1
|
Yang YS, Smucny J, Zhang H, Maddock RJ. Meta-analytic evidence of elevated choline, reduced N-acetylaspartate, and normal creatine in schizophrenia and their moderation by measurement quality, echo time, and medication status. Neuroimage Clin 2023; 39:103461. [PMID: 37406595 PMCID: PMC10509531 DOI: 10.1016/j.nicl.2023.103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Brain metabolite abnormalities measured with magnetic resonance spectroscopy (MRS) provide insight into pathological processes in schizophrenia. Prior meta-analyses have not yet answered important questions about the influence of clinical and technical factors on neurometabolite abnormalities and brain region differences. To address these gaps, we performed an updated meta-analysis of N-acetylaspartate (NAA), choline, and creatine levels in patients with schizophrenia and assessed the moderating effects of medication status, echo time, measurement quality, and other factors. METHODS We searched citations from three earlier meta-analyses and the PubMed database after the most recent meta-analysis to identify studies for screening. In total, 113 publications reporting 366 regional metabolite datasets met our inclusion criteria and reported findings in medial prefrontal cortex (MPFC), dorsolateral prefrontal cortex, frontal white matter, hippocampus, thalamus, and basal ganglia from a total of 4445 patient and 3944 control observations. RESULTS Patients with schizophrenia had reduced NAA in five of the six brain regions, with a statistically significant sparing of the basal ganglia. Patients had elevated choline in the basal ganglia and both prefrontal cortical regions. Patient creatine levels were normal in all six regions. In some regions, the NAA and choline differences were greater in studies enrolling predominantly medicated patients compared to studies enrolling predominantly unmedicated patients. Patient NAA levels were more reduced in hippocampus and frontal white matter in studies using longer echo times than those using shorter echo times. MPFC choline and NAA abnormalities were greater in studies reporting better metabolite measurement quality. CONCLUSIONS Choline is elevated in the basal ganglia and prefrontal cortical regions, suggesting regionally increased membrane turnover or glial activation in schizophrenia. The basal ganglia are significantly spared from the well-established widespread reduction of NAA in schizophrenia suggesting a regional difference in disease-associated factors affecting NAA. The echo time findings agree with prior reports and suggest microstructural changes cause faster NAA T2 relaxation in hippocampus and frontal white matter in schizophrenia. Separating the effects of medication status and illness chronicity on NAA and choline abnormalities will require further patient-level studies. Metabolite measurement quality was shown to be a critical factor in MRS studies of schizophrenia.
Collapse
Affiliation(s)
- Yvonne S Yang
- VISN22 Mental Illness Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Jason Smucny
- Imaging Research Center, University of California, Davis, 4701 X Street, Sacramento, CA 95817, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Davis, 2230 Stockton Blvd, Sacramento, CA 95817, USA
| | - Huailin Zhang
- Department of Internal Medicine, Adventist Health White Memorial, 1720 E Cesar E Chavez Ave, Los Angeles, CA 90033, USA
| | - Richard J Maddock
- Imaging Research Center, University of California, Davis, 4701 X Street, Sacramento, CA 95817, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Davis, 2230 Stockton Blvd, Sacramento, CA 95817, USA.
| |
Collapse
|
2
|
Roberts D, Rösler L, Wijnen JP, Thakkar KN. Associations between N-Acetylaspartate and white matter integrity in individuals with schizophrenia and unaffected relatives. Psychiatry Res Neuroimaging 2023; 330:111612. [PMID: 36805928 PMCID: PMC10023491 DOI: 10.1016/j.pscychresns.2023.111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Compromised white matter has been reported in schizophrenia; however, few studies have investigated neurochemical abnormalities underlying microstructural differences. N-acetylaspartate (NAA) is used to synthesize myelin and is often reduced in persons with schizophrenia (PSZ) and their unaffected first-degree relatives (REL). Low levels of NAA could affect white matter by preventing the synthesis or repair of myelin. We used magnetic resonance spectroscopy and diffusion tensor imaging to investigate the relationship between NAA and white matter integrity in PSZ. REL were included to examine whether putative relationships are associated with symptom expression or illness liability. 52 controls, 23 REL and 25 PSZ underwent 7T proton magnetic resonance spectroscopy and/or 3T diffusion tensor imaging. NAA in the visual cortex and basal ganglia were measured and compared across groups. Diffusivity measures were compared across groups using tract-based spatial statistics and related to NAA concentrations. Visual cortex NAA was significantly reduced in PSZ compared to controls. White matter integrity did not differ between groups. Reduced cortical and subcortical NAA were associated with diffusivity measures of poor white matter microstructure. These data suggest that levels of neural NAA may be related to white matter integrity similarly across individuals with schizophrenia, those at genetic risk, and controls.
