciences, China
| | - Malene G Madsen
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| | - Jens Midtgaard
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Stine Hasselholt
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| | - Jens R Nyengaard
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; Sino-Danish College (SDC), University of Chinese Academy of Sciences, China; Department of Pathology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
| |
Collapse
|
3
|
Qian H, Liu X, Guo Z, Wang G, Chen X, Liu J. Alterations in Resting-State Interhemispheric Coordination With Refractory Auditory Verbal Hallucinations in Schizophrenia. J Neuropsychiatry Clin Neurosci 2023; 35:385-392. [PMID: 37259546 DOI: 10.1176/appi.neuropsych.20220054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate resting-state interhemispheric functional connectivity in patients with schizophrenia and refractory auditory verbal hallucinations (RAVHs) by using voxel-mirrored homotopic connectivity (VMHC). METHODS Thirty-four patients with schizophrenia and RAVHs (RAVH group), 23 patients with schizophrenia but no auditory verbal hallucinations (non-AVH group), and 28 matched healthy volunteers (healthy control group) were recruited in China. VMHC analyses were used to identify brain areas with significant differences in functional connectivity among the three groups, and correlations between symptom scores and neurological measures were examined. RESULTS VMHC analyses showed aberrant bilateral connectivity between several homotopic brain regions: the RAVH and non-AVH groups showed differences in bilateral connectivity of the superior and middle temporal gyri, and the RAVH and healthy control groups showed differences in bilateral connectivity of the gyrus rectus, inferior frontal gyrus, and putamen. In addition, interhemispheric connectivity of the superior and middle temporal gyri correlated with patients' positive symptom scores. CONCLUSIONS These findings may help to elucidate the pathophysiological mechanisms underlying auditory verbal hallucinations. The results revealed interhemispheric functional dysconnectivity among patients with schizophrenia and suggest that the dysconnectivity of homotopic brain regions may play an important role in the development of auditory verbal hallucinations.
Collapse
Affiliation(s)
- Huichang Qian
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China (Qian, J. Liu); Department of Radiology, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China (X. Liu); Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, China (Guo); and Departments of Radiology (Wang), Psychogeriatrics (Chen), and Science and Education (J. Liu), Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Xiaozheng Liu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China (Qian, J. Liu); Department of Radiology, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China (X. Liu); Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, China (Guo); and Departments of Radiology (Wang), Psychogeriatrics (Chen), and Science and Education (J. Liu), Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Zhongwei Guo
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China (Qian, J. Liu); Department of Radiology, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China (X. Liu); Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, China (Guo); and Departments of Radiology (Wang), Psychogeriatrics (Chen), and Science and Education (J. Liu), Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Guanjun Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China (Qian, J. Liu); Department of Radiology, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China (X. Liu); Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, China (Guo); and Departments of Radiology (Wang), Psychogeriatrics (Chen), and Science and Education (J. Liu), Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Xiuhong Chen
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China (Qian, J. Liu); Department of Radiology, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China (X. Liu); Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, China (Guo); and Departments of Radiology (Wang), Psychogeriatrics (Chen), and Science and Education (J. Liu), Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Jian Liu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China (Qian, J. Liu); Department of Radiology, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China (X. Liu); Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, China (Guo); and Departments of Radiology (Wang), Psychogeriatrics (Chen), and Science and Education (J. Liu), Hangzhou Seventh People's Hospital, Hangzhou, China
| |
Collapse
|
4
|
Chang X, Zhao W, Kang J, Xiang S, Xie C, Corona-Hernández H, Palaniyappan L, Feng J. Language abnormalities in schizophrenia: binding core symptoms through contemporary empirical evidence. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:95. [PMID: 36371445 PMCID: PMC9653408 DOI: 10.1038/s41537-022-00308-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Both the ability to speak and to infer complex linguistic messages from sounds have been claimed as uniquely human phenomena. In schizophrenia, formal thought disorder (FTD) and auditory verbal hallucinations (AVHs) are manifestations respectively relating to concrete disruptions of those abilities. From an evolutionary perspective, Crow (1997) proposed that "schizophrenia is the price that Homo sapiens pays for the faculty of language". Epidemiological and experimental evidence points to an overlap between FTD and AVHs, yet a thorough investigation examining their shared neural mechanism in schizophrenia is lacking. In this review, we synthesize observations from three key domains. First, neuroanatomical evidence indicates substantial shared abnormalities in language-processing regions between FTD and AVHs, even in the early phases of schizophrenia. Second, neurochemical studies point to a glutamate-related dysfunction in these language-processing brain regions, contributing to verbal production deficits. Third, genetic findings further show how genes that overlap between schizophrenia and language disorders influence neurodevelopment and neurotransmission. We argue that these observations converge into the possibility that a glutamatergic dysfunction in language-processing brain regions might be a shared neural basis of both FTD and AVHs. Investigations of language pathology in schizophrenia could facilitate the development of diagnostic tools and treatments, so we call for multilevel confirmatory analyses focused on modulations of the language network as a therapeutic goal in schizophrenia.
Collapse
Affiliation(s)
- Xiao Chang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wei Zhao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, PR China
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Shanghai Center for Mathematical Sciences, Shanghai, China
| | - Shitong Xiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Chao Xie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Hugo Corona-Hernández
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
- Lawson Health Research Institute, London, Ontario, Canada.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, China.
- Shanghai Center for Mathematical Sciences, Shanghai, China.
- Department of Computer Science, University of Warwick, Coventry, UK.
| |
Collapse
|
5
|
Jitsuishi T, Yamaguchi A. Searching for optimal machine learning model to classify mild cognitive impairment (MCI) subtypes using multimodal MRI data. Sci Rep 2022; 12:4284. [PMID: 35277565 PMCID: PMC8917197 DOI: 10.1038/s41598-022-08231-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
The intervention at the stage of mild cognitive impairment (MCI) is promising for preventing Alzheimer's disease (AD). This study aims to search for the optimal machine learning (ML) model to classify early and late MCI (EMCI and LMCI) subtypes using multimodal MRI data. First, the tract-based spatial statistics (TBSS) analyses showed LMCI-related white matter changes in the Corpus Callosum. The ROI-based tractography addressed the connected cortical areas by affected callosal fibers. We then prepared two feature subsets for ML by measuring resting-state functional connectivity (TBSS-RSFC method) and graph theory metrics (TBSS-Graph method) in these cortical areas, respectively. We also prepared feature subsets of diffusion parameters in the regions of LMCI-related white matter alterations detected by TBSS analyses. Using these feature subsets, we trained and tested multiple ML models for EMCI/LMCI classification with cross-validation. Our results showed the ensemble ML model (AdaBoost) with feature subset of diffusion parameters achieved better performance of mean accuracy 70%. The useful brain regions for classification were those, including frontal, parietal lobe, Corpus Callosum, cingulate regions, insula, and thalamus regions. Our findings indicated the optimal ML model using diffusion parameters might be effective to distinguish LMCI from EMCI subjects at the prodromal stage of AD.
Collapse
Affiliation(s)
- Tatsuya Jitsuishi
- Department of Functional Anatomy, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Atsushi Yamaguchi
- Department of Functional Anatomy, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
6
|
Barattieri di San Pietro C, Barbieri E, Marelli M, de Girolamo G, Luzzatti C. Processing Argument Structure and Syntactic Complexity in People with Schizophrenia Spectrum Disorders. JOURNAL OF COMMUNICATION DISORDERS 2022; 96:106182. [PMID: 35065337 DOI: 10.1016/j.jcomdis.2022.106182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Deficits in language comprehension and production have been repeatedly observed in Schizophrenia Spectrum Disorders (SSD). However, the characterization of the language profile of this population is far from complete, and the relationship between language deficits, impaired thinking and cognitive functions is widely debated. OBJECTIVE The aims of the present study were to assess production and comprehension of verbs with different argument structures, as well as production and comprehension of sentences with canonical and non-canonical word order in people with SSD. In addition, the study investigated the relationship between language deficits and cognitive functions. METHODS Thirty-four participants with a diagnosis of SSD and a group of healthy control participants (HC) were recruited and evaluated using the Italian version of the Northwestern Assessment of Verbs and Sentences (NAVS, Cho-Reyes & Thompson, 2012; Barbieri et al., 2019). RESULTS Results showed that participants with SSD were impaired - compared to HC - on both verb and sentence production, as well as on comprehension of syntactically complex (but not simple) sentences. While verb production was equally affected by verb-argument structure complexity in both SSD and HC, sentence comprehension was disproportionately more affected by syntactic complexity in SSD than in HC. In addition, in the SSD group, verb production deficits were predicted by performance on a measure of visual attention, while sentence production and comprehension deficits were explained by performance on measures of executive functions and working memory, respectively. DISCUSSION Our findings support the hypothesis that language deficits in SSD may be one aspect of a more generalized, multi-domain, cognitive impairment, and are consistent with previous findings pointing to reduced inter- and intra-hemispheric connectivity as a possible substrate for such deficits. The study provides a systematic characterization of lexical and syntactic deficits in SSD and demonstrates that psycholinguistically-based assessment tools may be able to capture language deficits in this population.
Collapse
Affiliation(s)
| | - Elena Barbieri
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Marco Marelli
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; Milan Center for Neuroscience, NeuroMI
| | - Giovanni de Girolamo
- Psychiatric Epidemiology and Evaluation Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Claudio Luzzatti
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; Milan Center for Neuroscience, NeuroMI
| |
Collapse
|
7
|
Increased Homotopic Connectivity in the Prefrontal Cortex Modulated by Olanzapine Predicts Therapeutic Efficacy in Patients with Schizophrenia. Neural Plast 2021; 2021:9954547. [PMID: 34512748 PMCID: PMC8429031 DOI: 10.1155/2021/9954547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/08/2021] [Accepted: 08/18/2021] [Indexed: 11/18/2022] Open
Abstract
Background Previous studies have revealed the abnormalities in homotopic connectivity in schizophrenia. However, the relationship of these deficits to antipsychotic treatment in schizophrenia remains unclear. This study explored the effects of antipsychotic therapy on brain homotopic connectivity and whether the homotopic connectivity of these regions might predict individual treatment response in schizophrenic patients. Methods A total of 21 schizophrenic patients and 20 healthy controls were scanned by the resting-state functional magnetic resonance imaging. The patients received olanzapine treatment and were scanned at two time points. Voxel-mirrored homotopic connectivity (VMHC) and pattern classification techniques were applied to analyze the imaging data. Results Schizophrenic patients presented significantly decreased VMHC in the temporal and inferior frontal gyri, medial prefrontal cortex (MPFC), and motor and low-level sensory processing regions (including the fusiform gyrus and cerebellum lobule VI) relative to healthy controls. The VMHC in the superior/middle MPFC was significantly increased in the patients after eight weeks of treatment. Support vector regression (SVR) analyses revealed that VMHC in the superior/middle MPFC at baseline can predict the symptomatic improvement of the positive and negative syndrome scale after eight weeks of treatment. Conclusions This study demonstrated that olanzapine treatment may normalize decreased homotopic connectivity in the superior/middle MPFC in schizophrenic patients. The VMHC in the superior/middle MPFC may predict individual response for antipsychotic therapy. The findings of this study conduce to the comprehension of the therapy effects of antipsychotic medications on homotopic connectivity in schizophrenia.
Collapse
|
8
|
Podwalski P, Tyburski E, Szczygieł K, Waszczuk K, Rek-Owodziń K, Mak M, Plichta P, Bielecki M, Rudkowski K, Kucharska-Mazur J, Andrusewicz W, Misiak B, Szulc A, Michalczyk A, Michałowska S, Sagan L, Samochowiec J. White Matter Integrity of the Corpus Callosum and Psychopathological Dimensions in Deficit and Non-Deficit Schizophrenia Patients. J Clin Med 2021; 10:jcm10112225. [PMID: 34063845 PMCID: PMC8196621 DOI: 10.3390/jcm10112225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Deficit syndrome (DS) is a subtype of schizophrenia characterized by primary persistent negative symptoms. The corpus callosum (CC) appears to be related to psychopathology in schizophrenia. This study assessed white matter integrity in the CC using diffusion tensor imaging (DTI) in deficit and non-deficit schizophrenia (NDS) patients. We also investigated the psychopathological dimensions of schizophrenia and their relationship to CC integrity. Fifteen DS patients, 40 NDS patients, and 30 healthy controls (HC) underwent psychiatric evaluation and neuroimaging. We divided the CC into five regions and assessed their fractional anisotropy (FA) and mean diffusivity (MD). Psychopathology was assessed with the Positive and Negative Syndrome Scale. DS patients had lower FA than NDS patients and HC, and higher MD in Region 5 of the CC than did HC. NDS patients had higher MD in Region 4 of the CC. The patient groups differed in terms of negative symptoms. After differentiating clinical groups and HC, no significant correlations were observed between DTI measures and psychopathological symptoms. Our results suggest that DS and NDS are characterized by minor impairments of the posterior CC. We confirmed that DS patients have greater negative psychopathology than NDS patients. Our results are preliminary, and further studies are needed.
