1
|
Niznikiewicz M, Lin A, DeLisi LE. The Relationship of glutamate signaling to cannabis use and schizophrenia. Curr Opin Psychiatry 2025; 38:177-181. [PMID: 40071480 DOI: 10.1097/yco.0000000000001003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
PURPOSE OF REVIEW This review examines the literature associating cannabis with schizophrenia, glutamate dysregulation in schizophrenia, and cannabis involvement in glutamate pathways. Cannabis use is widespread among adolescents world-wide and is sold legally in many countries for recreational use in a variety of forms. Most people use it without lasting effects, but a portion of individuals have negative reactions that manifest in acute psychotic symptoms, and in some, symptoms continue even after the use of cannabis has ceased. To date, there is a huge gap in our understanding of why this occurs. RECENT FINDINGS Recent studies have focused on abnormalities in the glutamate pathway in schizophrenia, the effect of cannabis on the glutamate system, and the role of glutamate in the brain Default Mode Network. SUMMARY Given these observations, we hypothesize that perturbance of glutamate neuronal connectivity by cannabis in the brains of individuals genetically at high risk for psychosis will initiate a schizophrenia-like psychosis. Future studies may tie together these diverse observations by combining magnetic resonance spectroscopy (MRS) and functional magnetic resonance imaging (fMRI) of the default resting state network in patients with new onset schizophrenia who do and do not use cannabis compared with nonpsychotic individuals who do and do not use cannabis.
Collapse
Affiliation(s)
| | - Alexander Lin
- Harvard Medical School
- Brigham and Women's Hospital, Boston
| | - Lynn E DeLisi
- Harvard Medical School
- Cambridge Health Alliance, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Sosa-Moscoso B, Rivadeneira-Limongi A, Moncayo F, Loor-Vera E, Álvarez D, Vasquez Mena LG, Rodas JA, Leon-Rojas JE. Axis I Psychiatric Disorders and Substance Abuse: A Systematic Review of Neuroimaging Findings. J Clin Med 2025; 14:2156. [PMID: 40217607 PMCID: PMC11989531 DOI: 10.3390/jcm14072156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: The present systematic review analyses the neuroradiological findings in subjects with axis I psychiatric disorders (i.e., bipolar, major depressive, schizophrenic, anxiety, and post-traumatic stress disorders) and comorbid substance use disorder in order to elucidate the organic changes that occur in the brains of people suffering from both conditions. Methods: We analysed and compared the different neuroimaging findings extracted from 93 studies and 10,823 patients; articles were obtained from three databases (Scopus, PubMed [Medline], and the Cochrane Controlled Register of Trials [Central]) and subjected to specific eligibility criteria. We selected articles that assessed patients with axis I psychiatric conditions and a comorbid substance abuse disorder; articles had to report relevant neuroimaging findings and bias was assessed via the Newcastle-Ottawa scale. Results: Significant findings were found on the structure or function of psychiatric patients' brains with comorbid substance abuse, with certain key areas that were further affected by substance use, especially in areas involved in reward processing, with reductions in volume and connectivity and the augmentation of stimuli-related activity. Conclusions: These results present important implications on the current understanding of psychiatric disorders and comorbid substance use, on the importance of neuroradiological tools in the diagnosis and treatment of these disorders, and on the search for potential new targets for the treatment of psychiatric disease and substance addiction.
Collapse
Affiliation(s)
- Bernardo Sosa-Moscoso
- NeurALL Research Group, Quito 170157, Ecuador; (B.S.-M.); (A.R.-L.); (F.M.); (E.L.-V.)
| | | | - Filip Moncayo
- NeurALL Research Group, Quito 170157, Ecuador; (B.S.-M.); (A.R.-L.); (F.M.); (E.L.-V.)
- Cerebro, Emoción y Conducta (CEC) Research Group, Escuela de Medicina, Universidad de las Américas (UDLA), Quito 170125, Ecuador;
| | - Enrique Loor-Vera
- NeurALL Research Group, Quito 170157, Ecuador; (B.S.-M.); (A.R.-L.); (F.M.); (E.L.-V.)
| | - Diana Álvarez
- Cerebro, Emoción y Conducta (CEC) Research Group, Escuela de Medicina, Universidad de las Américas (UDLA), Quito 170125, Ecuador;
| | - Lucia Geannett Vasquez Mena
- Facultad de Humanidades y Ciencias de la Educación, Departamento de Pedagogía, Universidad de Jaen, 23071 Jaen, Spain;
| | - Jose A. Rodas
- School of Psychology, University College Dublin, D04 V1W8 Dublin, Ireland;
- Escuela de Psicología, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Jose E. Leon-Rojas
- Cerebro, Emoción y Conducta (CEC) Research Group, Escuela de Medicina, Universidad de las Américas (UDLA), Quito 170125, Ecuador;
| |
Collapse
|
3
|
Brunette MF, Roth RM, Trask C, Khokhar JY, Ford JC, Park SH, Hickey SM, Zeffiro T, Xie H. Randomized Laboratory Study of Single-Dose Cannabis, Dronabinol, and Placebo in Patients With Schizophrenia and Cannabis Use Disorder. Schizophr Bull 2025; 51:479-492. [PMID: 38900958 PMCID: PMC11908874 DOI: 10.1093/schbul/sbae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
BACKGROUND AND HYPOTHESIS Up to 43% of people with schizophrenia have a lifetime cannabis use disorder (CUD). Tetrahydrocannabinol (THC) has been shown to exacerbate psychosis in a dose-dependent manner, but little research has assessed its effects on schizophrenia and co-occurring CUD (SCZ-CUD). In this double-dummy, placebo-controlled trial (total n = 130), we hypothesized that a modest dose of THC would worsen cognitive function but not psychosis. STUDY DESIGN Effects of single-dose oral THC (15 mg dronabinol) or smoked 3.5% THC cigarettes vs placebo in SCZ-CUD or CUD-only on positive and negative symptoms of schizophrenia (only for SCZ-CUD), cognition, and drug experiences assessed several hours after drug administration. SCZ-only and healthy control participants were also assessed. STUDY RESULTS Drug liking was higher in THC groups vs placebo. Neither smoked THC nor oral dronabinol predicted positive or negative symptom subscale scores 2 and 5 h, respectively, after drug exposure in SCZ-CUD participants. The oral dronabinol SCZ-CUD group, but not smoked THC SCZ-CUD group, performed worse than placebo on verbal learning (B = -9.89; 95% CI: -16.06, -3.18; P = .004) and attention (B = -0.61; 95% CI: -1.00, -0.23; P = .002). Every 10-point increment in serum THC + THCC ng/ml was associated with increased negative symptoms (0.40 points; 95% CI: 0.15, 0.65; P = .001; subscale ranges 7-49) and trends were observed for worse positive symptoms and performance in verbal learning, delayed recall, and working memory. CONCLUSIONS In people with SCZ-CUD, a modest single dose of oral THC was associated with worse cognitive functioning without symptom exacerbation several hours after administration, and a THC dose-response effect was seen for negative symptoms.