Collapse
Affiliation(s)
- Dominic Roberts
- Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Lara Rösler
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Jannie P Wijnen
- Department of Radiology, High Field MR Research, Centre for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Katharine N Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, United States; Department of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing, Michigan, United States.
| |
Collapse
|
3
|
van Hooijdonk CFM, van der Pluijm M, Bosch I, van Amelsvoort TAMJ, Booij J, de Haan L, Selten JP, Giessen EVD. The substantia nigra in the pathology of schizophrenia: A review on post-mortem and molecular imaging findings. Eur Neuropsychopharmacol 2023; 68:57-77. [PMID: 36640734 DOI: 10.1016/j.euroneuro.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Dysregulation of striatal dopamine is considered to be an important driver of pathophysiological processes in schizophrenia. Despite being one of the main origins of dopaminergic input to the striatum, the (dys)functioning of the substantia nigra (SN) has been relatively understudied in schizophrenia. Hence, this paper aims to review different molecular aspects of nigral functioning in patients with schizophrenia compared to healthy controls by integrating post-mortem and molecular imaging studies. We found evidence for hyperdopaminergic functioning in the SN of patients with schizophrenia (i.e. increased AADC activity in antipsychotic-free/-naïve patients and elevated neuromelanin accumulation). Reduced GABAergic inhibition (i.e. decreased density of GABAergic synapses, lower VGAT mRNA levels and lower mRNA levels for GABAA receptor subunits), excessive glutamatergic excitation (i.e. increased NR1 and Glur5 mRNA levels and a reduced number of astrocytes), and several other disturbances implicating the SN (i.e. immune functioning and copper concentrations) could potentially underlie this nigral hyperactivity and associated striatal hyperdopaminergic functioning in schizophrenia. These results highlight the importance of the SN in schizophrenia pathology and suggest that some aspects of molecular functioning in the SN could potentially be used as treatment targets or biomarkers.
Collapse
Affiliation(s)
- Carmen F M van Hooijdonk
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands.
| | - Marieke van der Pluijm
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Iris Bosch
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Therese A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Jean-Paul Selten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
4
|
Reddy-Thootkur M, Kraguljac NV, Lahti AC. The role of glutamate and GABA in cognitive dysfunction in schizophrenia and mood disorders - A systematic review of magnetic resonance spectroscopy studies. Schizophr Res 2022; 249:74-84. [PMID: 32107102 PMCID: PMC7874516 DOI: 10.1016/j.schres.2020.02.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
Epidemiologic, genetic, and neurobiological studies suggest considerable overlap between schizophrenia and mood disorders. Importantly, both disorders are associated with a broad range of cognitive deficits as well as altered glutamatergic and GABAergic neurometabolism. We conducted a systematic review of magnetic resonance spectroscopy (MRS) studies investigating the relationship between glutamatergic and GABAergic neurometabolites and cognition in schizophrenia spectrum disorders and mood disorders. A literature search in Pubmed of studies published before April 15, 2019 was conducted and 37 studies were deemed eligible for systematic review. We found that alterations in glutamatergic and GABAergic neurotransmission have been identified relatively consistently in both schizophrenia and mood disorders. However, because of the vast heterogeneity of published studies in terms of illness stage, medication exposure, MRS acquisition parameters and data post-processing strategies, we still do not understand the relationship between those neurotransmitters and cognitive dysfunction in mental illness, which is a critical initial step for rational drug development. Our findings emphasize the need for coordinated multi-center studies that characterize cognitive function and its biological substrates in large and well-defined clinical populations, using harmonized imaging sequences and analytical methods with the goal to elucidate the underlying pathophysiological mechanisms and to inform future clinical trials.