Collapse
Affiliation(s)
- Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
- Correspondence:
| | - Ernest Tyburski
- Institute of Psychology, SWPS University of Social Sciences and Humanities, 61-719 Poznan, Poland;
| | - Krzysztof Szczygieł
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Katarzyna Rek-Owodziń
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Piotr Plichta
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Maksymilian Bielecki
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.); (P.P.); (M.B.)
| | - Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Wojciech Andrusewicz
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland; (W.A.); (L.S.)
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University in Warsaw, 05-802 Warsaw, Poland;
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| | - Sylwia Michałowska
- Department of Clinical Psychology, Institute of Psychology, University of Szczecin, 71-004 Szczecin, Poland;
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland; (W.A.); (L.S.)
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.); (K.W.); (K.R.); (J.K.-M.); (A.M.); (J.S.)
| |
Collapse
|
9
|
Li D, Tang W, Yan T, Zhang N, Xiang J, Niu Y, Wang B. Abnormalities in hemispheric lateralization of intra- and inter-hemispheric white matter connections in schizophrenia. Brain Imaging Behav 2021; 15:819-832. [PMID: 32767209 DOI: 10.1007/s11682-020-00292-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hemispheric lateralization is a prominent feature of the human brain and is grounded into intra- and inter-hemispheric white matter (WM) connections. However, disruptions in hemispheric lateralization involving both intra- and inter-hemispheric WM connections in schizophrenia is still unclear. Hence, a quantitative measure of the hemispheric lateralization of intra- and inter-hemispheric WM connections could provide new insights into schizophrenia. This work performed diffusion tensor imaging on 50 patients and 58 matched healthy controls. Using graph theory, the global and nodal efficiencies were computed for both intra- and inter-hemispheric networks. We found that patients with schizophrenia showed significantly decrease in both global and nodal efficiency of hemispheric networks relative to healthy controls. Specially, deficits in intra-hemispheric integration and inter-hemispheric communication were revealed in frontal and temporal regions for schizophrenia. We also found disrupted hemispheric asymmetries in brain regions associated with emotion, memory, and visual processes for schizophrenia. Moreover, abnormal hemispheric asymmetry of nodal efficiency was significantly correlated with the symptom of the patients. Our finding indicated that the hemispheric WM lateralization of intra- and inter-hemispheric connections could serve as a potential imaging biomarker for schizophrenia.
Collapse
Affiliation(s)
- Dandan Li
- College of Information and Computer, Taiyuan University of Technology, Shanxi, China
| | - Wenjing Tang
- School of Mechanical, Electrical and Information Engineering, Shandong University at Weihai, Shandong, China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Shanxi, China
| | - Nan Zhang
- College of Information and Computer, Taiyuan University of Technology, Shanxi, China
| | - Jie Xiang
- College of Information and Computer, Taiyuan University of Technology, Shanxi, China
| | - Yan Niu
- College of Information and Computer, Taiyuan University of Technology, Shanxi, China
| | - Bin Wang
- College of Information and Computer, Taiyuan University of Technology, Shanxi, China.
- Translational Medicine Research Center, Shanxi Medical University, Shanxi, China.
| |
Collapse
|
10
|
Altered interhemispheric signal propagation in schizophrenia and depression. Clin Neurophysiol 2021; 132:1604-1611. [PMID: 34030057 DOI: 10.1016/j.clinph.2021.03.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/04/2021] [Accepted: 03/19/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Altered interhemispheric connectivity is implicated in the pathophysiology of schizophrenia (SCZ) and major depressive disorder (MDD) and may account for deficits in lateralized cognitive processes. We measured transcranial magnetic stimulation evoked interhemispheric signal propagation (ISP), a non-invasive measure of transcallosal connectivity, and hypothesized that the SCZ and MDD groups will have increased ISP compared to healthy controls. METHODS We evaluated ISP over the dorsolateral prefrontal cortex in 34 patients with SCZ and 34 patients with MDD compared to 32 age and sex-matched healthy controls. RESULTS ISP was significantly increased in patients with SCZ and patients with MDD compared to healthy controls but did not differ between patient groups. There were no effects of antidepressant, antipsychotic, and benzodiazepine medications on ISP and our results remained unchanged after re-analysis with a region of interest method. CONCLUSION Altered ISP was found in both SCZ and MDD patient groups. This indicates that disruptions of interhemispheric signaling processes can be indexed with ISP across psychiatric populations. SIGNIFICANCE These findings enhance our knowledge of the physiological mechanisms of interhemispheric imbalances in SCZ and MDD, which may serve as potential treatment targets in future patients.
Collapse
|
11
|
McNabb CB, McIlwain ME, Anderson VM, Kydd RR, Sundram F, Russell BR. Aberrant white matter microstructure in treatment-resistant schizophrenia ✰. Psychiatry Res Neuroimaging 2020; 305:111198. [PMID: 33035754 DOI: 10.1016/j.pscychresns.2020.111198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/01/2023]
Abstract
Treatment response in schizophrenia divides into three subcategories: treatment-responsive (first-line responders; FLR), treatment-resistant (TRS), and ultra-treatment-resistant schizophrenia (UTRS). White matter abnormalities could drive antipsychotic resistance but little work has investigated differences between TRS and UTRS. The current study aimed to establish whether differences in white matter structure are present across both treatment-resistant subtypes or if UTRS is distinct from TRS. Diffusion-weighted images were acquired for 18 individuals with TRS, 14 with UTRS, 18 FLR and 20 healthy controls. Measures of fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD) were obtained using tract-based spatial statistics. Analysis of variance and post-hoc t-tests were conducted for each measure. Those with TRS had lower FA than healthy controls in superior longitudinal fasciculus, corpus callosum, thalamic radiation, corticospinal tract, internal capsule, corona radiata and fronto-occipital fasciculus (p<.05 FWE-corrected). Lower FA was also observed in TRS compared with UTRS in the superior longitudinal fasciculus (p<.05 FWE-corrected). No post-hoc tests survived corrections for multiple comparisons and no differences in MD, AD or RD were observed. These data suggest that microstructural deficits in white matter could contribute to TRS but suggest that other mechanisms may be more relevant for UTRS.
Collapse
Affiliation(s)
- Carolyn B McNabb
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; School of Psychology and Clinical Language Sciences, University of Reading, Earley Gate, Reading RG6 7BE, United Kingdom
| | - Meghan E McIlwain
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Valerie M Anderson
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Robert R Kydd
- Department of Psychological Medicine, University of Auckland, Auckland City Hospital, 2 Park Road, Grafton, Auckland 1023, New Zealand
| | - Frederick Sundram
- Department of Psychological Medicine, University of Auckland, Auckland City Hospital, 2 Park Road, Grafton, Auckland 1023, New Zealand
| | - Bruce R Russell
- School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
12
|
Tan AS, Chew QH, Sim K. Cerebral white matter changes in deficit and non-deficit subtypes of schizophrenia. J Neural Transm (Vienna) 2020; 127:1073-1079. [PMID: 32435900 DOI: 10.1007/s00702-020-02207-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/08/2020] [Indexed: 01/01/2023]
Abstract
The considerable clinical heterogeneity in schizophrenia makes elucidation of its neurobiology challenging. Subtyping the disorder is one way to reduce this heterogeneity and deficit status is one such categorization based on the prominence of negative symptoms. We aimed to utilize diffusion tensor imaging (DTI) to identify unique white matter cerebral changes in deficit schizophrenia (DS) compared with non-deficit schizophrenia (NDS) and healthy controls (HC) in an Asian sample. A total of 289 subjects (111 HC, 133 NDS and 45 DS) underwent DTI and completed rating scales which assessed the severity of psychopathology, psychosocial functioning and premorbid intelligence.We found that DS patients had fractional anisotropy (FA) reductions in the Body of the Corpus Callosum (BCC) and right Posterior Thalamic Radiation (PTR) regions relative to HCs, and FA reductions in the right PTR relative to NDS patients. NDS patients had FA reductions of the BCC and right PTR relative to HCs. Binomial logistic regression analyses revealed that FA reductions of the right PTR FA was an independent predictor of deficit status. The identified brain white matter changes especially in the PTR relate to deficits of cognitive control and emotional awareness, which may underlie psychopathology associated with deficit status like inattention and affective blunting. These potential biomarkers of DS warrant further examination to determine their utility for monitoring illness progression and intervention response in schizophrenia.
Collapse
Affiliation(s)
- An Sen Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Qian Hui Chew
- Institute of Mental Health, 10, Buangkok View, Singapore, Republic of Singapore
| | - Kang Sim
- Institute of Mental Health, 10, Buangkok View, Singapore, Republic of Singapore.
| |
Collapse
|
13
|
van den Heuvel MP, Scholtens LH, de Lange SC, Pijnenburg R, Cahn W, van Haren NEM, Sommer IE, Bozzali M, Koch K, Boks MP, Repple J, Pievani M, Li L, Preuss TM, Rilling JK. Evolutionary modifications in human brain connectivity associated with schizophrenia. Brain 2019; 142:3991-4002. [PMID: 31724729 PMCID: PMC6906591 DOI: 10.1093/brain/awz330] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/13/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
The genetic basis and human-specific character of schizophrenia has led to the hypothesis that human brain evolution may have played a role in the development of the disorder. We examined schizophrenia-related changes in brain connectivity in the context of evolutionary changes in human brain wiring by comparing in vivo neuroimaging data from humans and chimpanzees, one of our closest living evolutionary relatives and a species with which we share a very recent common ancestor. We contrasted the connectome layout between the chimpanzee and human brain and compared differences with the pattern of schizophrenia-related changes in brain connectivity as observed in patients. We show evidence of evolutionary modifications of human brain connectivity to significantly overlap with the cortical pattern of schizophrenia-related dysconnectivity (P < 0.001, permutation testing). We validated these effects in three additional, independent schizophrenia datasets. We further assessed the specificity of effects by examining brain dysconnectivity patterns in seven other psychiatric and neurological brain disorders (including, among others, major depressive disorder and obsessive-compulsive disorder, arguably characterized by behavioural symptoms that are less specific to humans), which showed no such associations with modifications of human brain connectivity. Comparisons of brain connectivity across humans, chimpanzee and macaques further suggest that features of connectivity that evolved in the human lineage showed the strongest association to the disorder, that is, brain circuits potentially related to human evolutionary specializations. Taken together, our findings suggest that human-specific features of connectome organization may be enriched for changes in brain connectivity related to schizophrenia. Modifications in human brain connectivity in service of higher order brain functions may have potentially also rendered the brain vulnerable to brain dysfunction.
Collapse
Affiliation(s)
- Martijn P van den Heuvel
- Connectome Lab, Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Lianne H Scholtens
- Connectome Lab, Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Siemon C de Lange
- Connectome Lab, Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Rory Pijnenburg
- Connectome Lab, Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Neeltje E M van Haren
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, The Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Iris E Sommer
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, The Netherlands
- Department of Neuroscience and Department of Psychiatry, University Medical Center Groningen, The Netherlands
| | - Marco Bozzali
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex, UK
- Neuroimaging Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Kathrin Koch
- Department of Neuroradiology and TUM-Neuroimaging Center (TUM-NIC), School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich, Germany
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Jonathan Repple
- Department of Psychiatry, University of Muenster, Muenster, Germany
| | - Michela Pievani
- Lab Alzheimer’s Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Longchuan Li
- Marcus Autism Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Todd M Preuss
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - James K Rilling
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Atlanta, GA, USA
- Department of Anthropology, Emory University, 1557 Dickey Drive, Atlanta, GA 30322, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
14
|
Oestreich LKL, Randeniya R, Garrido MI. Auditory prediction errors and auditory white matter microstructure associated with psychotic-like experiences in healthy individuals. Brain Struct Funct 2019; 224:3277-3289. [PMID: 31686202 DOI: 10.1007/s00429-019-01972-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 10/17/2019] [Indexed: 12/23/2022]
Abstract
Our sensory systems actively predict sensory information based on previously learnt patterns, which are continuously updated with information from the actual sensory input via prediction errors. Individuals with schizophrenia consistently show reduced auditory prediction errors as well as altered fractional anisotropy (indicative of white matter changes) in the arcuate fasciculus and the auditory interhemispheric pathway, both of which are auditory white matter pathways associated with prediction errors. However, it is not clear if healthy individuals with psychotic-like experiences exhibit similar deficits. Participants underwent electroencephalography (EEG) recordings while listening to a classical two-tone duration deviant oddball paradigm (n = 103) and a stochastic oddball paradigm (n = 89). A subset of participants (n = 89) also underwent diffusion-weighted magnetic resonance imaging (MRI). Fractional anisotropy (FA), was extracted from the arcuate fasciculi and the auditory interhemispheric pathway. While prediction errors evoked by the classical oddball paradigm failed to reveal significant effects, the stochastic oddball paradigm elicited significant clusters at the typical mismatch negativity time window. Furthermore, we observed that FA of the arcuate fasciculi and auditory interhemispheric pathway significantly improved predictive models of psychotic-like experiences in healthy individuals over and above predictions made by auditory prediction error responses alone. Specifically, we observed that decreasing FA in the auditory interhemispheric pathway and reducing ability to learn stochastic irregularities are associated with increasing CAPE + scores. To the extent that these associations have previously been reported in patients with schizophrenia, the findings from this study suggest that both, auditory prediction errors and white matter changes in the auditory interhemispheric pathway, may have the potential to be translated into early screening markers for psychosis.