Collapse
Affiliation(s)
- Mary F Brunette
- Dartmouth College Geisel School of Medicine at Dartmouth, Department of Psychiatry, Lebanon, NH, USA
- Dartmouth-Health, Department of Psychiatry, Lebanon, NH, USA
| | - Robert M Roth
- Dartmouth College Geisel School of Medicine at Dartmouth, Department of Psychiatry, Lebanon, NH, USA
- Dartmouth-Health, Department of Psychiatry, Lebanon, NH, USA
| | - Christi Trask
- Ohio State University College of Medicine, Department of Psychiatry and Behavioral Health, Columbus, OH, USA
| | - Jibran Y Khokhar
- University of Western Ontario Schulich School of Medicine and Dentistry, Department of Anatomy and Cell Biology, London, Ontario, Canada
| | - James C Ford
- Dartmouth College Geisel School of Medicine at Dartmouth, Department of Psychiatry, Lebanon, NH, USA
- Dartmouth-Health, Department of Psychiatry, Lebanon, NH, USA
| | - Soo Hwan Park
- Dartmouth College Geisel School of Medicine at Dartmouth, Department of Psychiatry, Lebanon, NH, USA
| | - Sara M Hickey
- Dartmouth-Health, Department of Psychiatry, Lebanon, NH, USA
| | - Thomas Zeffiro
- University of Maryland School of Medicine, Department of Diagnostic Radiology and Oncology, Baltimore, Maryland, USA
| | - Haiyi Xie
- Dartmouth College Geisel School of Medicine at Dartmouth, Department of Psychiatry, Lebanon, NH, USA
| |
Collapse
|
4
|
Ding JE, Yang S, Zilverstand A, Kulkarni KR, Gu X, Liu F. Spatial Craving Patterns in Marijuana Users: Insights From fMRI Brain Connectivity Analysis With High-Order Graph Attention Neural Networks. IEEE J Biomed Health Inform 2025; 29:358-370. [PMID: 39321007 PMCID: PMC11875913 DOI: 10.1109/jbhi.2024.3462371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The excessive consumption of marijuana can induce substantial psychological and social consequences. In this investigation, we propose an elucidative framework termed high-order graph attention neural networks (HOGANN) for the classification of Marijuana addiction, coupled with an analysis of localized brain network communities exhibiting abnormal activities among chronic marijuana users. HOGANN integrates dynamic intrinsic functional brain networks, estimated from functional magnetic resonance imaging (fMRI), using graph attention-based long short-term memory (GAT-LSTM) to capture temporal network dynamics. We employ a high-order attention module for information fusion and message passing among neighboring nodes, enhancing the network community analysis. Our model is validated across two distinct data cohorts, yielding substantially higher classification accuracy than benchmark algorithms. Furthermore, we discern the most pertinent subnetworks and cognitive regions affected by persistent marijuana consumption, indicating adverse effects on functional brain networks, particularly within the dorsal attention and frontoparietal networks. Intriguingly, our model demonstrates superior performance in cohorts exhibiting prolonged dependence, implying that prolonged marijuana usage induces more pronounced alterations in brain networks. The model proficiently identifies craving brain maps, thereby delineating critical brain regions for analysis.
Collapse
|
5
|
Ducret M, Giacometti C, Dirheimer M, Dureux A, Autran-Clavagnier D, Hadj-Bouziane F, Verstraete C, Lamberton F, Wilson CRE, Amiez C, Procyk E. Medial to lateral frontal functional connectivity mapping reveals the organization of cingulate cortex. Cereb Cortex 2024; 34:bhae322. [PMID: 39129533 DOI: 10.1093/cercor/bhae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
The functional organization of the frontal lobe is a source of debate, focusing on broad functional subdivisions, large-scale networks, or local refined specificities. Multiple neurocognitive models have tried to explain how functional interactions between cingulate and lateral frontal regions contribute to decision making and cognitive control, but their neuroanatomical bases remain unclear. We provide a detailed description of the functional connectivity between cingulate and lateral frontal regions using resting-state functional MRI in rhesus macaques. The analysis focuses on the functional connectivity of the rostral part of the cingulate sulcus with the lateral frontal cortex. Data-driven and seed-based analysis revealed three clusters within the cingulate sulcus organized along the rostro-caudal axis: the anterior, mid, and posterior clusters display increased functional connectivity with, respectively, the anterior lateral prefrontal regions, face-eye lateral frontal motor cortical areas, and hand lateral frontal motor cortex. The location of these clusters can be predicted in individual subjects based on morphological landmarks. These results suggest that the anterior cluster corresponds to the anterior cingulate cortex, whereas the posterior clusters correspond to the face-eye and hand cingulate motor areas within the anterior midcingulate cortex. These data provide a comprehensive framework to identify cingulate subregions based on functional connectivity and local organization.
Collapse
Affiliation(s)
- Marion Ducret
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, INSERM U1208, 18 avenue du Doyen Jean Lépine, 69500 Bron, France
| | - Camille Giacometti
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, INSERM U1208, 18 avenue du Doyen Jean Lépine, 69500 Bron, France
| | - Manon Dirheimer
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 16 avenue du doyen Lépine, 69500 Bron, France
- University of Lyon 1, Lyon, France
| | - Audrey Dureux
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 16 avenue du doyen Lépine, 69500 Bron, France
- University of Lyon 1, Lyon, France
| | | | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 16 avenue du doyen Lépine, 69500 Bron, France
- University of Lyon 1, Lyon, France
| | - Charles Verstraete
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, INSERM U1208, 18 avenue du Doyen Jean Lépine, 69500 Bron, France
- Institut de neuromodulation, GHU Paris psychiatrie et neurosciences, Centre Hospitalier Sainte-Anne, pôle hospitalo-universitaire 15, Université Paris Cité, Paris, France
| | - Franck Lamberton
- CERMEP, Imagerie du Vivant, 95 Boulevard Pinel, F-69677 Bron, Auvergne-Rhône-Alpes, France
- SFR Lyon-Est, Université Lyon 1, CNRS UAR3453, INSERM US7, U69500, Lyon, France
| | - Charles R E Wilson
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, INSERM U1208, 18 avenue du Doyen Jean Lépine, 69500 Bron, France
| | - Céline Amiez
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, INSERM U1208, 18 avenue du Doyen Jean Lépine, 69500 Bron, France
| | - Emmanuel Procyk
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, INSERM U1208, 18 avenue du Doyen Jean Lépine, 69500 Bron, France
| |
Collapse
|
6
|
Dubois C, Lunghi C, Eurich DT, Dyck JRB, Hyshka E, Hanlon JG, Zongo A. Medical cannabis authorization and risk of emergency department visits and hospitalization due to psychotic disorders: A propensity score-matched cohort study. Schizophr Res 2024; 264:534-542. [PMID: 38330686 DOI: 10.1016/j.schres.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Despite evidence showing that recreational cannabis use is associated with a higher risk of psychotic disorders, this risk has not been well characterized for patients using medical cannabis. Therefore, this study assessed the risk of emergency department (ED) visits and hospitalization for psychotic disorders (the study outcome) among adult patients authorized to use medical cannabis. We performed a retrospective cohort study on patients authorized to use medical cannabis in a group of Ontario cannabis clinics between 2014 and 2019. Using clinical and health administrative data, each patient was matched by propensity scores to up to 3 population-based controls. Conditional Cox proportional hazards regressions were used to assess the risk. Among 54,006 cannabis patients matched to 161,265 controls, 39 % were aged ≤50 years, and 54 % were female. Incidence rates for psychotic disorders were 3.00/1000 person-years (95%CI: 2.72-3.32) in the cannabis group and 1.88/1000 person-years (1.75-2.03) in the control group. A significant association was observed, with an adjusted hazard ratio of 1.38 (95%CI: 1.19-1.60) in the total sample and 1.63 (1.40-1.91) in patients without previous psychotic disorders. The results suggest that cannabis authorization should include a benefit-risk assessment of psychotic disorders to minimize the risk of events requiring emergency attention.