Collapse
Affiliation(s)
- Mounica Reddy-Thootkur
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
5
|
Luttenbacher I, Phillips A, Kazemi R, Hadipour AL, Sanghvi I, Martinez J, Adamson MM. Transdiagnostic role of glutamate and white matter damage in neuropsychiatric disorders: A Systematic Review. J Psychiatr Res 2022; 147:324-348. [PMID: 35151030 DOI: 10.1016/j.jpsychires.2021.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 12/09/2022]
Abstract
Neuropsychiatric disorders including generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ) have been considered distinct categories of diseases despite their overlapping characteristics and symptomatology. We aimed to provide an in-depth review elucidating the role of glutamate/Glx and white matter (WM) abnormalities in these disorders from a transdiagnostic perspective. The PubMed online database was searched for studies published between 2010 and 2021. After careful screening, 401 studies were included. The findings point to decreased levels of glutamate in the Anterior Cingulate Cortex in both SZ and BD, whereas Glx is elevated in the Hippocampus in SZ and MDD. With regard to WM abnormalities, the Corpus Callosum and superior Longitudinal Fascicle were the most consistently identified brain regions showing decreased fractional anisotropy (FA) across all the reviewed disorders, except GAD. Additionally, the Uncinate Fasciculus displayed decreased FA in all disorders, except OCD. Decreased FA was also found in the inferior Longitudinal Fasciculus, inferior Fronto-Occipital Fasciculus, Thalamic Radiation, and Corona Radiata in SZ, BD, and MDD. Decreased FA in the Fornix and Corticospinal Tract were found in BD and SZ patients. The Cingulum and Anterior Limb of Internal Capsule exhibited decreased FA in MDD and SZ patients. The results suggest a gradual increase in severity from GAD to SZ defined by the number of brain regions with WM abnormality which may be partially caused by abnormal glutamate levels. WM damage could thus be considered a potential marker of some of the main neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ines Luttenbacher
- Department of Social & Behavioral Sciences, University of Amsterdam, Amsterdam, Netherlands; Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Angela Phillips
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Reza Kazemi
- Department of Cognitive Psychology, Institute for Cognitive Science Studies, Tehran, Iran
| | - Abed L Hadipour
- Department of Cognitive Sciences, University of Messina, Messina, Italy
| | - Isha Sanghvi
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neuroscience, University of Southern California, Los Angeles, CA, USA
| | - Julian Martinez
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Palo Alto University, Palo Alto, CA, USA
| | - Maheen M Adamson
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Glutamatergic and GABAergic metabolite levels in schizophrenia-spectrum disorders: a meta-analysis of 1H-magnetic resonance spectroscopy studies. Mol Psychiatry 2022; 27:744-757. [PMID: 34584230 DOI: 10.1038/s41380-021-01297-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The glutamate (Glu) and gamma aminobutyric acid (GABA) hypotheses of schizophrenia were proposed in the 1980s. However, current findings on those metabolite levels in schizophrenia have been inconsistent, and the relationship between their abnormalities and the pathophysiology of schizophrenia remains unclear. To summarize the nature of the alterations of glutamatergic and GABAergic systems in schizophrenia, we conducted meta-analyses of proton magnetic resonance spectroscopy (1H-MRS) studies examining these metabolite levels. METHODS A systematic literature search was conducted using Embase, Medline, PsycINFO, and PubMed. Original studies that compared four metabolite levels (Glu, glutamine [Gln], Glx [Glu+Gln], and GABA), as measured by 1H-MRS, between individuals at high risk for psychosis, patients with first-episode psychosis, or patients with schizophrenia and healthy controls (HC) were included. A random-effects model was used to calculate the effect sizes for group differences in these metabolite levels of 18 regions of interest between the whole group or schizophrenia group and HC. Subgroup analysis and meta-regression were performed based on the status of antipsychotic treatment, illness stage, treatment resistance, and magnetic field strength. RESULTS One-hundred-thirty-four studies met the eligibility criteria, totaling 7993 participants with SZ-spectrum disorders and 8744 HC. 14 out of 18 ROIs had enough numbers of studies to examine the group difference in the metabolite levels. In the whole group, Glx levels in the basal ganglia (g = 0.32; 95% CIs: 0.18-0.45) were elevated. Subgroup analyses showed elevated Glx levels in the hippocampus (g = 0.47; 95% CIs: 0.21-0.73) and dorsolateral prefrontal cortex (g = 0.25; 95% CIs: 0.05-0.44) in unmedicated patients than HC. GABA levels in the MCC were decreased in the first-episode psychosis group compared with HC (g = -0.40; 95% CIs: -0.62 to -0.17). Treatment-resistant schizophrenia (TRS) group had elevated Glx and Glu levels in the MCC (Glx: g = 0.7; 95% CIs: 0.38-1.01; Glu: g = 0.63; 95% CIs: 0.31-0.94) while MCC Glu levels were decreased in the patient group except TRS (g = -0.17; 95% CIs: -0.33 to -0.01). CONCLUSIONS Increased glutamatergic metabolite levels and reduced GABA levels indicate that the disruption of excitatory/inhibitory balance may be related to the pathophysiology of schizophrenia-spectrum disorders.