Collapse
Affiliation(s)
- L K L Oestreich
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia. .,Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia. .,Royal Brisbane and Women's Hospital, Brisbane, Australia.
| | - R Randeniya
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia.,ARC Centre for Integrative Brain Function, Clayton, Australia
| | - M I Garrido
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Australia.,Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia.,ARC Centre for Integrative Brain Function, Clayton, Australia
| |
Collapse
|
15
|
Madigand J, Tréhout M, Delcroix N, Dollfus S, Leroux E. Corpus callosum microstructural and macrostructural abnormalities in schizophrenia according to the stage of disease. Psychiatry Res Neuroimaging 2019; 291:63-70. [PMID: 31401547 DOI: 10.1016/j.pscychresns.2019.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022]
Abstract
Corpus callosum (CC) volume and surface (macrostructural) studies remain controversial and have not considered the illness duration (ID) systematically. Regardless of ID, some CC macrostructural studies have shown no difference between SZ patients and healthy controls (HC), whereas others have reported macrostructural abnormalities in SZ. Conversely, CC microstructural studies are more in agreement with alterations in CC integrity regardless of the patients' ID, but the direction and degree of these abnormalities over time remain unknown. Moreover, no study has explored both the micro- and macrostructure of the CC in SZ by considering the stage of disease. Both CC micro- and macrostructural data were investigated in 43 SZ patients and compared between two patient groups (21 patients with a short ID and 22 with a long ID) and HC (23 participants) using diffusion tensor and structural imaging. CC microstructural alterations were detected in both SZ groups compared to the HC group, without differences between the SZ groups. In contrast, CC macrostructural alterations were only found in the long ID group. CC microstructural alterations might be detected in schizophrenia at an early stage, without an increase of magnitude thereafter, while CC macrostructural alterations might become apparent at later stages of the illness.
Collapse
Affiliation(s)
- Jérémy Madigand
- Normandie Univ, UNICAEN, ISTS EA 7466, GIP CYCERON, Caen F-14000, France; CHU de Caen, Service de psychiatrie Adulte, Centre Esquirol, Caen F-14000, France; Normandie Univ, UNICAEN, UFR de Médecine (Medical School), Caen F-14000, France.
| | - Maxime Tréhout
- Normandie Univ, UNICAEN, ISTS EA 7466, GIP CYCERON, Caen F-14000, France; CHU de Caen, Service de psychiatrie Adulte, Centre Esquirol, Caen F-14000, France; Normandie Univ, UNICAEN, UFR de Médecine (Medical School), Caen F-14000, France.
| | - Nicolas Delcroix
- Normandie Univ, UNICAEN, CNRS, UMS GIP CYCERON, Caen F-14000, France.
| | - Sonia Dollfus
- Normandie Univ, UNICAEN, ISTS EA 7466, GIP CYCERON, Caen F-14000, France; CHU de Caen, Service de psychiatrie Adulte, Centre Esquirol, Caen F-14000, France; Normandie Univ, UNICAEN, UFR de Médecine (Medical School), Caen F-14000, France.
| | - Elise Leroux
- Normandie Univ, UNICAEN, ISTS EA 7466, GIP CYCERON, Caen F-14000, France.
| |
Collapse
|
16
|
Guo W, Liu F, Chen J, Wu R, Li L, Zhang Z, Chen H, Zhao J. Treatment effects of olanzapine on homotopic connectivity in drug-free schizophrenia at rest. World J Biol Psychiatry 2019. [PMID: 28649941 DOI: 10.1080/15622975.2017.1346280] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Deficits in homotopic connectivity have been implicated in schizophrenia. However, alterations in homotopic connectivity associated with antipsychotic treatments in schizophrenia remain unclear due to lack of longitudinal studies. METHODS Seventeen drug-free patients with recurrent schizophrenia and 24 healthy controls underwent resting-state functional magnetic resonance imaging scans. The patients were scanned at three time points (baseline, at 6 weeks of treatment, and at 6 months of treatment). Voxel-mirrored homotopic connectivity (VMHC) was applied to analyse the imaging data to examine alterations in VMHC associated with antipsychotic treatment. RESULTS The results showed that patients with schizophrenia exhibited decreased VMHC in the default-mode network (such as the precuneus and inferior parietal lobule) and the motor and sensory processing regions (such as the lingual gyrus, fusiform gyrus and cerebellum lobule VI), which could be normalised or denormalised by olanzapine treatment. In addition, negative correlations were found between decreased VMHC and symptom severity in the patients at baseline. CONCLUSIONS The present study shows that olanzapine treatment can normalise or denormalise decreased homotopic connectivity in schizophrenia. The findings also provide a new perspective to understand treatment effects of antipsychotic drugs on homotopic connectivity in schizophrenia that contribute to the disconnection hypothesis of this disease.
Collapse
Affiliation(s)
- Wenbin Guo
- a Department of Psychiatry , The Second Xiangya Hospital, Central South University , Changsha , Hunan , China.,b Mental Health Institute of the Second Xiangya Hospital , Central South University , Changsha , Hunan , China.,c National Clinical Research Center on Mental Disorders , Changsha , Hunan , China.,d National Technology Institute on Mental Disorders , Changsha , Hunan , China.,e Hunan Key Laboratory of Psychiatry and Mental Health , Changsha , Hunan , China
| | - Feng Liu
- f Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology , University of Electronic Science and Technology of China , Chengdu , Sichuan , China
| | - Jindong Chen
- a Department of Psychiatry , The Second Xiangya Hospital, Central South University , Changsha , Hunan , China.,b Mental Health Institute of the Second Xiangya Hospital , Central South University , Changsha , Hunan , China.,c National Clinical Research Center on Mental Disorders , Changsha , Hunan , China.,d National Technology Institute on Mental Disorders , Changsha , Hunan , China.,e Hunan Key Laboratory of Psychiatry and Mental Health , Changsha , Hunan , China
| | - Renrong Wu
- a Department of Psychiatry , The Second Xiangya Hospital, Central South University , Changsha , Hunan , China.,b Mental Health Institute of the Second Xiangya Hospital , Central South University , Changsha , Hunan , China.,d National Technology Institute on Mental Disorders , Changsha , Hunan , China.,e Hunan Key Laboratory of Psychiatry and Mental Health , Changsha , Hunan , China.,f Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology , University of Electronic Science and Technology of China , Chengdu , Sichuan , China
| | - Lehua Li
- a Department of Psychiatry , The Second Xiangya Hospital, Central South University , Changsha , Hunan , China.,b Mental Health Institute of the Second Xiangya Hospital , Central South University , Changsha , Hunan , China.,c National Clinical Research Center on Mental Disorders , Changsha , Hunan , China.,d National Technology Institute on Mental Disorders , Changsha , Hunan , China.,e Hunan Key Laboratory of Psychiatry and Mental Health , Changsha , Hunan , China
| | - Zhikun Zhang
- g Mental Health Center , The First Affiliated Hospital, Guangxi Medical University , Nanning , Guangxi , China
| | - Huafu Chen
- f Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology , University of Electronic Science and Technology of China , Chengdu , Sichuan , China
| | - Jingping Zhao
- a Department of Psychiatry , The Second Xiangya Hospital, Central South University , Changsha , Hunan , China.,b Mental Health Institute of the Second Xiangya Hospital , Central South University , Changsha , Hunan , China.,c National Clinical Research Center on Mental Disorders , Changsha , Hunan , China.,d National Technology Institute on Mental Disorders , Changsha , Hunan , China.,e Hunan Key Laboratory of Psychiatry and Mental Health , Changsha , Hunan , China.,h Guangzhou Hui Ai Hospital , Affliated Brain Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China
| |
Collapse
|
17
|
Ohoshi Y, Takahashi S, Yamada S, Ishida T, Tsuda K, Tsuji T, Terada M, Shinosaki K, Ukai S. Microstructural abnormalities in callosal fibers and their relationship with cognitive function in schizophrenia: A tract-specific analysis study. Brain Behav 2019; 9:e01357. [PMID: 31283112 PMCID: PMC6710197 DOI: 10.1002/brb3.1357] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/14/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The corpus callosum serves the essential role of relaying cognitive information between the homologous regions in the left and the right hemispheres of the brain. Cognitive impairment is a core dysfunction of schizophrenia, but much of its pathophysiology is unknown. The aim of this study was to elucidate the association between microstructural abnormalities of the corpus callosum and cognitive dysfunction in schizophrenia. METHODS We examined stepwise multiple regression analysis to investigate the relationship of the fractional anisotropy (FA) of callosal fibers in each segment with z-scores of each brief assessment of cognition in schizophrenia subtest and cognitive composite score in all subjects (19 patients with schizophrenia [SZ group] and 19 healthy controls [HC group]). Callosal fibers were separated into seven segments based on their cortical projection using tract-specific analysis of diffusion tensor imaging. RESULTS The FA of callosal fibers in the temporal segment was significantly associated with z-scores of token motor test, Tower of London test, and the composite score. In the SZ group, the FA of callosal fibers in the temporal segment was significantly associated with the z-score of the Tower of London test. In addition, the FA of callosal fibers in temporal segment showed significant negative association with the positive and negative syndrome scale negative score in the SZ group. Compared to the HC group, the FA in temporal segment was significantly decreased in the SZ group. CONCLUSION Our results suggest that microstructural abnormalities in the callosal white matter fibers connecting bilateral temporal lobe cortices contribute to poor executive function and severe negative symptom in patients with schizophrenia.
Collapse
Affiliation(s)
- Yuji Ohoshi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Shun Takahashi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Yamada
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Takuya Ishida
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Kumi Tsuda
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Tomikimi Tsuji
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | | | - Kazuhiro Shinosaki
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan.,Asakayama General Hospital, Osaka, Japan
| | - Satoshi Ukai
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
18
|
del Re EC, Bouix S, Fitzsimmons J, Blokland GA, Mesholam-Gately R, Wojcik J, Kikinis Z, Kubicki M, Petryshen T, Pasternak O, Shenton ME, Niznikiewicz M. Diffusion abnormalities in the corpus callosum in first episode schizophrenia: Associated with enlarged lateral ventricles and symptomatology. Psychiatry Res 2019; 277:45-51. [PMID: 30808608 PMCID: PMC6857635 DOI: 10.1016/j.psychres.2019.02.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/16/2019] [Accepted: 02/16/2019] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Abnormalities in the corpus callosum (CC) and the lateral ventricles (LV) are hallmark features of schizophrenia. These abnormalities have been reported in chronic and in first episode schizophrenia (FESZ). Here we explore further associations between CC and LV in FESZ using diffusion tensor imaging (DTI). METHODS . Sixteen FESZ patients and 16 healthy controls (HC), matched on age, gender, and handedness participated in the study. Diffusion and structural imaging scans were acquired on a 3T GE Signa magnet. Volumetric measures for LV and DTI measures for five CC subdivisions were completed in both groups. In addition, two-tensor tractography, the latter corrected for free-water (FAt), was completed for CC. Correlations between LV and DTI measures of the CC were examined in both groups, while correlations between DTI and clinical measures were examined in only FESZ. RESULTS Results from two-tensor tractography demonstrated decreased FAt and increased trace and radial diffusivity (RDt) in the five CC subdivisions in FESZ compared to HC. Central CC diffusion measures in FESZ were significantly correlated with volume of the LV, i.e., decreased FAt values were associated with larger LV volume, while increased RDt and trace values were associated with larger LV volume. In controls, correlations were also significant, but they were in the opposite direction from FESZ. In addition, decreased FAt in FESZ was associated with more positive symptoms. DISCUSSION Partial volume corrected FAt, RDt, and trace abnormalities in the CC in FESZ suggest possible de- or dys-myelination, or changes in axonal diameters, all compatible with neurodevelopmental theories of schizophrenia. Correlational findings between the volume of LV and diffusion measures in FESZ reinforce the concept of a link between abnormalities in the LV and CC in early stages of schizophrenia and are also compatible with neurodevelopmental abnormalities in this population.