Collapse
Affiliation(s)
- Cerina Dubois
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Carlotta Lunghi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Department of Health Sciences, Université du Québec à Rimouski, Lévis, Quebec, Canada; Population Health and Optimal Health Practices Research Unit, CHU de Québec, Université Laval Research Centre, Quebec City, Quebec, Canada
| | - Dean T Eurich
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Elaine Hyshka
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - John G Hanlon
- St. Michael's Hospital Department of Anesthesia, Ontario, Canada; Department of Anesthesiology and Pain Medicine, University of Toronto, Ontario, Canada
| | - Arsene Zongo
- Population Health and Optimal Health Practices Research Unit, CHU de Québec, Université Laval Research Centre, Quebec City, Quebec, Canada; Faculty of Pharmacy, Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
7
|
Johnstone S, Wong C, Pun C, Girard TA, Kim HS. Endorsement of psychotic-like experiences and problematic cannabis use associated with worse executive functioning performance in undergraduates. Drug Alcohol Depend 2024; 254:111054. [PMID: 38091900 DOI: 10.1016/j.drugalcdep.2023.111054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/29/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Emerging adults who endorse more positive psychotic-like experiences (PLEs; bizarre experiences, delusional ideations) may experience greater cannabis-related impairments in executive function. Negative and depressive PLEs are also associated with cannabis use, however, less is known about their relation to executive functioning. Here, we hypothesize that high positive PLEs and cannabis use are associated with worse performance on computerized versions of the Iowa Gambling Task (IGT) and the Card Sorting Task (CST); exploratory analyses are conducted with negative and depressive PLEs. METHODS We recruited university students (N = 543) who completed an online study consisting of self-report measures of problematic cannabis use (Cannabis Use Disorder Identification Test; CUDIT-R) and PLEs (Community Assessment of Psychotic Experiences; CAPE). Of these, n=270 completed the CST and n=251 completed the IGT. RESULTS Problematic cannabis use and high endorsement of positive PLEs related to significantly worse performance on the IGT and greater perseverative errors on the CST. In addition, people who endorsed high levels of positive PLEs were also significantly more likely to complete the IGT with less money relative to those who endorsed fewer PLEs, regardless of cannabis use. Further analyses based on negative PLEs revealed a similar pattern for perseverative errors on the CST; depressive PLEs were not related to task performance. CONCLUSION Findings highlight that problematic cannabis use and more frequent and distressing positive PLEs are associated with poorer executive functioning. Thus, executive functioning may have implications for intervention among those high on both attributes, who are at high risk of onset of psychosis.
Collapse
Affiliation(s)
- Samantha Johnstone
- Department of Psychology, Toronto Metropolitan University, Toronto, Canada
| | - Cassandra Wong
- Department of Psychology, Toronto Metropolitan University, Toronto, Canada
| | - Carson Pun
- Department of Psychology, Toronto Metropolitan University, Toronto, Canada
| | - Todd A Girard
- Department of Psychology, Toronto Metropolitan University, Toronto, Canada
| | - Hyoun S Kim
- Department of Psychology, Toronto Metropolitan University, Toronto, Canada; University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Abstract
Cannabis and classic psychedelics are controlled substances with emerging evidence of efficacy in the treatment of a variety of psychiatric illnesses. Cannabis has largely not been regarded as having psychedelic effects in contemporary literature, despite many examples of historical use along with classic psychedelics to attain altered states of consciousness. Research into the "psychedelic" effects of cannabis, and delta-9-tetrahydrocannabinol (THC) in particular, could prove helpful for assessing potential therapeutic indications and elucidating the mechanism of action of both cannabis and classic psychedelics. This review aggregates and evaluates the literature assessing the capacity of cannabis to yield the perceptual changes, aversiveness, and mystical experiences more typically associated with classic psychedelics such as psilocybin. This review also provides a brief contrast of neuroimaging findings associated with the acute effects of cannabis and psychedelics. The available evidence suggests that high-THC cannabis may be able to elicit psychedelic effects, but that these effects may not have been observed in recent controlled research studies due to the doses, set, and settings commonly used. Research is needed to investigate the effects of high doses of THC in the context utilized in therapeutic studies of psychedelics aimed to occasion psychedelic and/or therapeutic experiences. If cannabis can reliably generate psychedelic experiences under these conditions, high-THC dose cannabis treatments should be explored as potential adjunctive treatments for psychiatric disorders and be considered as an active comparator in clinical trials involving traditional psychedelic medications.
Collapse
Affiliation(s)
- David Wolinsky
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Frederick Streeter Barrett
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic and Consciousness Research, Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Ryan Vandrey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Wen X, Shu Y, Qu D, Wang Y, Cui Z, Zhang X, Chen R. Associations of bullying perpetration and peer victimization subtypes with preadolescent's suicidality, non-suicidal self-injury, neurocognition, and brain development. BMC Med 2023; 21:141. [PMID: 37046279 PMCID: PMC10091581 DOI: 10.1186/s12916-023-02808-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/27/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Although both peer victimization and bullying perpetration negatively impact preadolescents' development, the underlying neurobiological mechanism of this adverse relationship remains unclear. Besides, the specific psycho-cognitive patterns of different bullying subtypes also need further exploration, warranting large-scale studies on both general bullying and specific bullying subtypes. METHODS We adopted a retrospective methodology by utilizing the data from the Adolescent Brain and Cognitive DevelopmentSM Study (ABCD Study®) cohort collected between July 2018 and January 2021. Participants were preadolescents aged from 10 to 13 years. The main purpose of our study is to examine the associations of general and specific peer victimization/bullying perpetration with preadolescents' (1) suicidality and non-suicidal self-injury; (2) executive function and memory, including attention inhibition, processing speed, emotion working memory, and episodic memory; (3) brain structure abnormalities; and (4) brain network disturbances. Age, sex, race/ethnicity, body mass index (BMI), socioeconomic status (SES), and data acquisition site were included as covariates. RESULTS A total of 5819 participants aged from 10 to 13 years were included in this study. Higher risks of suicide ideation, suicide attempt, and non-suicidal self-injury were found to be associated with both bullying perpetration/peer victimization and their subtypes (i.e., overt, relational, and reputational). Meanwhile, poor episodic memory was shown to be associated with general victimization. As for perpetration, across all four tasks, significant positive associations of relational perpetration with executive function and episodic memory consistently manifested, yet opposite patterns were shown in overt perpetration. Notably, distinct psycho-cognitive patterns were shown among different subtypes. Additionally, victimization was associated with structural brain abnormalities in the bilateral paracentral and posterior cingulate cortex. Furthermore, victimization was associated with brain network disturbances between default mode network and dorsal attention network, between default mode network and fronto-parietal network, and ventral attention network related connectivities, including default mode network, dorsal attention network, cingulo-opercular network, cingulo-parietal network, and sensorimotor hand network. Perpetration was also associated with brain network disturbances between the attention network and the sensorimotor hand network. CONCLUSIONS Our findings offered new evidence for the literature landscape by emphasizing the associations of bullying experiences with preadolescents' clinical characteristics and cognitive functions, while distinctive psycho-cognitive patterns were shown among different subtypes. Additionally, there is evidence that these associations are related to neurocognitive brain networks involved in attention control and episodic retrieval. Given our findings, future interventions targeting ameliorating the deleterious effect of bullying experiences on preadolescents should consider their subtypes and utilize an ecosystemic approach involving all responsible parties.