Collapse
|
7
|
Proton Magnetic Resonance Spectroscopy of N-acetyl Aspartate in Chronic Schizophrenia, First Episode of Psychosis and High-Risk of Psychosis: A Systematic Review and Meta-Analysis. Neurosci Biobehav Rev 2020; 119:255-267. [PMID: 33068555 DOI: 10.1016/j.neubiorev.2020.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/01/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
N-acetyl-aspartate (NAA) is a readily measured marker of neuronal metabolism. Previous analyses in schizophrenia have shown NAA levels are low in frontal, temporal and thalamic regions, but may be underpowered to detect effects in other regions, in high-risk states and in first episode psychosis. We searched for magnetic resonance spectroscopy studies comparing NAA in chronic schizophrenia, first episode psychosis and high risk of psychosis to controls. 182 studies were included and meta-analysed using a random-effects model for each region and illness stage. NAA levels were significantly lower than controls in the frontal lobe [Hedge's g = -0.36, p < 0.001], hippocampus [-0.52, p < 0.001], temporal lobe [-0.35, p = 0.031], thalamus [-0.32, p = 0.012] and parietal lobe [-0.25, p = 0.028] in chronic schizophrenia, and lower than controls in the frontal lobe [-0.26, p = 0.002], anterior cingulate cortex [-0.24, p = 0.016] and thalamus [-0.28, p = 0.028] in first episode psychosis. NAA was lower in high-risk of psychosis in the hippocampus [-0.20, p = 0.049]. In schizophrenia, NAA alterations appear to begin in hippocampus, frontal cortex and thalamus, and extend later to many other regions.
Collapse
|
8
|
7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings. Biol Psychiatry 2017; 81:525-535. [PMID: 27316853 DOI: 10.1016/j.biopsych.2016.04.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate concentrations in vivo in patients with schizophrenia using proton magnetic resonance spectroscopy at 7T, which allows separation of metabolites that would otherwise overlap at lower field strengths. In addition, we investigated whether altered levels of GABA, glutamate, glutamine, and the sum of glutamine plus glutamate reflect genetic vulnerability to schizophrenia by including healthy first-degree relatives. METHODS Proton magnetic resonance spectroscopy at 7T was performed in 21 patients with chronic schizophrenia who were taking medication, 23 healthy first-degree relatives of patients with schizophrenia, and 24 healthy nonrelatives. Glutamate, glutamine, and GABA were measured cortically and subcortically in bilateral basal ganglia and occipital cortex. RESULTS Patients with schizophrenia had reduced cortical GABA compared with healthy relatives and the combined sample of healthy relatives and healthy nonrelatives, suggesting that altered GABAergic systems in schizophrenia are associated with either disease state or medication effects. Reduced cortical glutamine relative to healthy control subjects was observed in patients with schizophrenia and the combined sample of healthy relatives and patients with schizophrenia, suggesting that altered glutamatergic metabolite levels are associated with illness liability. No group differences were found in the basal ganglia. CONCLUSIONS Taken together, these findings are consistent with alterations in GABAergic and glutamatergic systems in patients with schizophrenia and provide novel insights into these systems in healthy relatives.
Collapse
|
9
|
Plitman E, de la Fuente-Sandoval C, Reyes-Madrigal F, Chavez S, Gómez-Cruz G, León-Ortiz P, Graff-Guerrero A. Elevated Myo-Inositol, Choline, and Glutamate Levels in the Associative Striatum of Antipsychotic-Naive Patients With First-Episode Psychosis: A Proton Magnetic Resonance Spectroscopy Study With Implications for Glial Dysfunction. Schizophr Bull 2016; 42:415-24. [PMID: 26320195 PMCID: PMC4753594 DOI: 10.1093/schbul/sbv118] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glial disturbances are highly implicated in the pathophysiology of schizophrenia and may be linked with glutamatergic dysregulation. Myo-inositol (mI), a putative marker of glial cells, and choline (Cho), representative of membrane turnover, are both present in larger concentrations within glial cells than in neurons, and their elevation is often interpreted to reflect glial activation. Proton magnetic resonance spectroscopy ((1)H-MRS) allows for the evaluation of mI, Cho, glutamate, glutamate + glutamine (Glx), and N-acetylaspartate (NAA). A collective investigation of these measures in antipsychotic-naive patients experiencing their first nonaffective episode of psychosis (FEP) can improve the understanding of glial dysfunction and its implications in the early stages of schizophrenia. 3-Tesla (1)H-MRS (echo time = 35 ms) was performed in 60 antipsychotic-naive patients with FEP and 60 age- and sex-matched healthy controls. mI, Cho, glutamate, Glx, and NAA were estimated using LCModel and corrected for cerebrospinal fluid composition within the voxel. mI, Cho, and glutamate were elevated in the FEP group. After correction for multiple comparisons, mI positively correlated with grandiosity. The relationships between mI and glutamate, and Cho and glutamate, were more positive in the FEP group. These findings are suggestive of glial activation in the absence of neuronal loss and may thereby provide support for the presence of a neuroinflammatory process within the early stages of schizophrenia. Dysregulation of glial function might result in the disruption of glutamatergic neurotransmission, which may influence positive symptomatology in patients with FEP.