Collapse
Affiliation(s)
- Elisabetta C. del Re
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Jennifer Fitzsimmons
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Gabriëlla A.M. Blokland
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Joanne Wojcik
- Commonwealth Research Center, Harvard Medical School, Boston, MA, USA
| | - Zora Kikinis
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tracey Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,VA Boston Healthcare System, Brockton, MA, USA,Corresponding author. (M.E. Shenton)
| | - Margaret Niznikiewicz
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Gómez-Gastiasoro A, Zubiaurre-Elorza L, Peña J, Ibarretxe-Bilbao N, Rilo O, Schretlen DJ, Ojeda N. Altered frontal white matter asymmetry and its implications for cognition in schizophrenia: A tractography study. Neuroimage Clin 2019; 22:101781. [PMID: 30991613 PMCID: PMC6449782 DOI: 10.1016/j.nicl.2019.101781] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/05/2019] [Accepted: 03/14/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND White matter (WM) alterations are well documented in schizophrenia. Abnormalities in interhemispheric fibers appear to account for altered WM asymmetry in the illness. However, the regional specificity (e.g., frontal versus occipital) of these alterations and their potential contribution to cognitive dysfunction in schizophrenia remain unknown. METHODS Forty one patients with schizophrenia and 21 healthy controls (HC) underwent diffusion-weighted imaging on a 3 Tesla MRI machine. Tract-based spatial statistic (FSL) was used to assess whole brain differences in WM. Probabilistic tractography was performed in order to separately measure frontal and occipital WM tracts. Participants also completed tests of verbal memory and processing speed. Repeated measures analyses of covariance and Pearson correlation analyses were performed. RESULTS A significant group x cerebral hemisphere interaction was found for fractional anisotropy (FA) (F(1,17) = 7.03; p = .017; ηp2 = 0.29) and radial diffusivity (RD) (F(1,17) = 4.84; p = .042; ηp2 = 0.22) in the frontal tract of patients versus HC. Healthy controls showed higher mean FA and lower mean RD in the left frontal tract compared to patients, who showed the opposite pattern. In patients with schizophrenia, mean FA and RD in the right frontal tract correlated with verbal memory (r = -0.68, p = .046; r = 0.77, p = .015). CONCLUSIONS Asymmetric WM alterations were found in a frontal tract of patients with schizophrenia. Higher mean FA in the right frontal tract correlated with worse verbal memory performance, suggesting a possible contribution these brain changes to cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Ainara Gómez-Gastiasoro
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - Leire Zubiaurre-Elorza
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - Javier Peña
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain.
| | - Naroa Ibarretxe-Bilbao
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - Oiane Rilo
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - David J Schretlen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 218, Baltimore, MD 21287-7218. United States
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| |
Collapse
|
20
|
Interhemispheric connectivity and hemispheric specialization in schizophrenia patients and their unaffected siblings. NEUROIMAGE-CLINICAL 2019; 21:101656. [PMID: 30660663 PMCID: PMC6412072 DOI: 10.1016/j.nicl.2019.101656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022]
Abstract
Hemispheric integration and specialization are two prominent organizational principles for macroscopic brain function. Impairments of interhemispheric cooperation have been reported in schizophrenia patients, but whether such abnormalities should be attributed to effects of illness or familial risk remains inconclusive. Moreover, it is unclear how abnormalities in interhemispheric connectivity impact hemispheric specialization. To address these questions, we performed magnetic resonance imaging (MRI) in a large cohort of 253 participants, including 84 schizophrenia patients, 106 of their unaffected siblings and 63 healthy controls. Interhemispheric connectivity and hemispheric specialization were calculated from resting-state functional connectivity, and compared across groups. Results showed that schizophrenia patients exhibit lower interhemispheric connectivity as compared to controls and siblings. In addition, patients showed higher levels of hemispheric specialization as compared to siblings. Level of interhemispheric connectivity and hemispheric specialization correlated with duration of illness in patients. No significant alterations were identified in siblings relative to controls on both measurements. Furthermore, alterations in interhemispheric connectivity correlated with changes in hemispheric specialization in patients relative to controls and siblings. Taken together, these results suggest that lower interhemispheric connectivity and associated abnormalities in hemispheric specialization are features of established illness, rather than an expression of preexistent familial risk for schizophrenia.
Collapse
|
21
|
Kolomeets NS, Vostrikov VM, Uranova NA. Abnormalities of oligodendrocyte clusters in supra- and infragranular layers of the prefrontal cortex in schizophrenia. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:62-68. [DOI: 10.17116/jnevro201911912162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Sumner PJ, Bell IH, Rossell SL. A systematic review of task-based functional neuroimaging studies investigating language, semantic and executive processes in thought disorder. Neurosci Biobehav Rev 2018; 94:59-75. [PMID: 30142368 DOI: 10.1016/j.neubiorev.2018.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/16/2018] [Accepted: 08/09/2018] [Indexed: 01/30/2023]
Abstract
The aim of the current systematic review was to synthesise the research that has investigated thought disorder (TD) using task-based functional neuroimaging techniques to target executive, language, or semantic functions. Thirty-five pertinent studies were identified from January 1990 to August 2016. Functional correlates of TD included the superior and middle temporal, fusiform, and inferior frontal gyri bilaterally, as well as the left and right cingulate cortex, the right caudate nucleus, and the cerebellum. TD-related increases and decreases in activation were both evident in most of these regions. However, the specificity of these correlates from general clinical and cognitive influences is unknown. The cortical regions implicated overlap with those thought to contribute to language and semantic systems. Cortico-striatal circuitry may also play a role in some aspects of TD through aberrant salience representation and inappropriate attentional prioritisation. To advance the field further, greater integration across structural, functional, and behavioural measures is required, in addition to non-unitary considerations of TD.
Collapse
Affiliation(s)
- Philip J Sumner
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, VIC, Australia; Monash Alfred Psychiatry Research Centre (MAPrc), Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia.
| | - Imogen H Bell
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, VIC, Australia; Monash Alfred Psychiatry Research Centre (MAPrc), Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia
| | - Susan L Rossell
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, VIC, Australia; Monash Alfred Psychiatry Research Centre (MAPrc), Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia; Psychiatry, St Vincent's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Gao W, Chen X, Fu Y, Zhu M. Automatic Extraction of the Centerline of Corpus Callosum from Segmented Mid-Sagittal MR Images. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:4014213. [PMID: 30073031 PMCID: PMC6057406 DOI: 10.1155/2018/4014213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/09/2018] [Accepted: 05/28/2018] [Indexed: 11/18/2022]
Abstract
The centerline, as a simple and compact representation of object shape, has been used to analyze variations of the human callosal shape. However, automatic extraction of the callosal centerline remains a sophisticated problem. In this paper, we propose a method of automatic extraction of the callosal centerline from segmented mid-sagittal magnetic resonance (MR) images. A model-based point matching method is introduced to localize the anterior and posterior endpoints of the centerline. The model of the endpoint is constructed with a statistical descriptor of the shape context. Active contour modeling is adopted to drive the curve with the fixed endpoints to approximate the centerline using the gradient of the distance map of the segmented corpus callosum. Experiments with 80 segmented mid-sagittal MR images were performed. The proposed method is compared with a skeletonization method and an interactive method in terms of recovery error and reproducibility. Results indicate that the proposed method outperforms skeletonization and is comparable with and sometimes better than the interactive method.
Collapse
Affiliation(s)
- Wenpeng Gao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Xiaoguang Chen
- Department of Neurosurgery, The Third People Hospital of Hainan Province, Sanya 572000, China
| | - Yili Fu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Minwei Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
24
|
Sumner PJ, Bell IH, Rossell SL. A systematic review of the structural neuroimaging correlates of thought disorder. Neurosci Biobehav Rev 2018; 84:299-315. [DOI: 10.1016/j.neubiorev.2017.08.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 01/03/2023]
|
25
|
Liu Y, Guo W, Zhang Y, Lv L, Hu F, Wu R, Zhao J. Decreased Resting-State Interhemispheric Functional Connectivity Correlated with Neurocognitive Deficits in Drug-Naive First-Episode Adolescent-Onset Schizophrenia. Int J Neuropsychopharmacol 2017; 21:33-41. [PMID: 29228204 PMCID: PMC5795351 DOI: 10.1093/ijnp/pyx095] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Given that adolescence is a critical epoch in the onset of schizophrenia, studying aberrant brain changes in adolescent-onset schizophrenia, particularly in patients with drug-naive first-episode schizophrenia, is important to understand the biological mechanism of this disorder. Previous resting-state functional magnetic resonance imaging studies have shown abnormal functional connectivity in separate hemispheres in patients with adult-onset schizophrenia. Our aim to study adolescent-onset schizophrenia can provide clues for the early aetiology of schizophrenia. METHOD A total of 48 drug-naïve, first-episode, adolescent-onset schizophrenia outpatients and 31 healthy controls underwent resting-state functional magnetic resonance imaging scans. Data were subjected to voxel-mirrored homotopic connectivity and support vector machine analyses. RESULTS Compared with the healthy controls, the adolescent-onset schizophrenia group showed significantly lower voxel-mirrored homotopic connectivity values in different brain regions, including the fusiform gyrus, superior temporal gyrus/insula, precentral gyrus, and precuneus. Decreased voxel-mirrored homotopic connectivity values in the superior temporal gyrus/insula were significantly correlated with Trail-Making Test: Part A performance (r = -0.437, P = .002). A combination of the voxel-mirrored homotopic connectivity values in the precentral gyrus and precuneus may be used to discriminate patients with adolescent-onset schizophrenia from controls with satisfactory classification results, which showed sensitivity of 100%, specificity of 87.09%, and accuracy of 94.93%. CONCLUSION Our findings highlight resting-state interhemispheric FC abnormalities within the sensorimotor network of patients with adolescent-onset schizophrenia and confirm the relationship between adolescent-onset schizophrenia and adult-onset schizophrenia. These findings suggest that reduced interhemispheric connectivity within the sensorimotor network has a pivotal role in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Yi Liu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China,National Technology Institute on Mental Disorders, Changsha, Hunan, China,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China,National Technology Institute on Mental Disorders, Changsha, Hunan, China,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Yan Zhang
- Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Luxian Lv
- Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Feihu Hu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China,National Technology Institute on Mental Disorders, Changsha, Hunan, China,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Renrong Wu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China,National Technology Institute on Mental Disorders, Changsha, Hunan, China,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Jingping Zhao
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan,Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China,National Technology Institute on Mental Disorders, Changsha, Hunan, China,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China,Correspondence: Jingping Zhao, MD, Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China ()
| |
Collapse
|
26
|
Saito J, Hori M, Nemoto T, Katagiri N, Shimoji K, Ito S, Tsujino N, Yamaguchi T, Shiraga N, Aoki S, Mizuno M. Longitudinal study examining abnormal white matter integrity using a tract-specific analysis in individuals with a high risk for psychosis. Psychiatry Clin Neurosci 2017; 71:530-541. [PMID: 28220654 DOI: 10.1111/pcn.12515] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 01/07/2023]
Abstract
AIM Although volume reductions in the grey matter have been previously observed in individuals with an at-risk mental state (ARMS) for psychosis, the features of white matter integrity and their correlation with psychiatric symptoms remain unclear. METHODS Forty-six ARMS subjects were examined using magnetic resonance imaging (MRI) to acquire diffusion tensor imaging (DTI); the subjects were also evaluated using the Scale of Prodromal Symptoms at baseline and at 52 weeks. Sixteen healthy controls also underwent MRI scanning. The DTI results were longitudinally analyzed using a tract-specific analysis to measure the fractional anisotropy (FA) values of the entire corpus callosum (CC), as well as its genu, trunk, and splenium. RESULTS During the 52-week study period, seven patients developed psychosis (ARMS-P) and 39 did not (ARMS-NP). In the entire CC and the genu, trunk, and splenium of the CC, the FA values of the ARMS subjects were each significantly smaller than the respective values of the healthy controls at baseline. In the genu and trunk, the baseline FA values in the ARMS-NP group were, paradoxically, smaller than those of the ARMS-P group at baseline. Regarding the association between the FA values and psychiatric symptoms, a reduction in the FA value in the genu was significantly correlated with a deterioration of negative symptoms among the ARMS subjects. CONCLUSION Abnormal white matter integrity in the CC may predict the long-term outcome of patients with prodromal psychosis, since negative symptoms are associated with poor functioning.
