1
|
Hua JPY, Loewy RL, Stuart B, Fryer SL, Niendam TA, Carter CS, Vinogradov S, Mathalon DH. Cortical and subcortical brain morphometry abnormalities in youth at clinical high-risk for psychosis and individuals with early illness schizophrenia. Psychiatry Res Neuroimaging 2023; 332:111653. [PMID: 37121090 PMCID: PMC10362971 DOI: 10.1016/j.pscychresns.2023.111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/27/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
Neuroimaging studies have documented morphometric brain abnormalities in schizophrenia, but less is known about them in individuals at clinical high-risk for psychosis (CHR-P), including how they compare with those observed in early schizophrenia (ESZ). Accordingly, we implemented multivariate profile analysis of regional morphometric profiles in CHR-P (n = 89), ESZ (n = 93) and healthy controls (HC; n = 122). ESZ profiles differed from HC and CHR-P profiles, including 1) cortical thickness: significant level reduction and regional non-parallelism reflecting widespread thinning, except for entorhinal and pericalcarine cortex, 2) basal ganglia volume: significant level increase and regional non-parallelism reflecting larger caudate and pallidum, and 3) ventricular volume: significant level increase with parallel regional profiles. CHR-P and ESZ cerebellar profiles showed significant non-parallelism with HC profiles. Regional profiles did not significantly differ between groups for cortical surface area or subcortical volume. Compared to CHR-P followed for ≥18 months without psychosis conversion (n = 31), CHR-P converters (n = 17) showed significant non-parallel ventricular volume expansion reflecting specific enlargement of lateral and inferolateral regions. Antipsychotic dosage in ESZ was significantly correlated with frontal cortical thinning. Results suggest that morphometric abnormalities in ESZ are not present in CHR-P, except for ventricular enlargement, which was evident in CHR-P who developed psychosis.
Collapse
Affiliation(s)
- Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco VA Medical Center, and the University of California, San Francisco, CA, United States; Mental Health Service, San Francisco VA Medical Center, San Francisco, 94121, CA, United States; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, 94143, CA, United States; Department of Psychological Sciences, University of Missouri, Columbia, 65211, MO, United States
| | - Rachel L Loewy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, 94143, CA, United States
| | - Barbara Stuart
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, 94143, CA, United States
| | - Susanna L Fryer
- Mental Health Service, San Francisco VA Medical Center, San Francisco, 94121, CA, United States
| | - Tara A Niendam
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, 95616, CA, United States
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, 95616, CA, United States
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, 55455, MN, United States
| | - Daniel H Mathalon
- Mental Health Service, San Francisco VA Medical Center, San Francisco, 94121, CA, United States; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, 94143, CA, United States.
| |
Collapse
|
2
|
DeLisi LE. Brain plasticity, language anomalies, genetic risk and the patient with schizophrenia: Trajectory of change over a lifetime. A commentary. Psychiatry Res 2023; 320:115034. [PMID: 36603384 DOI: 10.1016/j.psychres.2022.115034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Research on schizophrenia has been pursued for over a century. While the ability to view the brain and also the entire human genome advanced dramatically during this time and particularly in recent years, it is still unclear whether these advances helped to understand the nature of schizophrenia. What appears, however, to be the case is that early detection and treatment of people who are at high risk for developing schizophrenia due to various clinical signs, lead to better outcomes and recovery in many cases. Medications have also dramatically improved and have not been associated with the side-effects of earlier treatments, although they still are not without new sets of adverse effects. Over the years it was shown that structural brain abnormalities were present in the brains of people with chronic schizophrenia and that these observations were present early in the onset of illness. It was then shown these were not static and changed over the years of illness. At the same time it was shown that the brain centers for perceiving and speaking language appeared particularly abnormal in patients with schizophrenia and that these abnormalities could underlie the misperceptions and experiences of auditory hallucinations so characteristic of this illness. In a separate set of investigations that began with family, then twin and adoption studies, it was shown that schizophrenia is inherited, but in a complex manner. At present many genetic studies now find that genes, whose variants can lead to a high risk for schizophrenia, are ones specifically involving brain development and functioning. At present, although still speculative, it can be concluded that the progressive changes in brain structure, particularly related to language processing, take place in genetically vulnerable people and put them ultimately at high risk for developing schizophrenia in a trajectory for a lifelong illness. It is hoped that in the future these brain changes can be prevented by intervening early on the processes of brain growth and plasticity, thus arresting the illness before it begins.
Collapse
Affiliation(s)
- Lynn E DeLisi
- Department of Psychiatry, Cambridge Health Alliance and Harvard Medical School, Cambridge, Massachusetts, United States.
| |
Collapse
|
3
|
DeLisi LE. Commentary on whether progressive brain change underlies the pathology of schizophrenia: Should this even be debated? Schizophr Res 2022; 244:18-20. [PMID: 35567869 DOI: 10.1016/j.schres.2022.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lynn E DeLisi
- Attending Psychiatrist and Director of Faculty Affairs, Department of Psychiatry, Cambridge Health Alliance, Professor of Psychiatry, Harvard Medical School, Cambridge, MA, United States of America.
| |
Collapse
|
4
|
Progress in Schizophrenia Research and Treatment. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2020; 18:440-442. [PMID: 33343257 PMCID: PMC7725148 DOI: 10.1176/appi.focus.18310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
DeLisi LE. What a Clinician Should Know About the Neurobiology of Schizophrenia: A Historical Perspective to Current Understanding. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2020; 18:368-374. [PMID: 33343248 PMCID: PMC7725146 DOI: 10.1176/appi.focus.20200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The brain is no doubt the "organ" of psychiatry; yet, over the years, few evidence-based classifications of psychiatric disorders have been based on brain mechanisms. The National Institute of Mental Health notably proposed one such system, known as Research Domain Criteria, although it has not yet influenced any changes in the DSM. Of all the major psychiatric disorders, the brain has been studied most extensively in schizophrenia, with its speculative pathology first documented by Emil Kraepelin as early as the beginning of the 20th century. Subsequently, the revolution in technology over the past 50 years has changed how investigators are able to view the brain before death without performing biopsies. Schizophrenia is thus found to have both structural and functional widespread brain anomalies that likely lead to its clinical deterioration. At the onset of illness, acquiring an MRI scan could be part of the routine evaluation to determine how progressive the disease has so far been. However, this practice is not yet recognized by the American Psychiatric Association in any of its guidelines on the treatment of schizophrenia.