Collapse
Affiliation(s)
- Eric Plitman
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada;,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico;
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Sofia Chavez
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Gladys Gómez-Cruz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Pablo León-Ortiz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico;,Department of Education, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada;,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada;,Geriatric Mental Health Division, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada;,Campbell Institute Research Program, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Effects of glutamate positive modulators on cognitive deficits in schizophrenia: a systematic review and meta-analysis of double-blind randomized controlled trials. Mol Psychiatry 2015; 20:1151-60. [PMID: 26077694 PMCID: PMC5323255 DOI: 10.1038/mp.2015.68] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/16/2015] [Accepted: 04/27/2015] [Indexed: 12/23/2022]
Abstract
Hypofunction of N-methyl-d-aspartate (NMDA) receptors has been proposed to have an important role in the cognitive impairments observed in schizophrenia. Although glutamate modulators may be effective in reversing such difficult-to-treat conditions, the results of individual studies thus far have been inconsistent. We conducted a systematic review and meta-analysis to examine whether glutamate positive modulators have beneficial effects on cognitive functions in patients with schizophrenia. A literature search was conducted to identify double-blind randomized placebo-controlled trials in schizophrenia or related disorders, using Embase, Medline, and PsycINFO (last search: February 2015). The effects of glutamate positive modulators on cognitive deficits were evaluated for overall cognitive function and eight cognitive domains by calculating standardized mean differences (SMDs) between active drugs and placebo added to antipsychotics. Seventeen studies (N=1391) were included. Glutamate positive modulators were not superior to placebo in terms of overall cognitive function (SMD=0.08, 95% confidence interval=-0.06 to 0.23) (11 studies, n=858) nor each of eight cognitive domains (SMDs=-0.03 to 0.11) (n=367-940) in this population. Subgroup analyses by diagnosis (schizophrenia only studies), concomitant antipsychotics, or pathway of drugs to enhance the glutamatergic neurotransmission (glycine allosteric site of NMDA receptors or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors) suggested no procognitive effect of glutamate positive modulators. Further, no effect was found in individual compounds on cognition. In conclusion, glutamate positive modulators may not be effective in reversing overall cognitive impairments in patients with schizophrenia as adjunctive therapies.
Collapse
|
11
|
Galderisi S, Merlotti E, Mucci A. Neurobiological background of negative symptoms. Eur Arch Psychiatry Clin Neurosci 2015; 265:543-58. [PMID: 25797499 DOI: 10.1007/s00406-015-0590-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/15/2015] [Indexed: 01/29/2023]
Abstract
Studies investigating neurobiological bases of negative symptoms of schizophrenia failed to provide consistent findings, possibly due to the heterogeneity of this psychopathological construct. We tried to review the findings published to date investigating neurobiological abnormalities after reducing the heterogeneity of the negative symptoms construct. The literature in electronic databases as well as citations and major articles are reviewed with respect to the phenomenology, pathology, genetics and neurobiology of schizophrenia. We searched PubMed with the keywords "negative symptoms," "deficit schizophrenia," "persistent negative symptoms," "neurotransmissions," "neuroimaging" and "genetic." Additional articles were identified by manually checking the reference lists of the relevant publications. Publications in English were considered, and unpublished studies, conference abstracts and poster presentations were not included. Structural and functional imaging studies addressed the issue of neurobiological background of negative symptoms from several perspectives (considering them as a unitary construct, focusing on primary and/or persistent negative symptoms and, more recently, clustering them into factors), but produced discrepant findings. The examined studies provided evidence suggesting that even primary and persistent negative symptoms include different psychopathological constructs, probably reflecting the dysfunction of different neurobiological substrates. Furthermore, they suggest that complex alterations in multiple neurotransmitter systems and genetic variants might influence the expression of negative symptoms in schizophrenia. On the whole, the reviewed findings, representing the distillation of a large body of disparate data, suggest that further deconstruction of negative symptomatology into more elementary components is needed to gain insight into underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Silvana Galderisi
- Department of Psychiatry, Second University of Naples (SUN), L.go Madonna delle Grazie, 1, 80138, Naples, Italy.