Collapse
Affiliation(s)
- Junichi Saito
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Keigo Shimoji
- Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Shinya Ito
- Department of Social Medicine, Toho University School of Medicine, Tokyo, Japan.,Department of Public Health, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naohisa Tsujino
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Taiju Yamaguchi
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Nobuyuki Shiraga
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Family-based case-control study of homotopic connectivity in first-episode, drug-naive schizophrenia at rest. Sci Rep 2017; 7:43312. [PMID: 28256527 PMCID: PMC5335664 DOI: 10.1038/srep43312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 01/23/2017] [Indexed: 11/09/2022] Open
Abstract
Family-based case-control design is rarely used but powerful to reduce the confounding effects of environmental factors on schizophrenia. Twenty-eight first-episode, drug-naive patients with schizophrenia, 28 family-based controls (FBC), and 40 healthy controls (HC) underwent resting-state functional MRI. Voxel-mirrored homotopic connectivity (VMHC), receiver operating characteristic curve (ROC), and support vector machine (SVM) were used to process the data. Compared with the FBC, the patients showed lower VMHC in the precuneus, fusiform gyrus/cerebellum lobule VI, and lingual gyrus/cerebellum lobule VI. The patients exhibited lower VMHC in the precuneus relative to the HC. ROC analysis exhibited that the VMHC values in these brain regions might not be ideal biomarkers to distinguish the patients from the FBC/HC. However, SVM analysis indicated that a combination of VMHC values in the precuneus and lingual gyrus/cerebellum lobule VI might be used as a potential biomarker to distinguish the patients from the FBC with a sensitivity of 96.43%, a specificity of 89.29%, and an accuracy of 92.86%. Results suggested that patients with schizophrenia have decreased homotopic connectivity in the motor and low level sensory processing regions. Neuroimaging studies can adopt family-based case-control design as a viable option to reduce the confounding effects of environmental factors on schizophrenia.
Collapse
|
28
|
Takahashi M, Matsui M, Nakashima M, Takahashi T, Suzuki M. Callosal size in first-episode schizophrenia patients with illness duration of less than one year: A cross-sectional MRI study. Asian J Psychiatr 2017; 25:197-202. [PMID: 28262149 DOI: 10.1016/j.ajp.2016.10.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/17/2016] [Accepted: 10/29/2016] [Indexed: 01/01/2023]
Abstract
Previous studies have reported a reduction in the size of the corpus callosum (CC) on the mid-sagittal plane in patients with schizophrenia. However, findings for the size of the callosal area in patients with first-episode schizophrenia (FESz) are inconsistent. A possibility for these conflicting results is that the duration of illness in patients with FESz affects the CC size. The present study investigated the CC size abnormalities in patients with FESz. Forty-six patients with FESz whose duration of illness was less than 1year and 46 age-, sex-, and handedness-matched healthy controls were recruited to examine the CC size using magnetic resonance imaging. We measured the area of the CC using the Witelson's scheme, which divided the whole area into seven subdivisions. Analysis of covariance indicated there was no difference in the whole or regional areas of the CC between patients with FESz and healthy controls. The rostrum of the CC was significantly correlated with the total score for negative symptoms and some of the subtotal scores. Our findings indicate that there was no reduction in the whole or regional area of the CC among patients with FESz. When comparing the callosal morphology and symptoms, negative symptoms increased in severity as the rostrum area of the CC decreased in size. Further studies are needed to investigate whether the size of the anterior CC is associated with the pathology observed in the early stages of FESz.
Collapse
Affiliation(s)
- Michio Takahashi
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama, Japan.
| | - Mie Matsui
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama, Japan; Institute of Liberal Arts and Science, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan.
| | - Mitsuhiro Nakashima
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama, Japan.
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama, Japan.
| | - Michio Suzuki
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama, Japan.
| |
Collapse
|
29
|
Voineskos AN, Felsky D, Wheeler AL, Rotenberg DJ, Levesque M, Patel S, Szeszko PR, Kennedy JL, Lencz T, Malhotra AK. Limited Evidence for Association of Genome-Wide Schizophrenia Risk Variants on Cortical Neuroimaging Phenotypes. Schizophr Bull 2016; 42:1027-36. [PMID: 26712857 PMCID: PMC4903045 DOI: 10.1093/schbul/sbv180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND There are now over 100 established genetic risk variants for schizophrenia; however, their influence on brain structure and circuitry across the human lifespan are not known. METHODS We examined healthy individuals 8-86 years of age, from the Centre for Addiction and Mental Health, the Zucker Hillside Hospital, and the Philadelphia Neurodevelopmental Cohort. Following thorough quality control procedures, we investigated associations of established genetic risk variants with heritable neuroimaging phenotypes relevant to schizophrenia, namely thickness of frontal and temporal cortical regions (n = 565) and frontotemporal and interhemispheric white matter tract fractional anisotropy (FA) (n = 530). RESULTS There was little evidence for association of risk variants with imaging phenotypes. No association with cortical thickness of any region was present. Only rs12148337, near a long noncoding RNA region, was associated with white matter FA (splenium of corpus callosum) following multiple comparison correction (corrected p = .012); this single nucleotide polymorphism was also associated with genu FA and superior longitudinal fasciculus FA at p <.005 (uncorrected). There was no association of polygenic risk score with white matter FA or cortical thickness. CONCLUSIONS In sum, our findings provide limited evidence for association of schizophrenia risk variants with cortical thickness or diffusion imaging white matter phenotypes. When taken with recent lack of association of these variants with subcortical brain volumes, our results either suggest that structural neuroimaging approaches at current resolution are not sufficiently sensitive to detect effects of these risk variants or that multiple comparison correction in correlated phenotypes is too stringent, potentially "eliminating" biologically important signals.
Collapse
Affiliation(s)
- Aristotle N. Voineskos
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada;,These authors contributed equally to the article.,*To whom correspondence should be addressed; Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, Ontario M5R 1T8, Canada; tel: 416-535-8501 x33977, fax: 416-260-4162, e-mail:
| | - Daniel Felsky
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada;,These authors contributed equally to the article
| | - Anne L. Wheeler
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - David J. Rotenberg
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Melissa Levesque
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sejal Patel
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Philip R. Szeszko
- Zucker Hillside Hospital, Glen Oaks, NY;,Center for Psychiatric Neuroscience, Feinstein Institute, Manhasset, NY
| | - James L. Kennedy
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Todd Lencz
- Zucker Hillside Hospital, Glen Oaks, NY;,Center for Psychiatric Neuroscience, Feinstein Institute, Manhasset, NY
| | - Anil K. Malhotra
- Zucker Hillside Hospital, Glen Oaks, NY;,Center for Psychiatric Neuroscience, Feinstein Institute, Manhasset, NY
| |
Collapse
|
30
|
Chen Q, Chen X, He X, Wang L, Wang K, Qiu B. Aberrant structural and functional connectivity in the salience network and central executive network circuit in schizophrenia. Neurosci Lett 2016; 627:178-84. [PMID: 27233217 DOI: 10.1016/j.neulet.2016.05.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/10/2016] [Accepted: 05/17/2016] [Indexed: 12/27/2022]
Abstract
Consistent structural and functional abnormities have been detected in the salience network (SN) and the central-executive network (CEN) in schizophrenia. SN, known for its critical role in switching CEN and default-mode network (DMN) during cognitively demanding tasks, is proved to show aberrant regulation on the interaction between DMN and CEN in schizophrenia. However, it has not been elucidated whether there is a direct alteration of structural and functional connectivity between SN and CEN. 22 schizophrenia patients and 21 healthy controls were recruited for functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) in present study. The results show that schizophrenia patients had lower fractional anisotropy (FA) in right inferior long fasciculus (ILF), left inferior fronto-occipital fasciculus (IFOF) and callosal body than healthy controls. Significantly reduced functional connectivity was also found between right fronto-insular cortex (rFIC) and right posterior parietal cortex (rPPC). FA in right ILF was positively correlated with the functional connectivity of rFIC-rPPC. Therefore, we proposed a disruption of structural and functional connectivity and a positive anatomo-functional relationship in SN-CEN circuit, which might account for a core feature of schizophrenia.
Collapse
Affiliation(s)
- Quan Chen
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xingui Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022,China
| | - Xiaoxuan He
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Lu Wang
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022,China.
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China; Anhui Computer Application Institute of Traditional Chinese Medicine, Hefei, Anhui 230038, China.
| |
Collapse
|
31
|
Rigucci S, Marques TR, Di Forti M, Taylor H, Dell'Acqua F, Mondelli V, Bonaccorso S, Simmons A, David AS, Girardi P, Pariante CM, Murray RM, Dazzan P. Effect of high-potency cannabis on corpus callosum microstructure. Psychol Med 2016; 46:841-854. [PMID: 26610039 PMCID: PMC4754829 DOI: 10.1017/s0033291715002342] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND The use of cannabis with higher Δ9-tetrahydrocannabinol content has been associated with greater risk, and earlier onset, of psychosis. However, the effect of cannabis potency on brain morphology has never been explored. Here, we investigated whether cannabis potency and pattern of use are associated with changes in corpus callosum (CC) microstructural organization, in patients with first-episode psychosis (FEP) and individuals without psychosis, cannabis users and non-users. METHOD The CC of 56 FEP (37 cannabis users) and 43 individuals without psychosis (22 cannabis users) was virtually dissected and segmented using diffusion tensor imaging tractography. The diffusion index of fractional anisotropy, mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity was calculated for each segment. RESULTS Across the whole sample, users of high-potency cannabis had higher total CC MD and higher total CC AD than both low-potency users and those who never used (p = 0.005 and p = 0.004, respectively). Daily users also had higher total CC MD and higher total CC AD than both occasional users and those who never used (p = 0.001 and p < 0.001, respectively). However, there was no effect of group (patient/individuals without psychosis) or group x potency interaction for either potency or frequency of use. The within-group analysis showed in fact that the effects of potency and frequency were similar in FEP users and in users without psychosis. CONCLUSIONS Frequent use of high-potency cannabis is associated with disturbed callosal microstructural organization in individuals with and without psychosis. Since high-potency preparations are now replacing traditional herbal drugs in many European countries, raising awareness about the risks of high-potency cannabis is crucial.
Collapse
Affiliation(s)
- S. Rigucci
- Department of Neurosciences,
Mental Health and Sensory Organs, Sapienza University
of Rome, Rome, Italy
- Department of Psychosis Studies,
Institute of Psychiatry, Psychology and
Neuroscience, King's College London,
London, UK
| | - T. R. Marques
- Department of Psychosis Studies,
Institute of Psychiatry, Psychology and
Neuroscience, King's College London,
London, UK
| | - M. Di Forti
- Department of Psychosis Studies,
Institute of Psychiatry, Psychology and
Neuroscience, King's College London,
London, UK
| | - H. Taylor
- Department of Psychosis Studies,
Institute of Psychiatry, Psychology and
Neuroscience, King's College London,
London, UK
| | - F. Dell'Acqua
- Centre for Neuroimaging Sciences,
Institute of Psychiatry, Psychology and
Neuroscience, King's College London,
London, UK
| | - V. Mondelli
- Department of Psychological Medicine,
Institute of Psychiatry, Psychology and
Neuroscience, King's College London,
London, UK
- National Institute for Health Research (NIHR)
Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust
and King's College London, London,
UK
| | - S. Bonaccorso
- Department of Psychosis Studies,
Institute of Psychiatry, Psychology and
Neuroscience, King's College London,
London, UK
| | - A. Simmons
- Centre for Neuroimaging Sciences,
Institute of Psychiatry, Psychology and
Neuroscience, King's College London,
London, UK
| | - A. S. David
- Department of Psychosis Studies,
Institute of Psychiatry, Psychology and
Neuroscience, King's College London,
London, UK
- National Institute for Health Research (NIHR)
Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust
and King's College London, London,
UK
| | - P. Girardi
- Department of Neurosciences,
Mental Health and Sensory Organs, Sapienza University
of Rome, Rome, Italy
| | - C. M. Pariante
- Department of Psychological Medicine,
Institute of Psychiatry, Psychology and
Neuroscience, King's College London,
London, UK
- National Institute for Health Research (NIHR)
Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust
and King's College London, London,
UK
| | - R. M. Murray
- Department of Psychosis Studies,
Institute of Psychiatry, Psychology and
Neuroscience, King's College London,
London, UK
- National Institute for Health Research (NIHR)
Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust
and King's College London, London,
UK
| | - P. Dazzan
- Department of Psychosis Studies,
Institute of Psychiatry, Psychology and
Neuroscience, King's College London,
London, UK
- National Institute for Health Research (NIHR)
Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust
and King's College London, London,
UK
| |
Collapse
|
32
|
Yagi H, Oka Y, Komada M, Xie MJ, Noguchi K, Sato M. Filamin A interacting protein plays a role in proper positioning of callosal projection neurons in the cortex. Neurosci Lett 2016; 612:18-24. [DOI: 10.1016/j.neulet.2015.11.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/07/2015] [Accepted: 11/28/2015] [Indexed: 11/25/2022]
|
33
|
Xiu Y, Kong XR, Zhang L, Qiu X, Gao Y, Huang CX, Chao FL, Wang SR, Tang Y. The myelinated fiber loss in the corpus callosum of mouse model of schizophrenia induced by MK-801. J Psychiatr Res 2015; 63:132-40. [PMID: 25748751 DOI: 10.1016/j.jpsychires.2015.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/21/2015] [Accepted: 02/06/2015] [Indexed: 10/23/2022]
Abstract
Previous magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) investigations have shown that the white matter volume and fractional anisotropy (FA) were decreased in schizophrenia (SZ), which indicated impaired white matter integrity in SZ. However, the mechanism underlying these abnormalities has been less studied. The current study was designed to investigate the possible reasons for white matter abnormalities in the mouse model of SZ induced by NMDA receptor antagonist using the unbiased stereological methods and transmission electron microscope technique. We found that the mice treated with MK-801 demonstrated a series of schizophrenia-like behaviors including hyperlocomotor activity and more anxiety. The myelinated fibers in the corpus callosum (CC) of the mice treated with MK-801 were impaired with splitting lamellae of myelin sheaths and segmental demyelination. The CC volume and the total length of the myelinated fibers in the CC of the mice treated with MK-801 were significantly decreased by 9.4% and 16.8% when compared to those of the mice treated with saline. We further found that the loss of the myelinated fibers length was mainly due to the marked loss of the myelinated nerve fibers with the diameter of 0.4-0.5 μm. These results indicated that the splitting myelin sheaths, demyelination and the loss of myelinated fibers with small diameter might provide one of the structural bases for impaired white matter integrity of CC in the mouse model of SZ. These results might also provide a baseline for further studies searching for the treatment of SZ through targeting white matter.