Collapse
Affiliation(s)
- Lynn E DeLisi
- Department of Psychiatry, Harvard Medical School, Boston, and Cambridge Health Alliance, Cambridge Hospital, Cambridge, Massachusetts
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW To provide an update of recent studies relevant for maintenance treatment with antipsychotic medication after a first psychotic episode (FEP). RECENT FINDINGS Despite controversy derived from a follow-up analysis from an earlier study showing that attempted early discontinuation after remission was associated with improved long-term functioning, most other studies support better long-term outcome with continuous maintenance treatment after the first episode. However, the main question is not whether, but for how long maintenance treatment after FEP should be offered. Consistent evidence shows that withdrawal from antipsychotics increases the risk for a relapse or re-hospitalization. On the other hand, maintenance treatment is associated with the risk to develop burdensome antipsychotic-induced side-effects and one should keep in mind that around 20% of FEP will not have a second episode. In this regard, the decision for maintenance treatment for periods above some months must be the result of a comprehensive risk-benefit evaluation during a shared decision-making process. SUMMARY There is no replicated evidence that prognosis can be improved by discontinuing antipsychotic medication after a FEP. There is a clear need for additional studies to develop single-subject outcome predictors and to identify long-term efficacy of maintenance treatment beyond relapse (e.g. recovery).
Collapse
|
7
|
Torres US, Duran FLS, Schaufelberger MS, Crippa JAS, Louzã MR, Sallet PC, Kanegusuku CYO, Elkis H, Gattaz WF, Bassitt DP, Zuardi AW, Hallak JEC, Leite CC, Castro CC, Santos AC, Murray RM, Busatto GF. Patterns of regional gray matter loss at different stages of schizophrenia: A multisite, cross-sectional VBM study in first-episode and chronic illness. NEUROIMAGE-CLINICAL 2016; 12:1-15. [PMID: 27354958 PMCID: PMC4910144 DOI: 10.1016/j.nicl.2016.06.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/27/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022]
Abstract
Background: Structural brain abnormalities in schizophrenia have been repeatedly demonstrated in magnetic resonance imaging (MRI) studies, but it remains unclear whether these are static or progressive in nature. While longitudinal MRI studies have been traditionally used to assess the issue of progression of brain abnormalities in schizophrenia, information from cross-sectional neuroimaging studies directly comparing first-episode and chronic schizophrenia patients to healthy controls may also be useful to further clarify this issue. With the recent interest in multisite mega-analyses combining structural MRI data from multiple centers aiming at increased statistical power, the present multisite voxel-based morphometry (VBM) study was carried out to examine patterns of brain structural changes according to the different stages of illness and to ascertain which (if any) of such structural abnormalities would be specifically correlated to potential clinical moderators, including cumulative exposure to antipsychotics, age of onset, illness duration and overall illness severity. Methods: We gathered a large sample of schizophrenia patients (161, being 99 chronic and 62 first-episode) and controls (151) from four previous morphometric MRI studies (1.5 T) carried out in the same geographical region of Brazil. Image processing and analyses were conducted using Statistical Parametric Mapping (SPM8) software with the diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) algorithm. Group effects on regional gray matter (GM) volumes were investigated through whole-brain voxel-wise comparisons using General Linear Model Analysis of Co-variance (ANCOVA), always including total GM volume, scan protocol, age and gender as nuisance variables. Finally, correlation analyses were performed between the aforementioned clinical moderators and regional and global brain volumes. Results: First-episode schizophrenia subjects displayed subtle volumetric deficits relative to controls in a circumscribed brain regional network identified only in small volume-corrected (SVC) analyses (p < 0.05, FWE-corrected), including the insula, temporolimbic structures and striatum. Chronic schizophrenia patients, on the other hand, demonstrated an extensive pattern of regional GM volume decreases relative to controls, involving bilateral superior, inferior and orbital frontal cortices, right middle frontal cortex, bilateral anterior cingulate cortices, bilateral insulae and right superior and middle temporal cortices (p < 0.05, FWE-corrected over the whole brain). GM volumes in several of those brain regions were directly correlated with age of disease onset on SVC analyses for conjoined (first-episode and chronic) schizophrenia groups. There were also widespread foci of significant negative correlation between duration of illness and relative GM volumes, but such findings remained significant only for the right dorsolateral prefrontal cortex after accounting for the influence of age of disease onset. Finally, significant negative correlations were detected between life-time cumulative exposure to antipsychotics and total GM and white matter volumes in schizophrenia patients, but no significant relationship was found between indices of antipsychotic usage and relative GM volume in any specific brain region. Conclusion: The above data indicate that brain changes associated with the diagnosis of schizophrenia are more widespread in chronic schizophrenia compared to first-episode patients. Our findings also suggest that relative GM volume deficits may be greater in (presumably more severe) cases with earlier age of onset, as well as varying as a function of illness duration in specific frontal brain regions. Finally, our results highlight the potentially complex effects of the continued use of antipsychotic drugs on structural brain abnormalities in schizophrenia, as we found that cumulative doses of antipsychotics affected brain volumes globally rather than selectively on frontal-temporal regions. Structural brain changes are more widespread in chronic than first-episode schizophrenia. Regional GM deficits may be greater in cases with earlier age of onset. Illness duration seems to impact in some specific frontal structural brain changes. Antipsychotics seem to affect brain volumes globally rather than regionally.