Collapse
Affiliation(s)
- Xue Wen
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Yinuo Shu
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Diyang Qu
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Yinzhe Wang
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Xiaoqian Zhang
- Department of Psychiatry, Tsinghua University Yuquan Hospital, Beijing, China.
| | - Runsen Chen
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China.
- Institute for Healthy China, Tsinghua University, Beijing, China.
| |
Collapse
|
10
|
Gajofatto A, Cardobi N, Gobbin F, Calabrese M, Turatti M, Benedetti MD. Resting-state functional connectivity in multiple sclerosis patients receiving nabiximols for spasticity. BMC Neurol 2023; 23:128. [PMID: 36991352 PMCID: PMC10052832 DOI: 10.1186/s12883-023-03171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Nabiximols (Sativex®) is a cannabinoid approved for multiple sclerosis (MS)-related spasticity. Its mechanism of action is partially understood, and efficacy is variable. OBJECTIVE To conduct an exploratory analysis of brain networks connectivity changes on resting state (RS) functional MRI (fMRI) of MS patients treated with nabiximols. METHODS We identified a group of MS patients treated with Sativex® at Verona University Hospital, who underwent RS brain fMRI in the 4 weeks before (T0) and 4-8 weeks after (T1) treatment start. Sativex® response was defined as ≥ 20% spasticity Numerical Rating Scale score reduction at T1 vs. T0. Connectivity changes on fMRI were compared between T0 and T1 in the whole group and according to response status. ROI-to-ROI and seed-to-voxel connectivity were evaluated. RESULTS Twelve MS patients (7 males) were eligible for the study. Seven patients (58.3%) resulted Sativex® responders at T1. On fMRI analysis, Sativex® exposure was associated with global brain connectivity increase (particularly in responders), decreased connectivity of motor areas, and bidirectional connectivity changes of the left cerebellum with a number of cortical areas. CONCLUSIONS Nabiximols administration is associated with brain connectivity increase of MS patients with spasticity. Modulation of sensorimotor cortical areas and cerebellum connectivity could play a role in nabiximols effect.
Collapse
Affiliation(s)
- Alberto Gajofatto
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, Verona, 37134, Italy.
- Unit of Neurology, Regional Multiple Sclerosis Center, Borgo Roma Hospital, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| | - Nicolò Cardobi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, Verona, 37134, Italy
| | - Francesca Gobbin
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, Verona, 37134, Italy
- Unit of Neurology, Regional Multiple Sclerosis Center, Borgo Roma Hospital, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Massimiliano Calabrese
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, Verona, 37134, Italy
- Unit of Neurology, Regional Multiple Sclerosis Center, Borgo Roma Hospital, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Marco Turatti
- Unit of Neurology, Regional Multiple Sclerosis Center, Borgo Roma Hospital, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Maria Donata Benedetti
- Unit of Neurology, Regional Multiple Sclerosis Center, Borgo Roma Hospital, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
11
|
Ho NF, Lin AY, Tng JXJ, Chew QH, Cheung MWL, Javitt DC, Sim K. Abnormalities in visual cognition and associated impaired interactions between visual and attentional networks in schizophrenia and brief psychotic disorder. Psychiatry Res Neuroimaging 2022; 327:111545. [PMID: 36272310 DOI: 10.1016/j.pscychresns.2022.111545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022]
Abstract
The extent and nature of cognitive impairment in brief psychotic disorder remains unclear, being rarely studied unlike schizophrenia. The present study hence sought to directly compare the visual cognitive dysfunction and its associated brain networks in brief psychotic disorder and schizophrenia. Data from picture completion (a complex visual task) and whole-brain functional connectome from resting-state fMRI were acquired from a sample of clinically stable patients with an established psychotic disorder (twenty with brief psychotic disorder, twenty with schizophrenia) and twenty-nine healthy controls. Group differences and the inter-relationships in task performances and brain networks were tested. Picture completion task deficits were found in brief psychotic disorder compared with healthy controls, though the deficits were less than schizophrenia. Task performance also correlated with severity of psychotic symptoms in patients. The task performance was inversely correlated with the functional connectivity between peripheral visual and attentional networks (dorsal attention and salience ventral attention), with increased functional connectivity in brief psychotic disorder compared with healthy controls and in schizophrenia compared with brief psychotic disorder. Present findings showed pronounced visual cognitive impairments in brief psychotic disorder that were worse in schizophrenia, underpinned by abnormal interactions between higher-order attentional and lower-order visual processing networks.
Collapse
Affiliation(s)
- New Fei Ho
- Institute of Mental Health, Singapore; Duke-National University of Singapore Medical School, Singapore.
| | | | | | | | | | | | - Kang Sim
- Institute of Mental Health, Singapore
| |
Collapse
|
12
|
Aloi J, McCusker MC, Lew BJ, Schantell M, Eastman JA, Frenzel MR, Wilson TW. Altered amygdala-cortical connectivity in individuals with Cannabis use disorder. J Psychopharmacol 2021; 35:1365-1374. [PMID: 34730052 PMCID: PMC9659472 DOI: 10.1177/02698811211054163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cannabis is one of the most commonly used substances in the United States. Prior literature using task-based functional magnetic resonance imaging (fMRI) has identified that individuals with Cannabis use disorder (CUD) show impairments in emotion processing circuitry. However, whether the functional networks involving these regions are also altered in CUD remains poorly understood. AIMS Investigate changes in resting-state functional connectivity (rsFC) in regions related to emotional processing in CUD. METHODS Sixty-two participants completed resting-state fMRI, including 21 with CUD, 20 with histories of illicit substance use but no current CUD diagnosis, and 21 with no history of illicit substance use. Whole-brain seed-based connectivity analyses were performed and one-way analyses of covariance (ANCOVAs) were conducted to detect group differences in the bilateral amygdalae, hippocampi, and the anterior and posterior cingulate cortices. RESULTS The CUD group exhibited significant reductions in rsFC between the amygdala and the cuneus, paracentral lobule, and supplementary motor area, and between the cingulate cortices and the occipital and temporal lobes. There were no significant group differences in hippocampal functional connectivity. In addition, CUD symptom counts based on the Structured Clinical Interview for DSM-5 (SCID) and the Cannabis Use Disorders Identification Test (CUDIT) significantly correlated with multiple connectivity metrics. CONCLUSION These data expand on emerging literature indicating that CUD is associated with dysfunction in the neural circuits underlying emotion processing. Dysfunction in emotion processing circuits may play a role in the behavioral impairments seen in emotion processing tasks in individuals with CUD, and the severity of CUD symptoms appears to be directly related to the degree of dysfunction in these circuits.