| | - Eleonora Merlotti
- Department of Psychiatry, Second University of Naples (SUN), L.go Madonna delle Grazie, 1, 80138, Naples, Italy
| | - Armida Mucci
- Department of Psychiatry, Second University of Naples (SUN), L.go Madonna delle Grazie, 1, 80138, Naples, Italy
| |
Collapse
|
12
|
Ende G. Proton Magnetic Resonance Spectroscopy: Relevance of Glutamate and GABA to Neuropsychology. Neuropsychol Rev 2015; 25:315-25. [PMID: 26264407 DOI: 10.1007/s11065-015-9295-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
Proton Magnetic Resonance Spectroscopy (MRS) has been widely used to study the healthy and diseased brain in vivo. The availability of whole body MR scanners with a field strength of 3 Tesla and above permit the quantification of many metabolites including the neurotransmitters glutamate (Glu) and γ-aminobutyric acid (GABA). The potential link between neurometabolites identified by MRS and cognition and behavior has been explored in numerous studies both in healthy subjects and in patient populations. Preliminary findings suggest direct or opposite associations between GABA or Glu with impulsivity, anxiety, and dexterity. This chapter is intended to provide an overview of basic principles of MRS and the literature reporting correlations between GABA or Glu and results of neuropsychological assessments.
Collapse
Affiliation(s)
- Gabriele Ende
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, D-68159, Mannheim, Germany,
| |
Collapse
|
13
|
Neuregulin 1 signalling modulates mGluR1 function in mesencephalic dopaminergic neurons. Mol Psychiatry 2015; 20:959-73. [PMID: 25266126 DOI: 10.1038/mp.2014.109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/01/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023]
Abstract
Neuregulin 1 (NRG1) is a trophic factor that has an essential role in the nervous system by modulating neurodevelopment, neurotransmission and synaptic plasticity. Despite the evidence that NRG1 and its receptors, ErbB tyrosine kinases, are expressed in mesencephalic dopaminergic nuclei and their functional alterations are reported in schizophrenia and Parkinson's disease, the role of NRG1/ErbB signalling in dopaminergic neurons remains unclear. Here we found that NRG1 selectively increases the metabotropic glutamate receptor 1 (mGluR1)-activated currents by inducing synthesis and trafficking to membrane of functional receptors and stimulates phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K-Akt-mTOR) pathway, which is required for mGluR1 function. Notably, an endogenous NRG1/ErbB tone is necessary to maintain mGluR1 function, by preserving its surface membrane expression in dopaminergic neurons. Consequently, it enables striatal mGluR1-induced dopamine outflow in in vivo conditions. Our results identify a novel role of NRG1 in the dopaminergic neurons, whose functional alteration might contribute to devastating diseases, such as schizophrenia and Parkinson's disease.
Collapse
|
14
|
Wijtenburg SA, Yang S, Fischer BA, Rowland LM. In vivo assessment of neurotransmitters and modulators with magnetic resonance spectroscopy: application to schizophrenia. Neurosci Biobehav Rev 2015; 51:276-95. [PMID: 25614132 PMCID: PMC4427237 DOI: 10.1016/j.neubiorev.2015.01.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 01/02/2015] [Accepted: 01/08/2015] [Indexed: 12/28/2022]
Abstract
In vivo measurement of neurotransmitters and modulators is now feasible with advanced proton magnetic resonance spectroscopy ((1)H MRS) techniques. This review provides a basic tutorial of MRS, describes the methods available to measure brain glutamate, glutamine, γ-aminobutyric acid, glutathione, N-acetylaspartylglutamate, glycine, and serine at magnetic field strengths of 3T or higher, and summarizes the neurochemical findings in schizophrenia. Overall, (1)H MRS holds great promise for producing biomarkers that can serve as treatment targets, prediction of disease onset, or illness exacerbation in schizophrenia and other brain diseases.