Collapse
Affiliation(s)
- Ulysses S Torres
- Post-Graduation Program in Radiology, Institute of Radiology (INRAD), Faculty of Medicine, University of São Paulo, Brazil; Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - Fabio L S Duran
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - Maristela S Schaufelberger
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Department of Neuroscience and Behaviour, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - José A S Crippa
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Department of Neuroscience and Behaviour, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mario R Louzã
- Department and Institute of Psychiatry, University of Sao Paulo Medical School, Brazil
| | - Paulo C Sallet
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Department and Institute of Psychiatry, University of Sao Paulo Medical School, Brazil
| | | | - Helio Elkis
- Department and Institute of Psychiatry, University of Sao Paulo Medical School, Brazil
| | - Wagner F Gattaz
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Department and Institute of Psychiatry, University of Sao Paulo Medical School, Brazil; Laboratory of Neuroscience (LIM 27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Brazil
| | - Débora P Bassitt
- Department and Institute of Psychiatry, University of Sao Paulo Medical School, Brazil
| | - Antonio W Zuardi
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Department of Neuroscience and Behaviour, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Jaime Eduardo C Hallak
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Department of Neuroscience and Behaviour, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Claudia C Leite
- Post-Graduation Program in Radiology, Institute of Radiology (INRAD), Faculty of Medicine, University of São Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - Claudio C Castro
- Post-Graduation Program in Radiology, Institute of Radiology (INRAD), Faculty of Medicine, University of São Paulo, Brazil; Department of Diagnostic Imaging, Heart Institute (InCor), Faculty of Medicine, University of São Paulo, Brazil
| | - Antonio Carlos Santos
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Department of Internal Medicine - Radiology Division, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK
| | - Geraldo F Busatto
- Post-Graduation Program in Radiology, Institute of Radiology (INRAD), Faculty of Medicine, University of São Paulo, Brazil; Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Department and Institute of Psychiatry, University of Sao Paulo Medical School, Brazil
| |
Collapse
|
8
|
Hoirisch-Clapauch S, Amaral OB, Mezzasalma MAU, Panizzutti R, Nardi AE. Dysfunction in the coagulation system and schizophrenia. Transl Psychiatry 2016; 6:e704. [PMID: 26731441 PMCID: PMC5068878 DOI: 10.1038/tp.2015.204] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 01/24/2023] Open
Abstract
Although different hypotheses have been formulated to explain schizophrenia pathogenesis, the links between them are weak. The observation that five psychotic patients on chronic warfarin therapy for deep-vein thrombosis showed long-term remission of psychotic symptoms made us suspect that abnormalities in the coagulation pathway, specifically low tissue plasminogen activator (tPA) activity, could be one of the missing links. Our hypothesis is supported by a high prevalence of conditions affecting tPA activity in drug-naive schizophrenia, such as antiphospholipid antibodies, elevated cytokine levels, hyperinsulinemia and hyperhomocysteinemia. We recently screened a group of schizophrenia patients and controls for conditions affecting tPA activity. Free-protein S deficiency was highly prevalent among patients, but not found in controls. Free-protein S and functional protein C are natural anticoagulants that form complexes that inhibit tPA inhibitors. All participants had normal protein C levels, suggesting that protein S could have a role in schizophrenia, independent of protein C. Chronic patients and those studied during acute episodes had between three and six conditions affecting tPA and/or protein S activity, while patients in remission had up to two, which led us to postulate that multiple conditions affecting tPA and/or protein S activity could contribute to the full expression of schizophrenia phenotype. This paper describes the physiological roles of tPA and protein S, reviewing how their activity influences pathogenesis and comorbidity of schizophrenia. Next, it analyzes how activity of tPA and protein S is influenced by biochemical abnormalities found in schizophrenia. Last, it suggests future directions for research, such as studies on animal models and on therapeutic approaches for schizophrenia aiming at increasing tPA and protein S activity.
Collapse
Affiliation(s)
- S Hoirisch-Clapauch
- Department of Hematology, Hospital Federal dos Servidores do Estado, Ministry of Health, Rio de Janeiro, Brazil
| | - O B Amaral
- Department of Medical Biochemistry, Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M A U Mezzasalma
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute for Translational Medicine, Instituto Nacional de Ciência e Tecnologia - Translacional em Medicina, Rio de Janeiro, Brazil
| | - R Panizzutti
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Basic-Clinical Neuroscience Program, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A E Nardi
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute for Translational Medicine, Instituto Nacional de Ciência e Tecnologia - Translacional em Medicina, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Ebdrup BH, Nørbak H, Borgwardt S, Glenthøj B. Volumetric changes in the basal ganglia after antipsychotic monotherapy: a systematic review. Curr Med Chem 2014; 20:438-47. [PMID: 23157636 PMCID: PMC3715891 DOI: 10.2174/0929867311320030015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 09/09/2012] [Accepted: 09/26/2012] [Indexed: 11/22/2022]
Abstract
Introduction: Exposure to antipsychotic medication has been extensively associated with structural brain changes in the basal ganglia (BG). Traditionally antipsychotics have been divided into first and second generation antipsychotics (FGAs and SGAs) however, the validity of this classification has become increasingly controversial. To address if specific antipsychotics induce differential effects on BG volumes or whether volumetric effects are explained by FGA or SGA classification, we reviewed longitudinal structural magnetic resonance imaging (MRI) studies investigating effects of antipsychotic monotherapy. Material and Methods: We systematically searched PubMed for longitudinal MRI studies of patients with schizophrenia or non-affective psychosis who had undergone a period of antipsychotic monotherapy. We used specific, predefined search terms and extracted studies were hand searched for additional studies. Results: We identified 13 studies published in the period from 1996 to 2011. Overall six compounds (two classified as FGAs and four as SGAs) have been investigated: haloperidol, zuclophentixol, risperidone, olanzapine, clozapine, and quetiapine. The follow-up period ranged from 3-24 months. Unexpectedly, no studies found that specific FGAs induce significant BG volume increases. Conversely, both volumetric increases and decreases in the BG have been associated with SGA monotherapy. Discussion: Induction of striatal volume increases is not a specific feature of FGAs. Except for clozapine treatment in chronic patients, volume reductions are not restricted to specific SGAs. The current review adds brain structural support to the notion that antipsychotics should no longer be classified as either FGAs or SGAs. Future clinical MRI studies should strive to elucidate effects of specific antipsychotic drugs.