Collapse
Affiliation(s)
- Joseph Aloi
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE,College of Medicine, University of Nebraska Medical Center, Omaha, NE,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN
| | - Marie C. McCusker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE
| | - Brandon J. Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE,College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE,College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Jacob A. Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE
| | - Michaela R. Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE,College of Medicine, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
13
|
Zhang J, Kucyi A, Raya J, Nielsen AN, Nomi JS, Damoiseaux JS, Greene DJ, Horovitz SG, Uddin LQ, Whitfield-Gabrieli S. What have we really learned from functional connectivity in clinical populations? Neuroimage 2021; 242:118466. [PMID: 34389443 DOI: 10.1016/j.neuroimage.2021.118466] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/06/2021] [Accepted: 08/09/2021] [Indexed: 02/09/2023] Open
Abstract
Functional connectivity (FC), or the statistical interdependence of blood-oxygen dependent level (BOLD) signals between brain regions using fMRI, has emerged as a widely used tool for probing functional abnormalities in clinical populations due to the promise of the approach across conceptual, technical, and practical levels. With an already vast and steadily accumulating neuroimaging literature on neurodevelopmental, psychiatric, and neurological diseases and disorders in which FC is a primary measure, we aim here to provide a high-level synthesis of major concepts that have arisen from FC findings in a manner that cuts across different clinical conditions and sheds light on overarching principles. We highlight that FC has allowed us to discover the ubiquity of intrinsic functional networks across virtually all brains and clarify typical patterns of neurodevelopment over the lifespan. This understanding of typical FC maturation with age has provided important benchmarks against which to evaluate divergent maturation in early life and degeneration in late life. This in turn has led to the important insight that many clinical conditions are associated with complex, distributed, network-level changes in the brain, as opposed to solely focal abnormalities. We further emphasize the important role that FC studies have played in supporting a dimensional approach to studying transdiagnostic clinical symptoms and in enhancing the multimodal characterization and prediction of the trajectory of symptom progression across conditions. We highlight the unprecedented opportunity offered by FC to probe functional abnormalities in clinical conditions where brain function could not be easily studied otherwise, such as in disorders of consciousness. Lastly, we suggest high priority areas for future research and acknowledge critical barriers associated with the use of FC methods, particularly those related to artifact removal, data denoising and feasibility in clinical contexts.
Collapse
Affiliation(s)
- Jiahe Zhang
- Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA.
| | - Aaron Kucyi
- Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Jovicarole Raya
- Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Ashley N Nielsen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jason S Nomi
- Department of Psychology, University of Miami, Miami, FL 33124, USA
| | - Jessica S Damoiseaux
- Institute of Gerontology and Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Lucina Q Uddin
- Department of Psychology, University of Miami, Miami, FL 33124, USA
| | - Susan Whitfield-Gabrieli
- Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
14
|
Ahmed S, Roth RM, Stanciu CN, Brunette MF. The Impact of THC and CBD in Schizophrenia: A Systematic Review. Front Psychiatry 2021; 12:694394. [PMID: 34366924 PMCID: PMC8343183 DOI: 10.3389/fpsyt.2021.694394] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022] Open
Abstract
Background: People with schizophrenia are more likely to develop cannabis use disorder (CUD) and experience worse outcomes with use. Yet as cannabis is legalized for medical and recreational use, there is interest in its therapeutic potential. Objectives: To conduct a systematic review summarizing the design and results of controlled trials using defined doses of THC and CBD in schizophrenia. Method: A keyword search of eight online literature databases identified 11 eligible reports. Results: One placebo controlled trial (13 stable patients without CUD) found that intravenous THC increased psychosis and worsened learning/recall. Two reports of a functional magnetic resonance (fMRI) study of smoked or oral THC in 12 abstinent patients with schizophrenia and CUD found no change in symptoms and cognition, and an amelioration of impaired resting state brain function in areas implicated in reward function and the default mode network. One 4 week trial in acutely psychotic inpatients without CUD (mean age 30 y) found 800 mg CBD to be similarly efficacious to amisupride in improving psychosis and cognition. Two 6 week studies of CBD augmentation of antipsychotics in stable outpatients reported mixed results: CBD 600 mg was not more effective than placebo; CBD 1,000 mg reduced symptoms in a sample that did not exclude cannabis use and CUD. A brain fMRI and proton magnetic resonance spectroscopy study of single dose CBD in a sample that did not exclude CUD and cannabis use found that CBD improved symptoms and brain function during a learning/recall task and was associated with increased hippocampal glutamate. Discussion: There is substantial heterogeneity across studies in dose, method of drug delivery, length of treatment, patient age, whether patients with cannabis use/CUD were included or excluded, and whether patients were using antipsychotic medication. Conclusion: There is insufficient evidence for an effect of THC or CBD on symptoms, cognition, and neuroimaging measures of brain function in schizophrenia. At this time, research does not support recommending medical cannabis (THC or CBD) for treating patients with schizophrenia. Further research should examine THC and CBD in schizophrenia with and without comorbid CUD and consider the role of CBD in mitigating symptom exacerbation from THC.
Collapse
Affiliation(s)
- Saeed Ahmed
- Department of Psychiatry, Rutland Regional Medical Center, Rutland, VT, United States
- Vermont Hub-and-Spoke System of Care, West Ridge Center at Rutland Regional Medical Center, Rutland, VT, United States
| | - Robert M. Roth
- New Hampshire Hospital, Concord, NH, United States
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Corneliu N. Stanciu
- New Hampshire Hospital, Concord, NH, United States
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Mary F. Brunette
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Bureau of Mental Health Services, Concord, NH, United States
| |
Collapse
|
15
|
Simpson S, Chen Y, Wellmeyer E, Smith LC, Aragon Montes B, George O, Kimbrough A. The Hidden Brain: Uncovering Previously Overlooked Brain Regions by Employing Novel Preclinical Unbiased Network Approaches. Front Syst Neurosci 2021; 15:595507. [PMID: 33967705 PMCID: PMC8097000 DOI: 10.3389/fnsys.2021.595507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
A large focus of modern neuroscience has revolved around preselected brain regions of interest based on prior studies. While there are reasons to focus on brain regions implicated in prior work, the result has been a biased assessment of brain function. Thus, many brain regions that may prove crucial in a wide range of neurobiological problems, including neurodegenerative diseases and neuropsychiatric disorders, have been neglected. Advances in neuroimaging and computational neuroscience have made it possible to make unbiased assessments of whole-brain function and identify previously overlooked regions of the brain. This review will discuss the tools that have been developed to advance neuroscience and network-based computational approaches used to further analyze the interconnectivity of the brain. Furthermore, it will survey examples of neural network approaches that assess connectivity in clinical (i.e., human) and preclinical (i.e., animal model) studies and discuss how preclinical studies of neurodegenerative diseases and neuropsychiatric disorders can greatly benefit from the unbiased nature of whole-brain imaging and network neuroscience.