Collapse
Affiliation(s)
- Yun Xiu
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiang-ru Kong
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - Xuan Qiu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yuan Gao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China; Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, PR China
| | - Chun-xia Huang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Feng-lei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - San-rong Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
34
|
Effects of eye dominance (left vs. right) and cannabis use on intermanual coordination and negative symptoms in schizophrenia patients. Eur Arch Psychiatry Clin Neurosci 2014; 264:683-95. [PMID: 24792218 DOI: 10.1007/s00406-014-0503-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 04/13/2014] [Indexed: 10/25/2022]
Abstract
Based on the previous findings, it has been assumed that in schizophrenia patients, eye dominance and cannabis use will affect negative symptoms and intermanual coordination (IMC), an index of interhemispheric communication. But eye dominance, specifically the clinical findings for it, has been neglected in schizophrenia research. We therefore investigated its effects in 52 right-handed (36 right-eyed and 16 left-eyed) and 51 left-handed (35 left-eyed and 16 right-eyed) schizophrenia in-patients without and with drug use. Eye dominance affected IMC in all schizophrenia patients. When comparing right- and left-handers, we found that this result was only significant in the right-handed patients and in the smaller subgroup without drug use. In the right-handers, left eye dominance-like left-handedness-was associated with higher values in IMC and less pronounced manifestation of negative symptoms, right eye dominance was not. Thus, left-eyed right-handers may be more closely related to left-handers than to right-handers. In accordance with the results from the literature, we suggest that these findings are due to better interhemispheric connections and less impairment of white matter structures, especially in right-hemispheric regions. Moreover, cannabis use was related to higher scores in IMC and less pronounced negative symptoms, but only in the right-eyed and not in the left-eyed right-handers or in the left-handers. Hence, differences in eye dominance and handedness may be partially responsible for different results in interhemispheric connections among cannabis users. In conclusion, both eye dominance and use of cannabis should be taken into account when assessing clinical symptoms in schizophrenia patients.
Collapse
|
35
|
Kochunov P, Chiappelli J, Wright SN, Rowland LM, Patel B, Wijtenburg SA, Nugent K, McMahon RP, Carpenter WT, Muellerklein F, Sampath H, Hong LE. Multimodal white matter imaging to investigate reduced fractional anisotropy and its age-related decline in schizophrenia. Psychiatry Res 2014; 223:148-56. [PMID: 24909602 PMCID: PMC4100065 DOI: 10.1016/j.pscychresns.2014.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/18/2014] [Accepted: 05/08/2014] [Indexed: 01/14/2023]
Abstract
We hypothesized that reduced fractional anisotropy (FA) of water diffusion and its elevated aging-related decline in schizophrenia patients may be caused by elevated hyperintensive white matter (HWM) lesions, by reduced permeability-diffusivity index (PDI), or both. We tested this hypothesis in 40/30 control/patient participants. FA values for the corpus callosum were calculated from high angular resolution diffusion tensor imaging (DTI). Whole-brain volume of HWM lesions was quantified by 3D-T2w-fluid-attenuated inversion recovery (FLAIR) imaging. PDI for corpus callosum was ascertained using multi b-value diffusion imaging (15 b-shells with 30 directions per shell). Patients had significantly lower corpus callosum FA values, and there was a significant age-by-diagnosis interaction. Patients also had significantly reduced PDI but no difference in HWM volume. PDI and HWM volume were significant predictors of FA and captured the diagnosis-related variance. Separately, PDI robustly explained FA variance in schizophrenia patients, but not in controls. Conversely, HWM volume made equally significant contributions to variability in FA in both groups. The diagnosis-by-age effect of FA was explained by a PDI-by-diagnosis interaction. Post hoc testing showed a similar trend for PDI of gray mater. Our study demonstrated that reduced FA and its accelerated decline with age in schizophrenia were explained by pathophysiology indexed by PDI, rather than HWM volume.
Collapse
Affiliation(s)
- Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA; Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Susan N. Wright
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Laura M. Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Benish Patel
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - S. Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Katie Nugent
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Robert P. McMahon
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - William T. Carpenter
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Florian Muellerklein
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Hemalatha Sampath
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| |
Collapse
|
36
|
Wheeler AL, Voineskos AN. A review of structural neuroimaging in schizophrenia: from connectivity to connectomics. Front Hum Neurosci 2014; 8:653. [PMID: 25202257 PMCID: PMC4142355 DOI: 10.3389/fnhum.2014.00653] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 08/05/2014] [Indexed: 11/13/2022] Open
Abstract
In patients with schizophrenia neuroimaging studies have revealed global differences with some brain regions showing focal abnormalities. Examining neurocircuitry, diffusion-weighted imaging studies have identified altered structural integrity of white matter in frontal and temporal brain regions and tracts such as the cingulum bundles, uncinate fasciculi, internal capsules and corpus callosum associated with the illness. Furthermore, structural co-variance analyses have revealed altered structural relationships among regional morphology in the thalamus, frontal, temporal and parietal cortices in schizophrenia patients. The distributed nature of these abnormalities in schizophrenia suggests that multiple brain circuits are impaired, a neural feature that may be better addressed with network level analyses. However, even with the advent of these newer analyses, a large amount of variability in findings remains, likely partially due to the considerable heterogeneity present in this disorder.
Collapse
Affiliation(s)
- Anne L Wheeler
- Kimel Family Translational Imaging Genetics Laboratory, Centre for Addiction and Mental Health, Research Imaging Centre Toronto, ON, Canada ; Department of Psychiatry, University of Toronto Toronto, ON, Canada
| | - Aristotle N Voineskos
- Kimel Family Translational Imaging Genetics Laboratory, Centre for Addiction and Mental Health, Research Imaging Centre Toronto, ON, Canada ; Department of Psychiatry, University of Toronto Toronto, ON, Canada
| |
Collapse
|
37
|
Kochunov P, Hong LE. Neurodevelopmental and neurodegenerative models of schizophrenia: white matter at the center stage. Schizophr Bull 2014; 40:721-8. [PMID: 24870447 PMCID: PMC4059450 DOI: 10.1093/schbul/sbu070] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a disorder of cerebral disconnectivity whose lifetime course is modeled as both neurodevelopmental and neurodegenerative. The neurodevelopmental models attribute schizophrenia to alterations in the prenatal-to-early adolescent development. The neurodegenerative models identify progressive neurodegeneration as its core attribute. Historically, the physiology, pharmacology, and treatment targets in schizophrenia were conceptualized in terms of neurons, neurotransmitter levels, and synaptic receptors. Much of the evidence for both models was derived from studies of cortical and subcortical gray matter. We argue that the dynamics of the lifetime trajectory of white matter, and the consistency of connectivity deficits in schizophrenia, support white matter integrity as a promising phenotype to evaluate the competing evidence for and against neurodevelopmental and neurodegenerative heuristics. We develop this perspective by reviewing normal lifetime trajectories of white and gray matter changes. We highlighted the overlap between the age of peak of white matter development and the age of onset of schizophrenia and reviewed findings of white matter abnormalities prior to, at the onset, and at chronic stages of schizophrenia. We emphasized the findings of reduced white matter integrity at the onset and findings of accelerated decline in chronic stages, but the developmental trajectory that precedes the onset is largely unknown. We propose 4 probable lifetime white matter trajectory models that can be used as the basis for separation between the neurodevelopmental and neurodegenerative etiologies. We argue that a combination of the cross-sectional and longitudinal studies of white matter integrity in patients may be used to bridge the neurodevelopment and degeneration heuristics to advance schizophrenia research.
Collapse
Affiliation(s)
- Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD.
| | | |
Collapse
|
38
|
Asami T, Lee SH, Bouix S, Rathi Y, Whitford TJ, Niznikiewicz M, Nestor P, McCarley RW, Shenton ME, Kubicki M. Cerebral white matter abnormalities and their associations with negative but not positive symptoms of schizophrenia. Psychiatry Res 2014; 222:52-9. [PMID: 24650453 PMCID: PMC4083818 DOI: 10.1016/j.pscychresns.2014.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/11/2013] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
Although diffusion tensor imaging (DTI) studies have reported fractional anisotropy (FA) abnormalities in multiple white matter (WM) regions in schizophrenia, relationship between abnormal FA and negative symptoms has not been fully explored. DTI data were acquired from twenty-four patients with chronic schizophrenia and twenty-five healthy controls. Regional brain abnormalities were evaluated by conducting FA comparisons in the cerebral and each lobar WMs between groups. Focal abnormalities were also evaluated with a voxel-wise tract specific method. Associations between structural WM changes and negative symptoms were assessed using the Scale for the Assessment of Negative Symptoms (SANS). The patient group showed decreased FA in the cerebrum, especially in the frontal lobe, compared with controls. A voxel-wise analysis showed FA decreases in almost all WM tracts in schizophrenia. Correlation analyses demonstrated negative relationships between FA in the cerebrum, particularly in the left hemisphere, and SANS global and global rating scores (Anhedonia-Asociality, Attention, and Affective-Flattening), and also associations between FA of left frontal lobe and SANS global score, Anhedonia-Asociality, and Attention. This study demonstrates that patients with chronic schizophrenia evince widespread cerebral FA abnormalities and that these abnormalities, especially in the left hemisphere, are associated with negative symptoms.
Collapse
Affiliation(s)
- Takeshi Asami
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, Massachusetts, U.S.A,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Sang Hyuk Lee
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, Massachusetts, U.S.A,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Thomas J. Whitford
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A,School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Margaret Niznikiewicz
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, Massachusetts, U.S.A
| | - Paul Nestor
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, Massachusetts, U.S.A
| | - Robert W. McCarley
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, Massachusetts, U.S.A
| | - Martha E. Shenton
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, Massachusetts, U.S.A,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A,Surgical Planning Laboratory, MRI Division, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts U.S.A
| | - Marek Kubicki
- Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Harvard Medical School, Brockton, MA, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women׳s Hospital, Harvard Medical School, Boston, MA, USA; Surgical Planning Laboratory, MRI Division, Department of Radiology, Brigham and Women׳s Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Holleran L, Ahmed M, Anderson-Schmidt H, McFarland J, Emsell L, Leemans A, Scanlon C, Dockery P, McCarthy P, Barker GJ, McDonald C, Cannon DM. Altered interhemispheric and temporal lobe white matter microstructural organization in severe chronic schizophrenia. Neuropsychopharmacology 2014; 39:944-54. [PMID: 24150571 PMCID: PMC3924528 DOI: 10.1038/npp.2013.294] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 09/11/2013] [Accepted: 09/14/2013] [Indexed: 12/15/2022]
Abstract
Diffusion MRI investigations in schizophrenia provide evidence of abnormal white matter (WM) microstructural organization as indicated by reduced fractional anisotropy (FA) primarily in interhemispheric, left frontal and temporal WM. Using tract-based spatial statistics (TBSS), we examined diffusion parameters in a sample of patients with severe chronic schizophrenia. Diffusion MRI data were acquired on 19 patients with chronic severe schizophrenia and 19 age- and gender-matched healthy controls using a 64 gradient direction sequence, (b=1300 s/mm(2)) collected on a Siemens 1.5T MRI scanner. Diagnosis of schizophrenia was determined by Diagnostic and Statistical Manual for Mental Disorders 4th Edition (DSM-IV) Structured Clinical Interview for DSM disorder (SCID). Patients were treatment resistance, having failed to respond to at least two antipsychotic medications, and had prolonged periods of moderate to severe positive or negative symptoms. Analysis of diffusion parameters was carried out using TBSS. Individuals with chronic severe schizophrenia had significantly reduced FA with corresponding increased radial diffusivity in the genu, body, and splenium of the corpus callosum, the right posterior limb of the internal capsule, right external capsule, and the right temporal inferior longitudinal fasciculus. There were no voxels of significantly increased FA in patients compared with controls. A decrease in splenium FA was shown to be related to a longer illness duration. We detected widespread abnormal diffusivity properties in the callosal and temporal lobe WM regions in individuals with severe chronic schizophrenia who have not previously been exposed to clozapine. These deficits can be driven by a number of factors that are indistinguishable using in vivo diffusion-weighted imaging, but may be related to reduced axonal number or packing density, abnormal glial cell arrangement or function, and reduced myelin.