Collapse
Affiliation(s)
- B H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research, CNSR & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Psychiatric Center Glostrup, University Hospital DK-Glostrup, Denmark.
| | | | | | | |
Collapse
|
10
|
|
11
|
Cannabis use and brain structural alterations of the cingulate cortex in early psychosis. Psychiatry Res 2013; 214:102-8. [PMID: 24054726 DOI: 10.1016/j.pscychresns.2013.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 02/07/2023]
Abstract
As cannabis use is more frequent in patients with psychosis than in the general population and is known to be a risk factor for psychosis, the question arises whether cannabis contributes to recently detected brain volume reductions in schizophrenic psychoses. This study is the first to investigate how cannabis use is related to the cingulum volume, a brain region involved in the pathogenesis of schizophrenia, in a sample of both at-risk mental state (ARMS) and first episode psychosis (FEP) subjects. A cross-sectional magnetic resonance imaging (MRI) study of manually traced cingulum in 23 FEP and 37 ARMS subjects was performed. Cannabis use was assessed with the Basel Interview for Psychosis. By using repeated measures analyses of covariance, we investigated whether current cannabis use is associated with the cingulum volume, correcting for age, gender, alcohol consumption, whole brain volume and antipsychotic medication. There was a significant three-way interaction between region (anterior/posterior cingulum), hemisphere (left/right cingulum) and cannabis use (yes/no). Post-hoc analyses revealed that this was due to a significant negative effect of cannabis use on the volume of the posterior cingulum which was independent of the hemisphere and diagnostic group and all other covariates we controlled for. In the anterior cingulum, we found a significant negative effect only for the left hemisphere, which was again independent of the diagnostic group. Overall, we found negative associations of current cannabis use with grey matter volume of the cingulate cortex, a region rich in cannabinoid CB1 receptors. As this finding has not been consistently found in healthy controls, it might suggest that both ARMS and FEP subjects are particularly sensitive to exogenous activation of these receptors.
Collapse
|
12
|
Catts VS, Fung SJ, Long LE, Joshi D, Vercammen A, Allen KM, Fillman SG, Rothmond DA, Sinclair D, Tiwari Y, Tsai SY, Weickert TW, Shannon Weickert C. Rethinking schizophrenia in the context of normal neurodevelopment. Front Cell Neurosci 2013; 7:60. [PMID: 23720610 PMCID: PMC3654207 DOI: 10.3389/fncel.2013.00060] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/16/2013] [Indexed: 01/11/2023] Open
Abstract
The schizophrenia brain is differentiated from the normal brain by subtle changes, with significant overlap in measures between normal and disease states. For the past 25 years, schizophrenia has increasingly been considered a neurodevelopmental disorder. This frame of reference challenges biological researchers to consider how pathological changes identified in adult brain tissue can be accounted for by aberrant developmental processes occurring during fetal, childhood, or adolescent periods. To place schizophrenia neuropathology in a neurodevelopmental context requires solid, scrutinized evidence of changes occurring during normal development of the human brain, particularly in the cortex; however, too often data on normative developmental change are selectively referenced. This paper focuses on the development of the prefrontal cortex and charts major molecular, cellular, and behavioral events on a similar time line. We first consider the time at which human cognitive abilities such as selective attention, working memory, and inhibitory control mature, emphasizing that attainment of full adult potential is a process requiring decades. We review the timing of neurogenesis, neuronal migration, white matter changes (myelination), and synapse development. We consider how molecular changes in neurotransmitter signaling pathways are altered throughout life and how they may be concomitant with cellular and cognitive changes. We end with a consideration of how the response to drugs of abuse changes with age. We conclude that the concepts around the timing of cortical neuronal migration, interneuron maturation, and synaptic regression in humans may need revision and include greater emphasis on the protracted and dynamic changes occurring in adolescence. Updating our current understanding of post-natal neurodevelopment should aid researchers in interpreting gray matter changes and derailed neurodevelopmental processes that could underlie emergence of psychosis.
Collapse
Affiliation(s)
- Vibeke S. Catts
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Samantha J. Fung
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Leonora E. Long
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Dipesh Joshi
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Ans Vercammen
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
- School of Psychology, Australian Catholic UniversitySydney, NSW, Australia
| | - Katherine M. Allen
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Stu G. Fillman
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Debora A. Rothmond
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
| | - Duncan Sinclair
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Yash Tiwari
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Shan-Yuan Tsai
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Thomas W. Weickert
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
13
|
Hippocampal volume in subjects at high risk of psychosis: a longitudinal MRI study. Schizophr Res 2012; 142:217-22. [PMID: 23123134 DOI: 10.1016/j.schres.2012.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The hippocampal formation has been studied extensively in schizophrenic psychoses and alterations in hippocampal anatomy have been consistently reported. Chronic schizophrenia seems to be associated with bilateral hippocampal volume (HV) reduction, while in patients with an at-risk mental state (ARMS) there are contradictory results. This is the first region of interest (ROI) based follow-up MRI study of hippocampal volume comparing ARMS individuals with and without transition to psychosis. The aim was to investigate the timing of HV changes in ARMS in the early phase of psychosis. METHODS Magnetic resonance imaging data from 18 antipsychotic-naïve individuals with an ARMS were collected within the FePsy-clinic for early detection of psychoses. During follow-up 8 subjects transitioned to psychosis (ARMS-T) and 10 did not (ARMS-NT). Subjects were re-scanned after the onset of psychosis or at the end of the follow-up if they did not develop psychosis. RESULTS Across both groups there was a significant decrease in HV over time (p<0.05). There was no significant difference in progression between ARMS-T and ARMS-NT. Antipsychotic medication at follow up was associated with increased HV (p<0.05). CONCLUSIONS We found a decrease of HV over time in subjects with an ARMS, independently of clinical outcome. We may speculate that the decrease of HV over time might reflect brain degeneration processes.