Collapse
Affiliation(s)
- Sierra Simpson
- Department of Psychiatry, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yueyi Chen
- Department of Psychiatry, School of Medicine, University of California, San Diego, San Diego, CA, United States.,Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Emma Wellmeyer
- Department of Psychiatry, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Lauren C Smith
- Department of Psychiatry, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Brianna Aragon Montes
- Department of Psychiatry, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Olivier George
- Department of Psychiatry, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Purdue Institute for Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, United States
| |
Collapse
|
16
|
Ritchay MM, Huggins AA, Wallace AL, Larson CL, Lisdahl KM. Resting state functional connectivity in the default mode network: Relationships between cannabis use, gender, and cognition in adolescents and young adults. Neuroimage Clin 2021; 30:102664. [PMID: 33872994 PMCID: PMC8080071 DOI: 10.1016/j.nicl.2021.102664] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Cannabis is the most commonly used illicit substance in the United States, and nearly 1 in 4 young adults are current cannabis users. Chronic cannabis use is associated with changes in resting state functional connectivity (RSFC) in the default mode network (DMN) in adolescents and young adults; results are somewhat inconsistent across studies, potentially due to methodological differences. The aims of the present study were to examine potential differences in DMN RSFC between cannabis users and controls, and to examine, as an exploratory analysis, if gender moderated any findings. We further examined whether differences in RSFC related to differences in performance on selected neuropsychological measures. MATERIALS AND METHODS Seventy-seven 16-26-year-old participants underwent an MRI scan (including resting state scan), neuropsychological battery, toxicology screening, and drug use interview. Differences in DMN connectivity were examined between groups (cannabis vs. control) and with an exploratory group by gender interaction, using a left posterior cingulate cortex (PCC) seed-based analysis conducted in AFNI. RESULTS Cannabis users demonstrated weaker connectivity than controls between the left PCC and various DMN nodes, and the right Rolandic operculum/Heschl's gyrus. Cannabis users demonstrated stronger connectivity between the left PCC and the cerebellum and left supramarginal gyrus. The group by gender interaction was not significantly associated with connectivity differences. Stronger left PCC-cerebellum connectivity was associated with poorer performance on cognitive measures in cannabis users. In controls, intra-DMN connectivity was positively correlated with performance on a speeded selective/sustained attention measure. DISCUSSION Consistent with our hypotheses and other studies, cannabis users demonstrated weaker connectivity between the left PCC and DMN nodes. Chronic THC exposure may alter GABA and glutamate concentrations, which may alter brain communication. Future studies should be conducted with a larger sample size and examine gender differences and the mechanism by which these differences may arise.
Collapse
Affiliation(s)
- Megan M Ritchay
- University of Wisconsin-Milwaukee, Department of Psychology, 2441 E. Hartford Ave Garland 224, Milwaukee, 53211 WI, USA
| | - Ashley A Huggins
- University of Wisconsin-Milwaukee, Department of Psychology, 2441 E. Hartford Ave Garland 224, Milwaukee, 53211 WI, USA
| | - Alexander L Wallace
- University of Wisconsin-Milwaukee, Department of Psychology, 2441 E. Hartford Ave Garland 224, Milwaukee, 53211 WI, USA
| | - Christine L Larson
- University of Wisconsin-Milwaukee, Department of Psychology, 2441 E. Hartford Ave Garland 224, Milwaukee, 53211 WI, USA
| | - Krista M Lisdahl
- University of Wisconsin-Milwaukee, Department of Psychology, 2441 E. Hartford Ave Garland 224, Milwaukee, 53211 WI, USA.
| |
Collapse
|
17
|
Affiliation(s)
- Mary F Brunette
- Medical Director, Bureau of Mental Health Services, NH DHHS, Assoc. Prof. Psychiatry, Geisel School of Medicine, Dartmouth, New Hampshire, USA.,Research Division, Department of Psychiatry, Dartmouth-Hitchcock, 46 Centerra Parkway, Lebanon, New Hampshire, USA.,Bureau of Mental Health Services, Main Bldg, Level 2, Hugh Gallen State Office Park, 105 Pleasant Street, Concord, New Hampshire, USA
| |
Collapse
|
18
|
Bauer CCC, Rozenkrantz L, Caballero C, Nieto‐Castanon A, Scherer E, West MR, Mrazek M, Phillips DT, Gabrieli JDE, Whitfield‐Gabrieli S. Mindfulness training preserves sustained attention and resting state anticorrelation between default-mode network and dorsolateral prefrontal cortex: A randomized controlled trial. Hum Brain Mapp 2020; 41:5356-5369. [PMID: 32969562 PMCID: PMC7670646 DOI: 10.1002/hbm.25197] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 01/21/2023] Open
Abstract
Mindfulness training can enhance cognitive control, but the neural mechanisms underlying such enhancement in children are unknown. Here, we conducted a randomized controlled trial (RCT) with sixth graders (mean age 11.76 years) to examine the impact of 8 weeks of school-based mindfulness training, relative to coding training as an active control, on sustained attention and associated resting-state functional brain connectivity. At baseline, better performance on a sustained-attention task correlated with greater anticorrelation between the default mode network (DMN) and right dorsolateral prefrontal cortex (DLPFC), a key node of the central executive network. Following the interventions, children in the mindfulness group preserved their sustained-attention performance (i.e., fewer lapses of attention) and preserved DMN-DLPFC anticorrelation compared to children in the active control group, who exhibited declines in both sustained attention and DMN-DLPFC anticorrelation. Further, change in sustained-attention performance correlated with change in DMN-DLPFC anticorrelation only within the mindfulness group. These findings provide the first causal link between mindfulness training and both sustained attention and associated neural plasticity. Administered as a part of sixth graders' school schedule, this RCT supports the beneficial effects of school-based mindfulness training on cognitive control.