Collapse
Affiliation(s)
- Laurena Holleran
- Clinical Neuroimaging Laboratory, Department of Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, Clinical Science Institute, National University of Ireland Galway, Galway, Ireland,Clinical Neuroimaging Laboratory, Department of Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, Clinical Science Institute, National University of Ireland Galway, Galway, Ireland, Tel: +087 92 13388, Fax: +353 (0)91 494520, E-mail:
| | - Mohamed Ahmed
- Clinical Neuroimaging Laboratory, Department of Psychiatry, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Heike Anderson-Schmidt
- Clinical Neuroimaging Laboratory, Department of Psychiatry, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland,Department of Psychiatry and Psychotherapy, University Medical Centre Goettingen, Goettingen, Germany
| | - John McFarland
- Clinical Neuroimaging Laboratory, Department of Psychiatry, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Louise Emsell
- Clinical Neuroimaging Laboratory, Department of Psychiatry, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland,Department of Radiology, University Hospital of KU Leuven, Leuven, Belgium
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cathy Scanlon
- Clinical Neuroimaging Laboratory, Department of Psychiatry, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Peter Dockery
- Clinical Neuroimaging Laboratory, Department of Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, Clinical Science Institute, National University of Ireland Galway, Galway, Ireland
| | - Peter McCarthy
- Clinical Neuroimaging Laboratory, Department of Radiology, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Gareth J Barker
- King's College London, Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, London, UK
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, Department of Psychiatry, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Dara M Cannon
- Clinical Neuroimaging Laboratory, Department of Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, Clinical Science Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
40
|
Guo S, Palaniyappan L, Yang B, Liu Z, Xue Z, Feng J. Anatomical distance affects functional connectivity in patients with schizophrenia and their siblings. Schizophr Bull 2014; 40:449-59. [PMID: 24282323 PMCID: PMC3932090 DOI: 10.1093/schbul/sbt163] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The efficiency of human brain depends on the integrity of both long- and short-range connections, but the long-range connections need to be "penalized" to reduce overall wiring costs. This principle, termed as the anatomical distance function (ADF), refers to the presence of an inverse relationship between anatomical distance and connectivity. A crucial developmental feature that occurs in normal adolescence is the weakening of ADF, which is characterized by a selective strengthening of long-distance connections. Schizophrenia is associated with widespread dysconnectivity that is linked to aberrant cortical development. METHODS We studied the ADF in adults with schizophrenia (n = 28), their age-matched siblings (n = 28), and healthy controls (n = 60). We investigated the proportional abnormalities in the long-range connections involving interhemispheric, subcortical, frontal, and salience network regions and localized the connections showing most significant changes in schizophrenia. The groups were discriminated on the basis of short- and long-range connectivity using a machine-learning algorithm. RESULTS Both patients and their siblings showed abnormally pronounced ADF. This was associated with a disproportionate reduction in the number of long-range connections, affecting the subcortical, interhemispheric, and the salience network connections. The abnormalities in long-range connections had superior ability to accurately identify group membership. CONCLUSIONS A crucial organizing principle of the brain architecture that becomes apparent during normal adolescence is disturbed in schizophrenia. While siblings show some evidence of compensating for this deficit, patients lack putative compensatory changes. Age-related shift in ADF provides an explanatory framework for the developmental emergence of widespread dysconnectivity that is influenced by genetic risk in schizophrenia.
Collapse
Affiliation(s)
- Shuixia Guo
- *To whom correspondence should be addressed; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK; tel: 00447799572480; fax: 00442476523193.
| | | | | | | | | | | |
Collapse
|
41
|
Guo W, Jiang J, Xiao C, Zhang Z, Zhang J, Yu L, Liu J, Liu G. Decreased resting-state interhemispheric functional connectivity in unaffected siblings of schizophrenia patients. Schizophr Res 2014; 152:170-5. [PMID: 24325975 DOI: 10.1016/j.schres.2013.11.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/07/2013] [Accepted: 11/17/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Neuroimaging studies in unaffected siblings of schizophrenia patients can provide clues to the pathophysiology for the development of schizophrenia. However, little is known about the alterations of the interhemispheric resting-state functional connectivity (FC) in siblings, although the dysconnectivity hypothesis is prevailing in schizophrenia for years. In the present study, we used a newly validated voxel-mirrored homotopic connectivity (VMHC) method to identify whether aberrant interhemispheric FC was present in unaffected siblings at increased risk of developing schizophrenia at rest. METHODS Forty-six unaffected siblings of schizophrenia patients and 50 age-, sex-, and education-matched healthy controls underwent a resting-state functional magnetic resonance imaging (fMRI). Automated VMHC was used to analyze the data. RESULTS The sibling group had lower VMHC than the control group in the angular gyrus (AG) and the lingual gyrus/cerebellum lobule VI. No region exhibited higher VMHC in the sibling group than in the control group. There was no significant sex difference of the VMHC values between male siblings and female siblings or between male controls and female controls, although evidence has been accumulated that size and shape of the corpus callosum, and functional homotopy differ between men and women. CONCLUSIONS Our results first suggest that interhemispheric resting-state FC of VMHC is disrupted in unaffected siblings of schizophrenia patients, and add a new clue of abnormal interhemispheric resting-state FC to the pathophysiology for the development of schizophrenia.
Collapse
Affiliation(s)
- Wenbin Guo
- Mental Health Center, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Jiajing Jiang
- Mental Health Center, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Changqing Xiao
- Mental Health Center, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhikun Zhang
- Mental Health Center, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jian Zhang
- Mental Health Center, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Liuyu Yu
- Mental Health Center, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jianrong Liu
- Mental Health Center, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Guiying Liu
- Mental Health Center, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
42
|
Mwansisya TE, Wang Z, Tao H, Zhang H, Hu A, Guo S, Liu Z. The diminished interhemispheric connectivity correlates with negative symptoms and cognitive impairment in first-episode schizophrenia. Schizophr Res 2013; 150:144-50. [PMID: 23920057 DOI: 10.1016/j.schres.2013.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 06/17/2013] [Accepted: 07/06/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND Previous studies imply that interhemispheric disconnectivity plays a more important role on information processing in schizophrenia. However, the role of the aberrant interhemispheric connection in the pathophysiology of this disorder remains unclear. Recently, resting-state functional Magnetic Resonance Imaging (fMRI) has reported to have potentials of mapping functional interactions between pairs of brain hemispheres. METHODS Resting-state whole-brain functional connectivity analyses were performed on 41 schizophrenia patients and 33 healthy controls. RESULTS The first-episode schizophrenia patients showed significant aberrant interhemispheric connection in the globus pallidus, medial frontal gyrus and inferior temporal gyrus. The correlation of Wechsler Adult Intelligence Scale scores with odds ratio of the aberrant interhemispheric connections revealed positive correlation in the pallidum (rho=0.335, p=.003) and medial frontal gyrus (rho=0.260, p=.025). The connection in the pallidum was also positively correlated with duration of illness (rho=-0.407, p=.009). Whereas, the aberrant interhemispheric connection in the inferior temporal gyrus was positively correlated with scores of Scale for the Assessment of Negative Symptoms (rho=0.393, p=.012). CONCLUSION The present study provides fMRI evidence for the aberrant interhemispheric resting-state functional connectivity within resting-state networks in first-episode schizophrenia patients. These aberrant interhemispheric connections, in particular the pallidum, due to its anatomical and functional connectivities, may be the primary disturbance for cognitive impairment, negative symptoms and chronicity of schizophrenia.
Collapse
Affiliation(s)
- Tumbwene E Mwansisya
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan 410011, China; College of Health Sciences, University of Dodoma, P.O Box 395, Dodoma, Tanzania
| | | | | | | | | | | | | |
Collapse
|
43
|
Yao L, Lui S, Liao Y, Du MY, Hu N, Thomas JA, Gong QY. White matter deficits in first episode schizophrenia: an activation likelihood estimation meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45:100-6. [PMID: 23648972 DOI: 10.1016/j.pnpbp.2013.04.019] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/26/2013] [Accepted: 04/26/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) has been widely used in psychiatric research and has provided evidence of white matter abnormalities in first episode schizophrenia (FES). The goal of the present meta-analysis was to identify white matter deficits by DTI in FES. METHODS A systematic search was conducted to collect DTI studies with voxel-wised analysis of the fractional anisotropy (FA) in FES. The coordinates of regions with FA changes were meta-analyzed using the activation likelihood estimation (ALE) method which weighs each study on the basis of its sample size. RESULTS A total of 8 primary studies were selected, including 271 FES patients and 297 healthy controls. Among these studies, 52 regions showed reductions in the FA in FES while 2 regions had increased FA. Consistent FA reductions in the white matter of the right deep frontal and left deep temporal lobes were identified in all FES patients relative to healthy controls. Fiber tracking showed that the main tracts involved were the cingulum bundle, the left inferior longitudinal fasciculus, the left inferior fronto-occipital fasciculus and the interhemispheric fibers running through the corpus callosum. CONCLUSIONS The current findings provide evidence confirming the lack of connection in the fronto-limbic circuitry at the early stages of the schizophrenia. Because the coordinates reported in the primary literature were highly variable, future investigations with large samples would be required to support the identified white matter changes in FES.
Collapse
Affiliation(s)
- Li Yao
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | | | | | | | | | | | | |
Collapse
|
44
|
Su TW, Lan TH, Hsu TW, Biswal BB, Tsai PJ, Lin WC, Lin CP. Reduced neuro-integration from the dorsolateral prefrontal cortex to the whole brain and executive dysfunction in schizophrenia patients and their relatives. Schizophr Res 2013; 148:50-8. [PMID: 23726722 DOI: 10.1016/j.schres.2013.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 04/13/2013] [Accepted: 05/04/2013] [Indexed: 11/16/2022]
Abstract
Executive dysfunction is one of the core symptoms of schizophrenia. Functional neuro-imaging studies have suggested an association between deficits in activating the dorsolateral prefrontal cortex (DLPFC) and executive dysfunction, but neuro-integration from the DLPFC to the whole brain remains unclear. Studies investigating the neuro-integration from the DLPFC to the whole brain in unaffected but genetically liable family members are scant. In this study, we report DLPFC neuro-integrative deficits correlated with executive dysfunction and family history of schizophrenia using resting-state functional magnetic resonance imaging (fMRI). Using seed regions in DLPFC, we examined resting-state functional connectivity in 25 patients with schizophrenia, 25 unaffected first-degree relatives (UR), and 25 healthy control (HC) persons. Schizophrenia patients and UR have impaired connectivity from DLPFC to its coordinated regions (ANOVA: F=7.316-10.974, p<0.001). These coordinated brain regions are distributed in the bilateral caudate, left middle/inferior frontal gyrus, left precentral gyrus, and right cerebellum. The individual functional connectivity strength between the left DLPFC and its coordinated regions was correlated with individual executive function performance among whole persons. (Pearson's r=0.244-0.366, p=0.035-0.008) Our findings support that distributed neuro-integrative DLPFC deficits reflect a genetic risk for schizophrenia and that these deficits are present, to a lesser degree, in unaffected first-degree relatives. Our findings also support that neuro-integration might correlate with a patient's executive function performance.