Collapse
|
14
|
Nenadić I, Sauer H, Smesny S, Gaser C. Aging effects on regional brain structural changes in schizophrenia. Schizophr Bull 2012; 38:838-44. [PMID: 21296908 PMCID: PMC3406518 DOI: 10.1093/schbul/sbq140] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Although mostly conceptualized as a neurodevelopmental disorder, there is an increasing interest in progressive changes of cognitive deficits and brain structure and function in schizophrenia across the life span. METHODS In this study, we investigated age-related changes in regional gray matter using voxel-based morphometry in a sample of 99 patients (age range 18-65 years) with Diagnostic and Statistical Manual of Mental Disorders-IV schizophrenia and 113 healthy controls (age range 19-59 years) using a cross-sectional design. RESULTS We found steeper age-related decline in gray matter in patients in a cluster comprising the left superior temporal cortex and adjacent inferior parietal lobule. We then divided the schizophrenia sample in 3 subgroups based on a 3-factor model of psychopathology ratings. Age-related changes were markedly different in each of the 3 subgroups (compared with healthy controls). While patients with predominantly paranoid symptoms showed stronger age-related progression in the left superior temporal cortex and right inferior frontal gyrus, those of the disorganized subgroup had stronger gray matter loss in the left lateral cerebellum, while the predominantly negative subgroup showed minor effects in the left superior temporal gyrus. CONCLUSIONS Our findings show that differences in brain structural changes associated with aging diverge between schizophrenia patients and healthy subjects and that different subgroups within a patient sample might be at higher risk of age-related regional gray matter loss.
Collapse
Affiliation(s)
- Igor Nenadić
- Department of Psychiatry and Psychotherapy, Friedrich-Schiller-University of Jena, Philosophenweg 3, D-07743 Jena, Germany.
| | | | | | | |
Collapse
|
15
|
Yoon JH, Nguyen DV, McVay LM, Deramo P, Minzenberg MJ, Ragland JD, Niendham T, Solomon M, Carter CS. Automated classification of fMRI during cognitive control identifies more severely disorganized subjects with schizophrenia. Schizophr Res 2012; 135:28-33. [PMID: 22277668 PMCID: PMC3288252 DOI: 10.1016/j.schres.2012.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/04/2012] [Accepted: 01/04/2012] [Indexed: 11/18/2022]
Abstract
The establishment of a neurobiologically based nosological system is one of the ultimate goals of modern biological psychiatry research. Developments in neuroimaging and statistical/machine learning have provided useful basic tools for these efforts. Recent studies have demonstrated the utility of fMRI as input data for the classification of schizophrenia, but none, to date, has used fMRI of cognitive control for this purpose. In this study, we evaluated the accuracy of an unbiased classification method on fMRI data from a large cohort of subjects with first episode schizophrenia and a cohort of age matched healthy control subjects while they completed the AX version of the Continuous Performance Task (AX-CPT). We compared these results to classifications based on AX-CPT behavioral data. Classification accuracy for DSM-IV defined schizophrenia using fMRI data was modest and comparable to classifications conducted with behavioral data. Interestingly fMRI classifications did however identify a distinct subgroup of patients with greater behavioral disorganization, whereas behavioral data classifications did not. These results suggest that fMRI-based classification could be a useful tool in defining a neurobiologically distinct subgroup within the clinically defined syndrome of schizophrenia, reflecting alterations in discrete neural circuits. Independent validation of classification-based phenotypes using other biological data such as genetics would provide a strong test of this hypothesis.
Collapse
Affiliation(s)
- Jong H Yoon
- Department of Psychiatry and Imaging Research Center, University of California Davis School of Medicine, Sacramento CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Basic research in animals represents a fruitful approach to study the neurobiological basis of brain and behavioral disturbances relevant to neuropsychiatric disease and to establish and evaluate novel pharmacological therapies for their treatment. In the context of schizophrenia, there are models employing specific experimental manipulations developed according to specific pathophysiological or etiological hypotheses. The use of selective lesions in adult animals and the acute administration of psychotomimetic agents are indispensable tools in the elucidation of the contribution of specific brain regions or neurotransmitters to the genesis of a specific symptom or collection of symptoms and enjoy some degrees of predictive validity. However, they may be inaccurate, if not inadequate, in capturing the etiological mechanisms or ontology of the disease needed for a complete understanding of the disease and may be limited in the discovery of novel compounds for the treatment of negative and cognitive symptoms of schizophrenia. Under the prevailing consensus of schizophrenia as a disease of neurodevelopmental origin, we have seen the establishment of neurodevelopmental animal models which aim to identify the etiological processes whereby the brain, following specific triggering events, develops into a "schizophrenia-like brain" over time. Many neurodevelopmental models such as the neonatal ventral hippocampus (vHPC) lesion, methylazoxymethanol (MAM), and prenatal immune activation models can mimic a broad spectrum of behavioral, cognitive, and pharmacological abnormalities directly implicated in schizophrenic disease. These models allow pharmacological screens against multiple and coexisting schizophrenia-related dysfunctions while incorporating the disease-relevant concept of abnormal brain development. The multiplicity of existing models is testimonial to the multifactorial nature of schizophrenia, and there are ample opportunities for their integration. Indeed, one ultimate goal must be to incorporate the successes of distinct models into one unitary account of the complex disorder of schizophrenia and to use such unitary approaches in the further development and evaluation of novel antipsychotic treatment strategies.