Collapse
Affiliation(s)
- S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA.
| | - Shaolin Yang
- Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Street, Suite 512, Chicago, IL 60612, USA; Department of Radiology, University of Illinois at Chicago, 1601 W. Taylor Street, Suite 512, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, 1601 W. Taylor Street, Suite 512, Chicago, IL 60612, USA
| | - Bernard A Fischer
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA; Veterans Affairs Capital Network (VISN 5) Mental Illness Research, Education, and Clinical Center (MIRECC), Department of Veterans Affairs, 10 N. Greene Street, Baltimore, MD 21201, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; Department of Psychology, University of Maryland, Baltimore County, Baltimore, MD 21228, USA
| |
Collapse
|
15
|
Contribution of substantia nigra glutamate to prediction error signals in schizophrenia: a combined magnetic resonance spectroscopy/functional imaging study. NPJ SCHIZOPHRENIA 2015; 1:14001. [PMID: 26878032 PMCID: PMC4752128 DOI: 10.1038/npjschz.2014.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Background: Because dopamine neurons signal a mismatch between expected and actual reward called prediction error (PE), aberrant PE signals in schizophrenia have been attributed to known dopaminergic abnormalities. However, dysfunction of N-methyl-D-aspartate receptors on cortical γ-aminobutyric acid neurons, as hypothesized in schizophrenia, could lead to excess glutamate release in the substantia nigra (SN) and affect reward processing. Aims: The aim of this study was to investigate the contribution of SN glutamate to PE signals in healthy controls (HC) and patients with schizophrenia (SZ). Methods: We recruited 22 medicated SZ and 19 HC. We obtained (1) functional magnetic resonance imaging during a probabilistic monetary reward task to assess PE-related blood oxygen level-dependent (BOLD) signal and (2) magnetic resonance spectroscopy to measure Glx (glutamate+glutamine) in the SN. To identify group differences in regions where the BOLD signal varies as a function of PE, we analyzed PEs generated during the task as parametric modulators of reward delivery. Finally, we examined the correlation of PE-related BOLD signal and SN Glx in each group. Results: Relative to HC, PE-related BOLD signals in SZ were significantly different in the midbrain/SN and ventral striatum. In SZ, SN Glx was significantly elevated. In HC, but not in SZ, PE-related BOLD signal in SN was positively correlated with SN Glx. Conclusions: These results suggest a role of glutamate in the neural coding of PE in controls. They indicate that glutamatergic dysfunction might contribute to abnormal PE coding in schizophrenia, suggesting the use of glutamate-targeted approaches to improve these deficits.
Collapse
|
16
|
MicroRNAs in Schizophrenia: Implications for Synaptic Plasticity and Dopamine-Glutamate Interaction at the Postsynaptic Density. New Avenues for Antipsychotic Treatment Under a Theranostic Perspective. Mol Neurobiol 2014; 52:1771-1790. [PMID: 25394379 DOI: 10.1007/s12035-014-8962-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/23/2014] [Indexed: 12/17/2022]
Abstract
Despite dopamine-glutamate aberrant interaction that has long been considered a relevant landmark of psychosis pathophysiology, several aspects of these two neurotransmitters reciprocal interaction remain to be defined. The emerging role of postsynaptic density (PSD) proteins at glutamate synapse as a molecular "lego" making a functional hub where different signals converge may add a new piece of information to understand how dopamine-glutamate interaction may work with regard to schizophrenia pathophysiology and treatment. More recently, compelling evidence suggests a relevant role for microRNA (miRNA) as a new class of dopamine and glutamate modulators with regulatory functions in the reciprocal interaction of these two neurotransmitters. Here, we aimed at addressing the following issues: (i) Do miRNAs have a role in schizophrenia pathophysiology in the context of dopamine-glutamate aberrant interaction? (ii) If miRNAs are relevant for dopamine-glutamate interaction, at what level this modulation takes place? (iii) Finally, will this knowledge open the door to innovative diagnostic and therapeutic tools? The biogenesis of miRNAs and their role in synaptic plasticity with relevance to schizophrenia will be considered in the context of dopamine-glutamate interaction, with special focus on miRNA interaction with PSD elements. From this framework, implications both for biomarkers identification and potential innovative interventions will be considered.
Collapse
|
17
|
Glutamatergic abnormalities in schizophrenia: a review of proton MRS findings. Schizophr Res 2014; 152:325-32. [PMID: 24418122 PMCID: PMC3951718 DOI: 10.1016/j.schres.2013.12.013] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 01/13/2023]
Abstract
The last fifteen years have seen a great increase in our understanding of the role of glutamate in schizophrenia (SCZ). The glutamate hypothesis focuses on disturbances in brain glutamatergic pathways and impairment in signaling at glutamate receptors. Proton Magnetic Resonance Spectroscopy ((1)H-MRS) is an MR-based technique that affords investigators the ability to study glutamate function by measuring in vivo glutamatergic indices in the brains of individuals with SCZ. (1)H-MRS studies have been performed comparing glutamatergic levels of individuals with SCZ and healthy control subjects or studying the effect of antipsychotic medications on glutamatergic levels. In this article we summarize the results of these studies by brain region. We will review the contribution of (1)H-MRS studies to our knowledge about glutamatergic abnormalities in the brains of individuals with SCZ and discuss the implications for future research and clinical care.