Collapse
Affiliation(s)
- Clemens C. C. Bauer
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
| | - Liron Rozenkrantz
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Camila Caballero
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of PsychologyYale UniversityNew HavenConnecticutUSA
| | - Alfonso Nieto‐Castanon
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Department of Speech, Language and Hearing SciencesBoston UniversityBostonMassachusettsUSA
| | - Ethan Scherer
- Harvard Graduate School of EducationCambridgeMassachusettsUSA
| | - Martin R. West
- Harvard Graduate School of EducationCambridgeMassachusettsUSA
| | - Michael Mrazek
- Department of Psychological and Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Dawa T. Phillips
- Empowerment HoldingsSanta BarbaraCaliforniaUSA
- International Mindfulness Teachers AssociationWakefieldMassachusettsUSA
| | - John D. E. Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Harvard Graduate School of EducationCambridgeMassachusettsUSA
- MIT Integrated Learning InitiativeCambridgeMassachusettsUSA
| | - Susan Whitfield‐Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
19
|
Labbe TP, Zurita M, Montalba C, Ciampi EL, Cruz JP, Vasquez M, Uribe S, Crossley N, Cárcamo C. Social cognition in Multiple Sclerosis is associated to changes in brain connectivity: A resting-state fMRI study. Mult Scler Relat Disord 2020; 45:102333. [DOI: 10.1016/j.msard.2020.102333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
|
20
|
Owens MM, Yuan D, Hahn S, Albaugh M, Allgaier N, Chaarani B, Potter A, Garavan H. Investigation of Psychiatric and Neuropsychological Correlates of Default Mode Network and Dorsal Attention Network Anticorrelation in Children. Cereb Cortex 2020; 30:6083-6096. [PMID: 32591777 DOI: 10.1093/cercor/bhaa143] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022] Open
Abstract
The default mode network (DMN) and dorsal attention network (DAN) demonstrate an intrinsic "anticorrelation" in healthy adults, which is thought to represent the functional segregation between internally and externally directed thought. Reduced segregation of these networks has been proposed as a mechanism for cognitive deficits that occurs in many psychiatric disorders, but this association has rarely been tested in pre-adolescent children. The current analysis used data from the Adolescent Brain Cognitive Development study to examine the relationship between the strength of DMN/DAN anticorrelation and psychiatric symptoms in the largest sample to date of 9- to 10-year-old children (N = 6543). The relationship of DMN/DAN anticorrelation to a battery of neuropsychological tests was also assessed. DMN/DAN anticorrelation was robustly linked to attention problems, as well as age, sex, and socioeconomic factors. Other psychiatric correlates identified in prior reports were not robustly linked to DMN/DAN anticorrelation after controlling for demographic covariates. Among neuropsychological measures, the clearest correlates of DMN/DAN anticorrelation were the Card Sort task of executive function and cognitive flexibility and the NIH Toolbox Total Cognitive Score, although these did not survive correction for socioeconomic factors. These findings indicate a complicated relationship between DMN/DAN anticorrelation and demographics, neuropsychological function, and psychiatric problems.
Collapse
Affiliation(s)
- Max M Owens
- Department of Psychiatry, University of Vermont, Burlington, VT 05401, USA
| | - DeKang Yuan
- Department of Psychiatry, University of Vermont, Burlington, VT 05401, USA
| | - Sage Hahn
- Department of Psychiatry, University of Vermont, Burlington, VT 05401, USA
| | - Matthew Albaugh
- Department of Psychiatry, University of Vermont, Burlington, VT 05401, USA
| | - Nicholas Allgaier
- Department of Psychiatry, University of Vermont, Burlington, VT 05401, USA
| | - Bader Chaarani
- Department of Psychiatry, University of Vermont, Burlington, VT 05401, USA
| | - Alexandra Potter
- Department of Psychiatry, University of Vermont, Burlington, VT 05401, USA
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT 05401, USA
| |
Collapse
|
21
|
Sami MB, McCutcheon RA, Ettinger U, Williams S, Lythgoe D, McGuire P, Bhattacharyya S. Cannabis Use Linked to Altered Functional Connectivity of the Visual Attentional Connectivity in Patients With Psychosis and Controls. ACTA ACUST UNITED AC 2020. [DOI: 10.1093/schizbullopen/sgaa018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Background
Both chronic cannabis use and psychotic disorders are associated with abnormalities in visual attentional processing. Using functional magnetic resonance imaging (fMRI), we sought to determine whether there would be a difference in functional connectivity in patients and controls with and without a history of cannabis use in the visual and dorsal attention networks.
Methods
Resting-state fMRI data were acquired in patients with early psychosis with (EPC = 29) and without (EPNC = 25); and controls with (HCC = 16) and without (HCNC = 22) cannabis use.
Results
There was a patient effect in both Visual-Dorsal Attention Internetwork (F(1,87) = 5.326, P = .023) and the Visual Network (F(1,87) = 4.044, P = .047) and a cannabis effect in the Dorsal Attention Network (F(1,87) = 4.773, P = .032). These effects were specific to the networks examined with no evidence for significant patient or cannabis effects in other canonical networks. Patients with a history of cannabis use showed increased connectivity in the Dorsal Attention Network (134%, P = .019) and Visual Dorsal Attention Internetwork (285%, P = .036) compared to non-using controls. In the EPC group connectivity of the Visual Network (ρ = 0.379, P = .042) and Visual-Dorsal Attention Internetwork (ρ = 0.421, P = .023) correlated with visual hallucinations which were significantly different from EPNC (P = .011). Dorsal attention network strength correlated with severity of dependence for cannabis (ρ = 0.215, P = .04).
Conclusion
We demonstrate specific cannabis and patient effects in networks associated with visual attentional processing. There is a differential association with hallucinatory symptoms in patients with and without a history of cannabis use. This may indicate that dysconnectivity in these networks serves different roles in the context of cannabis use.
Collapse
Affiliation(s)
- Musa Basseer Sami
- Institute of Psychiatry, Psychology and Neurosciences King’s College London, London, UK
- Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neurosciences King’s College London, London, UK
| | | | - Steve Williams
- Centre for Neuroimaging Sciences, King’s College London, London, UK
| | - Dave Lythgoe
- Centre for Neuroimaging Sciences, King’s College London, London, UK
| | - Philip McGuire
- Institute of Psychiatry, Psychology and Neurosciences King’s College London, London, UK
| | - Sagnik Bhattacharyya
- Institute of Psychiatry, Psychology and Neurosciences King’s College London, London, UK
| |
Collapse
|
22
|
Whitfield-Gabrieli S, Wendelken C, Nieto-Castañón A, Bailey SK, Anteraper SA, Lee YJ, Chai XQ, Hirshfeld-Becker DR, Biederman J, Cutting LE, Bunge SA. Association of Intrinsic Brain Architecture With Changes in Attentional and Mood Symptoms During Development. JAMA Psychiatry 2020; 77:378-386. [PMID: 31876910 PMCID: PMC6990753 DOI: 10.1001/jamapsychiatry.2019.4208] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022]
Abstract
Importance Understanding the neurodevelopmental trajectory of psychiatric symptoms is important for improving early identification, intervention, and prevention of mental disorders. Objective To test whether the strength of the coupling of activation between specific brain regions, as measured by resting-state functional magnetic resonance imaging (fMRI), predicted individual children's developmental trajectories in terms of attentional problems characteristic of attention-deficit/hyperactivity disorder and internalizing problems characteristics of major depressive disorder (MDD). Design, Setting, and Participants A community cohort of 94 children was recruited from Vanderbilt University between 2010 and 2013. They were followed up longitudinally for 4 years and the data were analyzed from 2016 to 2019. Based on preregistered hypotheses and an analytic plan, we examined whether specific brain connectivity patterns would be associated with longitudinal changes in scores on the Child Behavior Checklist (CBCL), a parental-report assessment used to screen for emotional, behavioral, and social problems and to predict psychiatric illnesses. Main Outcomes and Measures We used the strength of resting-state fMRI connectivity at age 7 years to predict subsequent changes in CBCL measures 4 years later and investigated the mechanisms of change by associating brain connectivity changes with changes in the CBCL. Results We analyzed data from a longitudinal brain development study involving children assessed at age 7 years (n = 94; 41 girls [43.6%]) and 11 years (n = 54; 32 girls [59.3%]). As predicted, less positive coupling at age 7 years between the medial prefrontal cortex and dorsolateral prefrontal cortex (DLPFC) was associated with a decrease in attentional symptoms by age 11 years (t49 = 2.38; P = .01; β = 0.32). By contrast, a less positive coupling between a region implicated in mood, the subgenual anterior cingulate cortex (sgACC), and DLPFC at age 7 years was associated with an increase in internalizing (eg, anxiety/depression) behaviors by age 11 years (t49 = -2.4; P = .01; β = -0.30). Logistic regression analyses revealed that sgACC-DLPFC connectivity was a more accurate predictor than baseline CBCL measures for progression to a subclinical score on internalization (t50 = -2.61; P = .01; β = -0.29). We then replicated and extended the sgACC-DLPFC result in an independent sample of children with (n = 25) or without (n = 18) familial risk for MDD. Conclusions and Relevance These resting-state fMRI metrics are promising biomarkers for the early identification of children at risk of developing MDD or attention-deficit/hyperactivity disorder.