Collapse
|
17
|
Borgwardt S, McGuire P, Fusar-Poli P. Gray matters!--mapping the transition to psychosis. Schizophr Res 2011; 133:63-7. [PMID: 21943556 DOI: 10.1016/j.schres.2011.08.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/28/2011] [Accepted: 08/28/2011] [Indexed: 10/17/2022]
Abstract
Despite many neuroimaging studies on schizophrenia showing brain abnormalities the exact time course of their occurrence is unknown. Studies of gray matter are a powerful tool in biological psychiatry and provide an unprecedented opportunity for brain structure investigations. Here we compared cross-sectional and longitudinal structural neuroimaging studies distinguishing high-risk subjects developing psychosis from those who did not. These investigations on gray matter volumes in the prodromal phase potentially identify core structural markers of impending psychoses and clarify dynamic changes underlying the transition. Subjects at high risk of psychosis show qualitatively similar albeit less severe gray matter abnormalities as patients with psychosis.
Collapse
Affiliation(s)
- Stefan Borgwardt
- Department of Psychiatry, University of Basel, Basel, Switzerland.
| | | | | |
Collapse
|
18
|
Egerton A, Borgwardt SJ, Tognin S, Howes OD, McGuire P, Allen P. An overview of functional, structural and neurochemical imaging studies in individuals with a clinical high risk for psychosis. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/npy.11.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Olabi B, Ellison-Wright I, McIntosh AM, Wood SJ, Bullmore E, Lawrie SM. Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biol Psychiatry 2011; 70:88-96. [PMID: 21457946 DOI: 10.1016/j.biopsych.2011.01.032] [Citation(s) in RCA: 356] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/21/2011] [Accepted: 01/22/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND It is well established that schizophrenia is associated with structural brain abnormalities, but whether these are static or progress over time remains controversial. METHODS A systematic review of longitudinal volumetric studies using region-of-interest structural magnetic resonance imaging in patients with schizophrenia and healthy control subjects. The percentage change in volume between scans for each brain region of interest was obtained, and data were combined using random effects meta-analysis. RESULTS Twenty-seven studies were included in the meta-analysis, with 928 patients and 867 control subjects, and 32 different brain regions of interest. Subjects with schizophrenia showed significantly greater decreases over time in whole brain volume, whole brain gray matter, frontal gray and white matter, parietal white matter, and temporal white matter volume, as well as larger increases in lateral ventricular volume, than healthy control subjects. The time between baseline and follow-up magnetic resonance imaging scans ranged from 1 to 10 years. The differences between patients and control subjects in annualized percentage volume change were -.07% for whole brain volume, -.59% for whole brain gray matter, -.32% for frontal white matter, -.32% for parietal white matter, -.39% for temporal white matter, and +.36% for bilateral lateral ventricles. CONCLUSIONS These findings suggest that schizophrenia is associated with progressive structural brain abnormalities, affecting both gray and white matter. We found no evidence to suggest progressive medial temporal lobe involvement but did find evidence that this may be partly explained by heterogeneity between studies in patient age and illness duration. The causes and clinical correlates of these progressive brain changes should now be the focus of investigation.
Collapse
Affiliation(s)
- Bayanne Olabi
- Division of Psychiatry, School of Molecular and Clinical Medicine, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
20
|
Progressive striatal and hippocampal volume loss in initially antipsychotic-naive, first-episode schizophrenia patients treated with quetiapine: relationship to dose and symptoms. Int J Neuropsychopharmacol 2011; 14:69-82. [PMID: 20701823 DOI: 10.1017/s1461145710000817] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
First-generation antipsychotics have been associated with striatal volume increases. The effects of second-generation antipsychotics (SGAs) on the striatum are unclear. Moreover, SGAs may have neuroprotective effects on the hippocampus. Dose-dependent volumetric effects of individual SGAs have scarcely been investigated. Here we investigated structural brain changes in antipsychotic-naive, first-episode schizophrenia patients after 6 months treatment with the SGA, quetiapine. We have recently reported on baseline volume reductions in the caudate nucleus and hippocampus. Baseline and follow-up T1-weighted images (3 T) from 22 patients and 28 matched healthy controls were analysed using tensor-based morphometry. Non-parametric voxel-wise group comparisons were performed. Small volume correction was employed for striatum, hippocampus and ventricles. Dose-dependent medication effects and associations with psychopathology were assessed. Patients had significant bilateral striatal and hippocampal loss over the 6-month treatment period. When compared to controls the striatal volume loss was most pronounced with low quetiapine doses and less apparent with high doses. Post-hoc analyses revealed that the striatal volume loss was most pronounced in the caudate and putamen, but not in accumbens. Conversely, hippocampal volume loss appeared more pronounced with high quetiapine doses than with low doses. Clinically, higher baseline positive symptoms were associated with more striatal and hippocampal loss over time. Although patients' ventricles did not change significantly, ventricular increases correlated with less improvement of negative symptoms. Progressive regional volume loss in quetiapine-treated, first-episode schizophrenia patients may be dose-dependent and clinically relevant. The mechanisms underlying progressive brain changes, specific antipsychotic compounds and clinical symptoms warrant further research.