Collapse
|
18
|
Grošić V, Folnegović Grošić P, Kalember P, Bajs Janović M, Radoš M, Mihanović M, Henigsberg N. The effect of atypical antipsychotics on brain N-acetylaspartate levels in antipsychotic-naïve first-episode patients with schizophrenia: a preliminary study. Neuropsychiatr Dis Treat 2014; 10:1243-53. [PMID: 25045268 PMCID: PMC4094629 DOI: 10.2147/ndt.s61415] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To investigate the correlates of a clinical therapeutic response by using the parameters measured by proton magnetic resonance spectroscopy after the administration of atypical antipsychotics. PATIENTS AND METHODS Twenty-five antipsychotic-naïve first-episode patients with schizophrenia were monitored for 12 months. The patients were evaluated using (1)H magnetic resonance spectroscopy in the dorsolateral prefrontal cortex and Positive and Negative Syndrome Scale, Clinical Global Impression Scale of Severity, Tower of London - Drexel University, Letter-Number Span Test, Trail Making Test A, and Personal and Social Performance Scale. They were administered atypical antipsychotics, starting with quetiapine. In the absence of a therapeutic response, another antipsychotic was introduced. RESULTS After 12 study months, the N-acetylaspartate/creatine (NAA/Cr) level did not significantly change at the whole-group level. Additional analysis revealed a significant rise in the NAA/Cr level in the study group that stayed on the same antipsychotic throughout the study course (P=0.008) and a significant drop in NAA/Cr in the study group that switched antipsychotics (P=0.005). On the whole-group level, no significant correlations between NAA/Cr values and other scores were found at either baseline or after 12 study months. CONCLUSION One-year treatment with atypical antipsychotics administered to antipsychotic-naïve patients didn't result in a significant rise in the NAA/Cr ratio. However, a significant rise was witnessed in the study group in which a satisfactory therapeutic response had been achieved with a single antipsychotic administration.
Collapse
Affiliation(s)
- Vladimir Grošić
- Psychiatric Hospital Sveti Ivan, University of Zagreb, Zagreb, Croatia
| | | | - Petra Kalember
- Polyclinic Neuron, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia ; Department of Neuropharmacology and Behavioral Pharmacology, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Maja Bajs Janović
- University Hospital Center Zagreb, University of Zagreb, Zagreb, Croatia
| | - Marko Radoš
- Polyclinic Neuron, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia ; Department of Neuropharmacology and Behavioral Pharmacology, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Mate Mihanović
- Psychiatric Hospital Sveti Ivan, University of Zagreb, Zagreb, Croatia
| | - Neven Henigsberg
- Polyclinic Neuron, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia ; Vrapče University Hospital, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
19
|
Merritt K, McGuire P, Egerton A. Relationship between Glutamate Dysfunction and Symptoms and Cognitive Function in Psychosis. Front Psychiatry 2013; 4:151. [PMID: 24324444 PMCID: PMC3840324 DOI: 10.3389/fpsyt.2013.00151] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/07/2013] [Indexed: 11/13/2022] Open
Abstract
The glutamate hypothesis of schizophrenia, proposed over two decades ago, originated following the observation that administration of drugs that block NMDA glutamate receptors, such as ketamine, could induce schizophrenia-like symptoms. Since then, this hypothesis has been extended to describe how glutamate abnormalities may disturb brain function and underpin psychotic symptoms and cognitive impairments. The glutamatergic system is now a major focus for the development of new compounds in schizophrenia. Relationships between regional brain glutamate function and symptom severity can be investigated using proton magnetic resonance spectroscopy (1H-MRS) to estimate levels of glutamatergic metabolites in vivo. Here we briefly review the 1H-MRS studies that have explored relationships between glutamatergic metabolites, symptoms, and cognitive function in clinical samples. While some of these studies suggest that more severe symptoms may be associated with elevated glutamatergic function in the anterior cingulate, studies in larger patient samples selected on the basis of symptom severity are required.
Collapse
Affiliation(s)
- Kate Merritt
- Department of Psychosis Studies, Institute of Psychiatry, King's College London , London , UK
| | | | | |
Collapse
|