Collapse
Affiliation(s)
- Tsung-Wei Su
- Brain Connectivity Lab., Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 112, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
45
|
Kochunov P, Chiappelli J, Hong LE. Permeability-diffusivity modeling vs. fractional anisotropy on white matter integrity assessment and application in schizophrenia. NEUROIMAGE-CLINICAL 2013; 3:18-26. [PMID: 24179845 PMCID: PMC3791292 DOI: 10.1016/j.nicl.2013.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/23/2013] [Accepted: 06/28/2013] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Diffusion tensor imaging (DTI) assumes a single pool of anisotropically diffusing water to calculate fractional anisotropy (FA) and is commonly used to ascertain white matter (WM) deficits in schizophrenia. At higher b-values, diffusion-signal decay becomes bi-exponential, suggesting the presence of two, unrestricted and restricted, water pools. Theoretical work suggests that semi-permeable cellular membrane rather than the presence of two physical compartments is the cause. The permeability-diffusivity (PD) parameters measured from bi-exponential modeling may offer advantages, over traditional DTI-FA, in identifying WM deficits in schizophrenia. METHODS Imaging was performed in N = 26/26 patients/controls (age = 20-61 years, average age = 40.5 ± 12.6). Imaging consisted of fifteen b-shells: b = 250-3800 s/mm(2) with 30 directions/shell, covering seven slices of mid-sagittal corpus callosum (CC) at 1.7 × 1.7 × 4.6 mm. 64-direction DTI was also collected. Permeability-diffusivity-index (PDI), the ratio of restricted to unrestricted apparent diffusion coefficients, and the fraction of unrestricted compartment (Mu) were calculated for CC and cingulate gray matter (GM). FA values for CC were calculated using tract-based-spatial-statistics. RESULTS Patients had significantly reduced PDI in CC (p ≅ 10(- 4)) and cingulate GM (p = 0.002), while differences in CC FA were modest (p ≅ .03). There was no group-related difference in Mu. Additional theoretical-modeling analysis suggested that reduced PDI in patients may be caused by reduced cross-membrane water molecule exchanges. CONCLUSION PDI measurements for cerebral WM and GM yielded more robust patient-control differences than DTI-FA. Theoretical work offers an explanation that patient-control PDI differences should implicate abnormal active membrane permeability. This would implicate abnormal activities in ion-channels that use water as substrate for ion exchange, in cerebral tissues of schizophrenia patients.
Collapse
Affiliation(s)
- P Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA ; Department of Physics, University of Maryland Baltimore County, USA
| | | | | |
Collapse
|
46
|
Microstructural white matter alterations in psychotic disorder: a family-based diffusion tensor imaging study. Schizophr Res 2013; 146:291-300. [PMID: 23523694 DOI: 10.1016/j.schres.2013.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND There is evidence for microstructural white matter alterations in patients with psychotic disorder, suggesting altered interregional connectivity. Less is known about the presence and role of white matter alterations in well individuals at higher than average genetic risk for psychotic disorder. METHODS 85 patients with psychotic disorder, 93 non-psychotic siblings of patients with psychotic disorder and 80 healthy controls underwent a diffusion tensor imaging (DTI) scanning protocol. In a whole brain voxel-based analysis using Tract Based Spatial Statistics (TBSS), fractional anisotropy (FA) values were compared between the three groups. Effects of antipsychotic medication and drug use were examined. RESULTS The patients displayed significantly lower mean FA than the controls in the following regions: corpus callosum (genu, body, splenium), forceps major and minor, external capsule bilaterally, corona radiata (anterior, posterior) bilaterally, left superior corona radiata and posterior thalamic radiation bilaterally. Similar FA differences existed between the patients and siblings; the siblings did not differ from the controls. CONCLUSION Profound microstructural white matter alterations were found in the corpus callosum and other tracti and fasciculi in the patients with psychotic disorder, but not in siblings and the controls. These alterations may reflect brain pathology associated with the illness, illness-related environmental risk factors, or its treatment, rather than genetic risk.
Collapse
|
47
|
Tropeano M, Ahn JW, Dobson RJB, Breen G, Rucker J, Dixit A, Pal DK, McGuffin P, Farmer A, White PS, Andrieux J, Vassos E, Ogilvie CM, Curran S, Collier DA. Male-biased autosomal effect of 16p13.11 copy number variation in neurodevelopmental disorders. PLoS One 2013; 8:e61365. [PMID: 23637818 PMCID: PMC3630198 DOI: 10.1371/journal.pone.0061365] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 03/08/2013] [Indexed: 01/26/2023] Open
Abstract
Copy number variants (CNVs) at chromosome 16p13.11 have been associated with a range of neurodevelopmental disorders including autism, ADHD, intellectual disability and schizophrenia. Significant sex differences in prevalence, course and severity have been described for a number of these conditions but the biological and environmental factors underlying such sex-specific features remain unclear. We tested the burden and the possible sex-biased effect of CNVs at 16p13.11 in a sample of 10,397 individuals with a range of neurodevelopmental conditions, clinically referred for array comparative genomic hybridisation (aCGH); cases were compared with 11,277 controls. In order to identify candidate phenotype-associated genes, we performed an interval-based analysis and investigated the presence of ohnologs at 16p13.11; finally, we searched the DECIPHER database for previously identified 16p13.11 copy number variants. In the clinical referral series, we identified 46 cases with CNVs of variable size at 16p13.11, including 28 duplications and 18 deletions. Patients were referred for various phenotypes, including developmental delay, autism, speech delay, learning difficulties, behavioural problems, epilepsy, microcephaly and physical dysmorphisms. CNVs at 16p13.11 were also present in 17 controls. Association analysis revealed an excess of CNVs in cases compared with controls (OR = 2.59; p = 0.0005), and a sex-biased effect, with a significant enrichment of CNVs only in the male subgroup of cases (OR = 5.62; p = 0.0002), but not in females (OR = 1.19, p = 0.673). The same pattern of results was also observed in the DECIPHER sample. Interval-based analysis showed a significant enrichment of case CNVs containing interval II (OR = 2.59; p = 0.0005), located in the 0.83 Mb genomic region between 15.49-16.32 Mb, and encompassing the four ohnologs NDE1, MYH11, ABCC1 and ABCC6. Our data confirm that duplications and deletions at 16p13.11 represent incompletely penetrant pathogenic mutations that predispose to a range of neurodevelopmental disorders, and suggest a sex-limited effect on the penetrance of the pathological phenotypes at the 16p13.11 locus.
Collapse
Affiliation(s)
- Maria Tropeano
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Joo Wook Ahn
- Department of Cytogenetics, Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Richard J. B. Dobson
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Gerome Breen
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - James Rucker
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Abhishek Dixit
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Deb K. Pal
- Department of Clinical Neuroscience, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Peter McGuffin
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Anne Farmer
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Peter S. White
- Center for Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Joris Andrieux
- Institut de Génétique Médicale, CHRU de Lille, Lille, France
| | - Evangelos Vassos
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Caroline Mackie Ogilvie
- Department of Cytogenetics, Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Sarah Curran
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - David A Collier
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
- Discovery Neuroscience Research, Eli Lilly and Company Ltd, Lilly Research Laboratories, Erl Wood Manor, Windlesham, Surrey, United Kingdom
| |
Collapse
|
48
|
Boos HBM, Mandl RCW, van Haren NEM, Cahn W, van Baal GCM, Kahn RS, Hulshoff Pol HE. Tract-based diffusion tensor imaging in patients with schizophrenia and their non-psychotic siblings. Eur Neuropsychopharmacol 2013; 23:295-304. [PMID: 22841128 DOI: 10.1016/j.euroneuro.2012.05.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/28/2012] [Accepted: 05/29/2012] [Indexed: 12/12/2022]
Abstract
Structural brain abnormalities have consistently been found in patients with schizophrenia. Diffusion tensor imaging (DTI) has been shown to be a useful method to measure white matter (WM) integrity in this illness, but findings in the earlier disease stages are inconclusive. Moreover, the relationship between WM microstructure and the familial risk for developing schizophrenia remains unresolved. From 126 patients with schizophrenia, 123 of their non-psychotic siblings and 109 healthy control subjects, DTI images were acquired on a 1.5 T MRI scanner. Mean fractional anisotropy (FA) was compared along averaged WM tracts, computed for the genu, splenium, left and right uncinate fasciculus, cingulum, inferior fronto-occipital fasciculus, fornix, arcuate fasciculus, and inferior longitudinal fasciculus. Fractional anisotropy (FA) was assessed for its unique environmental and familial (possibly heritable) aspects associated with schizophrenia, using structural equation modeling for these white matter tracts. The results of this study show that young adult (mean age 26.7 years) patients with schizophrenia did not differ in mean FA from healthy controls along WM fibers; siblings of patients showed higher mean FA in the left and right arcuate fasciculus as compared to patients and controls. With increasing age, an excessive decline in mean FA was found in patients as compared to siblings and healthy controls in the genu, left uncinate fasciculus, left inferior fronto-occipital fasciculus, and left inferior longitudinal fasciculus. Moreover, symptom severity was negatively correlated to mean FA in the arcuate fasciculus bilaterally in patients with schizophrenia. In young adult patients with schizophrenia integrity of individual tract-based (corticocortical) fibers can (still) be within normal limits. However, changes in the arcuate fasciculus may be relevant to (the risk to develop) psychosis, while a general and widespread loss of fiber integrity may be related to illness progression.
Collapse
Affiliation(s)
- Heleen B M Boos
- Rudolf Magnus Institute of Neuroscience, Department of Psychiatry, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
49
|
Johnson SLM, Greenstein D, Clasen L, Miller R, Lalonde F, Rapoport J, Gogtay N. Absence of anatomic corpus callosal abnormalities in childhood-onset schizophrenia patients and healthy siblings. Psychiatry Res 2013; 211:11-6. [PMID: 23154096 PMCID: PMC3557544 DOI: 10.1016/j.pscychresns.2012.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/07/2012] [Accepted: 09/28/2012] [Indexed: 12/23/2022]
Abstract
The corpus callosum (CC) has been implicated in the pathogenesis of schizophrenia, and CC deficits have been reported in adults with schizophrenia. We explored the developmental trajectory of the corpus callosum in childhood-onset schizophrenia (COS) patients, their healthy siblings (SIB) and healthy volunteers. We obtained 235 anatomic brain magnetic resonance imaging (MRI) scans from 98 COS patients, 153 scans from 71 of their healthy siblings, and 253 scans from 100 age- and gender-matched healthy volunteers, across ages 9-30 years. The volumes of five sub-regions of the CC were calculated using FreeSurfer, and summed to give the total volume. Longitudinal data were examined using mixed model regression analysis. There were no significant differences for the total or sub-regional CC volumes between the three groups. There were also no significant differences between the groups for developmental trajectory (slope) of the CC. This is the largest longitudinal study of CC development in schizophrenia and the first COS study of the CC to include healthy siblings. Overall, CC volume and growth trajectory did not differ between COS patients, healthy siblings, or healthy volunteers. These results suggest that CC development, at least at a macroscopic level, may not be a salient feature of schizophrenia.
Collapse
|
50
|
Hoptman MJ, Zuo XN, D’Angelo D, Mauro CJ, Butler PD, Milham MP, Javitt DC. Decreased interhemispheric coordination in schizophrenia: a resting state fMRI study. Schizophr Res 2012; 141:1-7. [PMID: 22910401 PMCID: PMC3446206 DOI: 10.1016/j.schres.2012.07.027] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 01/22/2023]
Abstract
Schizophrenia has been increasingly conceptualized as a disorder of brain connectivity, in large part due to findings emerging from white matter and functional connectivity (FC) studies. This work has focused primarily on within-hemispheric connectivity, however some evidence has suggested abnormalities in callosal structure and interhemispheric interaction. Here we examined functional connectivity between homotopic points in the brain using a technique called voxel-mirrored homotopic connectivity (VMHC). We performed VMHC analyses on resting state fMRI data from 23 healthy controls and 25 patients with schizophrenia or schizoaffective disorder. We found highly significant reductions in VMHC in patients for a number of regions, particularly the occipital lobe, the thalamus, and the cerebellum. No regions of increased VMHC were detected in patients. VMHC in the postcentral gyrus extending into the precentral gyrus was correlated with PANSS Total scores. These results show substantial impairment of interhemispheric coordination in schizophrenia.
Collapse
Affiliation(s)
- Matthew J. Hoptman
- Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY,Department of Psychiatry, New York University School of Medicine, New York, NY
| | - Xi-Nian Zuo
- Laboratory for Functional Connectome and Development, Key Laboratory of Behavioral Science, Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Debra D’Angelo
- Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY
| | - Cristina J. Mauro
- Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY
| | - Pamela D. Butler
- Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY,Department of Psychiatry, New York University School of Medicine, New York, NY
| | - Michael P. Milham
- Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY,Child Mind Institute, New York, NY
| | - Daniel C. Javitt
- Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY,Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|