Collapse
|
21
|
Age-related cortical thinning in schizophrenia. Schizophr Res 2011; 125:21-9. [PMID: 21036016 DOI: 10.1016/j.schres.2010.10.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/27/2010] [Accepted: 10/05/2010] [Indexed: 11/24/2022]
Abstract
Although the effects of aging on the neural correlates of schizophrenia have been researched for many years, no clear conclusion has been reached. While some studies have demonstrated progressive age-related gray matter reductions in schizophrenia, other studies have not found evidence of progression. Moreover, it remains unclear whether the influence of aging on global or regional cortical thickness differs between schizophrenia patients and healthy controls. This study aimed to confirm previous reports of reduced cortical thickness in schizophrenia, and to investigate the effects of age on global and regional cortical thickness. Eighty-three patients with schizophrenia (six first-episode patients and 77 chronic patients; age range=18-55 years) and 90 age-, gender- and education-matched healthy controls (age range=19-56 years) underwent structural magnetic resonance imaging (MRI) using a 3-Tesla scanner. Surface-based analysis was applied to assess cortical thickness in the whole brain. The patient group exhibited both global and regional cortical thinning in regions including the prefrontal and temporal cortices. The correlation between age and cortical thickness showed a similar pattern in patients and controls, both globally and regionally. These results suggest that the reduction of cortical thickness in schizophrenia might not be progressive over the course of the illness, indicating that pathological processes occur in a relatively limited period of time around the onset of illness.
Collapse
|
22
|
Ultrastructural alterations of myelinated fibers and oligodendrocytes in the prefrontal cortex in schizophrenia: a postmortem morphometric study. SCHIZOPHRENIA RESEARCH AND TREATMENT 2011; 2011:325789. [PMID: 22937264 PMCID: PMC3420756 DOI: 10.1155/2011/325789] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/07/2011] [Accepted: 04/24/2011] [Indexed: 12/15/2022]
Abstract
Schizophrenia is believed to result from altered neuronal connectivity and impaired myelination. However, there are few direct evidence for myelin abnormalities in schizophrenia. We performed electron microscopic study of myelinated fibers and oligodendrocytes and morphometric study of myelinated fibers in the prefrontal cortex in gray and white matters in schizophrenia and normal controls. Six types of abnormal fibers and ultrastructural alterations of oligodendrocytes were found in schizophrenia. No significant group differences in area density of myelinated fibers were found. Frequency of pathological fibers was increased significantly in gray matter in young and elderly schizophrenia patients and in patients with predominantly positive symptoms. In contrast, in white matter, frequency of altered fibers was increased significantly in elderly patients, in patients with predominantly negative symptoms, and correlated with illness duration. Progressive alterations of myelinated fibers in white matter might be followed by alterations of myelinated fibers in gray matter in schizophrenia.
Collapse
|
23
|
Abekawa T, Ito K, Nakagawa S, Nakato Y, Koyama T. Effects of aripiprazole and haloperidol on progression to schizophrenia-like behavioural abnormalities and apoptosis in rodents. Schizophr Res 2011; 125:77-87. [PMID: 20833512 DOI: 10.1016/j.schres.2010.08.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 07/25/2010] [Accepted: 08/09/2010] [Indexed: 12/27/2022]
Abstract
Aripiprazole (APZ) is considered a first-line medication for treating first and multiple episodes of schizophrenia, but its effect on preventing the progressive pathophysiology of schizophrenia remains unclear. This study examined the hypothesis that APZ blocks enhanced glutamate release in the medial prefrontal cortex (mPFC) during psychotic episodes of schizophrenia, thereby preventing progression of the pathophysiology. We examined effects of APZ on methamphetamine (METH)-induced increases in glutamate levels in the mPFC, and on repeatedly administered METH-induced progression to schizophrenia-like behavioural abnormalities involving cross-sensitization to the N-methyl-d-aspartate (NMDA) receptor antagonist, MK-801, deficit of prepulse inhibition (PPI), and expression of TUNEL-positive cells. Additionally, we compared the preventive effects of APZ to those of a conventional antipsychotic: haloperidol (HPD). Results show that APZ (1.0 and 3.0 mg/kg) and HPD (0.1 mg/kg) each blocked METH (2.5 mg/kg)-induced increases in glutamate levels in the mPFC. Furthermore, APZ (3.0 mg/kg) and HPD (0.1 mg/kg), when co-administered repeatedly with METH, each prevented progression to schizophrenia-like behavioural and neuropathological abnormalities. Repeated co-administration of APZ (3.0 mg/kg) with saline did not induce apoptosis, although HPD (0.1 mg/kg) with saline did induce apoptosis. These results indicate that APZ and HPD prevented progressive pathophysiology, which is related to increased glutamate levels, and indicate that repeated administration of HPD, but not APZ, induced apoptosis under conditions without increased glutamate levels. These findings suggest the importance of using APZ and HPD in the appropriate stages of the glutamate-related pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Tomohiro Abekawa
- Kotoku-kai Aiko Hospital, Department of Psychiatry, Matsue 2-7-1, 243-0005, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
24
|
Borgwardt SJ, Picchioni MM, Ettinger U, Toulopoulou T, Murray R, McGuire PK. Regional gray matter volume in monozygotic twins concordant and discordant for schizophrenia. Biol Psychiatry 2010; 67:956-64. [PMID: 20006324 DOI: 10.1016/j.biopsych.2009.10.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/08/2009] [Accepted: 10/11/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Alterations in gray matter volume (GMV) are a robust feature of schizophrenia. However, it is not clear to what extent these abnormalities are correlates of the genetic liability to the disorder, as opposed to environmental factors and the disorder itself. We investigated the influence of genetic and environmental risk on GMV in monozygotic (MZ) twin pairs concordant and discordant for schizophrenia. METHODS Total and regional GMVs were measured from magnetic resonance images of 80 twins: 14 MZ pairs concordant for schizophrenia, 9 pairs discordant for schizophrenia, and 17 healthy MZ twin pairs. RESULTS Total GMV was smaller in twins with schizophrenia (t = -3.17, p = .003) and nonpsychotic cotwins from discordant pairs (t = -2.66, p = .011) than in healthy control twins. Twin pairs concordant for schizophrenia displayed reduced regional GMV in the inferior frontal, medial frontal, and anterior cingulate gyri; the caudate; lingual gyrus; and cerebellum relative to healthy twins (p < .05, corrected). Within discordant pairs, twins with schizophrenia had less GMV than their nonpsychotic cotwins in the insula; superior/medial frontal, pre/postcentral, cingulate, and superior temporal gyri; and the paracentral lobule. There were no significant differences in regional GMV between nonpsychotic cotwins and healthy control subjects. CONCLUSIONS The presence of schizophrenia was specifically related to reduced GMV in frontal, insular, cingulate, medial parietal, and temporal cortex, over and above effects of genetic risk for the disorder. These changes could be related to the pathophysiology of the disorder itself or to unique environmental factors acting etiologically or because of the illness.
Collapse
Affiliation(s)
- Stefan J Borgwardt
- Section of Neuroimaging, Institute of Psychiatry, King's College London, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
25
|
Meyer U, Feldon J. Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol 2010; 90:285-326. [DOI: 10.1016/j.pneurobio.2009.10.018] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/30/2009] [Accepted: 10/14/2009] [Indexed: 12/17/2022]
|
26
|
Takahashi T, Wood SJ, Kawasaki Y, Suzuki M, Velakoulis D, Pantelis C. Lack of progressive gray matter reduction of the superior temporal subregions in chronic schizophrenia. Schizophr Res 2010; 117:101-2. [PMID: 20071150 DOI: 10.1016/j.schres.2009.12.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/21/2009] [Accepted: 12/22/2009] [Indexed: 10/20/2022]
|
27
|
Smieskova R, Fusar-Poli P, Allen P, Bendfeldt K, Stieglitz RD, Drewe J, Radue EW, McGuire PK, Riecher-Rössler A, Borgwardt SJ. Neuroimaging predictors of transition to psychosis--a systematic review and meta-analysis. Neurosci Biobehav Rev 2010; 34:1207-22. [PMID: 20144653 DOI: 10.1016/j.neubiorev.2010.01.016] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/29/2010] [Accepted: 01/31/2010] [Indexed: 11/30/2022]
Abstract
OBJECTIVES In early stage psychosis research the identification of neurobiological correlates of vulnerability to schizophrenia is an important hurdle. METHODS We systematically reviewed the neuroimaging publications on high-risk subjects with subsequent transition to psychosis (HR-T) and conducted a meta-analysis calculating the effect size Cohen's d. RESULTS Out of 30 identified studies 25 met the inclusion criteria. Structural (s)MRI studies showed small to medium effect sizes of decreased prefrontal, cingulate, insular and cerebellar gray matter volume in HR-T compared to high-risk subjects without transition (HR-NT). Meta-analysis revealed relatively larger whole brain volumes in HR-T compared to HR-NT subjects (mean Cohen's d 0.36, 95% CI 0.27-0. 46). Compared to HR-NT, HR-T subjects showed in functional imaging studies reduced brain activation in prefrontal cortex, reduced neuronal density, and increased membrane turnover in frontal and cingulate cortex with medium to large effect sizes. CONCLUSIONS Despite methodological differences between studies, structural and neurochemical abnormalities in prefrontal, anterior cingulate, medial temporal and cerebellar cortex might be predictive for development of psychosis within HR subjects.
Collapse
Affiliation(s)
- R Smieskova
- Psychiatric Outpatient Department, Psychiatric University Clinics, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mané A, Falcon C, Mateos JJ, Fernandez-Egea E, Horga G, Lomeña F, Bargalló N, Prats-Galino A, Bernardo M, Parellada E. Progressive gray matter changes in first episode schizophrenia: a 4-year longitudinal magnetic resonance study using VBM. Schizophr Res 2009; 114:136-43. [PMID: 19683418 DOI: 10.1016/j.schres.2009.07.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 07/15/2009] [Accepted: 07/19/2009] [Indexed: 10/20/2022]
Abstract
UNLABELLED Schizophrenia is a disabling illness, characterized by a heterogeneous course including clinical deterioration and poor outcome. Accumulating findings in schizophrenia suggest that it might involve two pathophysiologic processes, one early in life (neurodevelopmental), and one after onset of the illness (neurodegenerative). Longitudinal imaging studies after onset of the illness may help to clarify these pathophysiological aspects of schizophrenia, but so far, probably due to methodological differences, there have been no conclusive results. The present study sets out to investigate longitudinal gray matter changes in patients with first-episode schizophrenia relative to healthy subjects over the first 4 years of the illness and the relation of gray matter changes in patients with functional outcome, using an objective automatic method not biased to one particular structure to analyze gray matter changes. METHODS We included 28 first-episode neuroleptic-naïve patients with DSM-IV diagnosis of schizophreniform disorder or schizophrenia, and 17 controls. 15 patients and 11 controls completed the longitudinal study and were reevaluated after four years. Gray matter changes over time were measured with voxel-based morphometry (VBM) using SPM5. Functional outcome was measured with the global assessment functioning scale (GAF). RESULTS Excessive decrease in gray matter was found in patients as compared to healthy individuals in the left superior temporal gyrus and right orbitofrontal gyrus, and excessive increase in the bilateral lingual gyrus and right cuneus. Additionally, gray matter changes in patients in the left lingual gyrus, right insula and right cerebellum, were inversely related to functional outcome (p<0.001 uncorrected at voxel level, p<0.05 family-wise-error corrected at cluster level). CONCLUSIONS There are differing longitudinal gray matter changes in patients with schizophrenia during the first years of the illness as compared to healthy individuals. Some progressive gray matter changes in patients are related to functional outcome.
Collapse
Affiliation(s)
- Anna Mané
- Programa Esquizofrenia Clinic, Department of Psychiatry, Institute of Neuroscience, Hospital Clinic, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|