Collapse
Affiliation(s)
- Susan Whitfield-Gabrieli
- Helen Wills Neuroscience Institute & Department of Psychology, University of California at Berkeley, Berkeley
- Department of Psychology, Northeastern University and McGovern Institute for Brain Research, Boston, Massachusetts
- Massachusetts Institute of Technology, Cambridge
| | - Carter Wendelken
- Helen Wills Neuroscience Institute & Department of Psychology, University of California at Berkeley, Berkeley
- Vicarious FPC Inc, Union City, California
| | - Alfonso Nieto-Castañón
- Department of Psychology, Northeastern University and McGovern Institute for Brain Research, Boston, Massachusetts
| | - Stephen Kent Bailey
- Peabody College of Education and Human Development, Vanderbilt University, Nashville, Tennessee
| | - Sheeba Arnold Anteraper
- Department of Psychology, Northeastern University and McGovern Institute for Brain Research, Boston, Massachusetts
- Massachusetts Institute of Technology, Cambridge
| | - Yoon Ji Lee
- Department of Psychology, Northeastern University and McGovern Institute for Brain Research, Boston, Massachusetts
| | - Xiao-qian Chai
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | | | - Joseph Biederman
- Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, Massachusetts
| | - Laurie E. Cutting
- Peabody College of Education and Human Development, Vanderbilt University, Nashville, Tennessee
| | - Silvia A. Bunge
- Helen Wills Neuroscience Institute & Department of Psychology, University of California at Berkeley, Berkeley
| |
Collapse
|
23
|
Bauer CCC, Okano K, Gosh SS, Lee YJ, Melero H, de los Angeles C, Nestor PG, del Re EC, Northoff G, Niznikiewicz MA, Whitfield-Gabrieli S. Real-time fMRI neurofeedback reduces auditory hallucinations and modulates resting state connectivity of involved brain regions: Part 2: Default mode network -preliminary evidence. Psychiatry Res 2020; 284:112770. [PMID: 32004893 PMCID: PMC7046150 DOI: 10.1016/j.psychres.2020.112770] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 01/02/2023]
Abstract
Auditory hallucinations (AHs) are one of the most distressing symptoms of schizophrenia (SZ) and are often resistant to medication. Imaging studies of individuals with SZ show hyperactivation of the default mode network (DMN) and the superior temporal gyrus (STG). Studies in SZ show DMN hyperconnectivity and reduced anticorrelation between DMN and the central executive network (CEN). DMN hyperconnectivity has been associated with positive symptoms such as AHs while reduced DMN anticorrelations with cognitive impairment. Using real-time fMRI neurofeedback (rt-fMRI-NFB) we trained SZ patients to modulate DMN and CEN networks. Meditation is effective in reducing AHs in SZ and to modulate brain network integration and increase DMN anticorrelations. Consequently, patients were provided with meditation strategies to enhance their abilities to modulate DMN/CEN. Results show a reduction of DMN hyperconnectivity and increase in DMNCEN anticorrelation. Furthermore, the change in individual DMN connectivity significantly correlated with reductions in AHs. This is the first time that meditation enhanced through rt-fMRI-NFB is used to reduce AHs in SZ. Moreover, it provides the first empirical evidence for a direct causal relation between meditation enhanced rt-fMRI-NFB modulation of DMNCEN activity and post-intervention modulation of resting state networks ensuing in reductions in frequency and severity of AHs.
Collapse
Affiliation(s)
- Clemens C. C. Bauer
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology. Cambridge, MA 02139, USA,Northeastern University, Boston, MA 02139, USA,Please address correspondence to Clemens Bauer, Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, 43 Vassar St. 46-4037C Massachusetts Institute of Technology. Cambridge, MA 02139, USA Telephone: +1 (617) 324 5124,
| | - Kana Okano
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
| | - Satrajit S. Gosh
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
| | - Yoon Ji Lee
- Northeastern University, Boston, MA 02139, USA
| | - Helena Melero
- Northeastern University, Boston, MA 02139, USA,Medical Image Analysis Laboratory (LAIMBIO), Rey Juan Carlos University, Madrid, Spain
| | - Carlo de los Angeles
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
| | - Paul G. Nestor
- Harvard Medical School. Boston, MA 02115, USA,Boston VA Healthcare System. Boston, MA 02130, USA,University of Massachusetts, Boston, Boston MA 02215, USA
| | - Elisabetta C. del Re
- Harvard Medical School. Boston, MA 02115, USA,Boston VA Healthcare System. Boston, MA 02130, USA,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Margaret A. Niznikiewicz
- Harvard Medical School. Boston, MA 02115, USA,Boston VA Healthcare System. Boston, MA 02130, USA,Beth Israel Deaconess Medical Center. Boston, MA 02215, USA
| | - Susan Whitfield-Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology. Cambridge, MA 02139, USA,Northeastern University, Boston, MA 02139, USA
| |
Collapse
|
24
|
Kayser RR, Snorrason I, Haney M, Lee FS, Simpson HB. The Endocannabinoid System: A New Treatment Target for Obsessive Compulsive Disorder? Cannabis Cannabinoid Res 2019; 4:77-87. [PMID: 32656342 DOI: 10.1089/can.2018.0049] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Introduction: Obsessive-compulsive disorder (OCD) is a disabling illness that is associated with significant functional impairment. Although evidence-based pharmacotherapies exist, currently available medications are ineffective in some patients and may cause intolerable side effects in others. There is an urgent need for new treatments. Discussion: A growing body of basic and clinical research has showed that the endocannabinoid system (ECS) plays a role in anxiety, fear, and repetitive behaviors. At the same time, some patients with OCD who smoke cannabis anecdotally report that it relieves their symptoms and mitigates anxiety, and several case reports describe patients whose OCD symptoms improved after they were treated with cannabinoids. Taken together, these findings suggest that the ECS could be a potential target for novel medications for OCD. In this study, we review evidence from both animal and human studies that suggests that the ECS may play a role in OCD and related disorders. We also describe findings from studies in which cannabinoid drugs were shown to impact symptoms of these conditions. Conclusions: An emerging body of evidence suggests that the ECS plays a role in OCD symptoms and may be a target for the development of novel medications. Further exploration of this topic through well-designed human trials is warranted.
Collapse
Affiliation(s)
- Reilly R Kayser
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Ivar Snorrason
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Margaret Haney
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College, New York, New York
| | - H Blair Simpson
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| |
Collapse
|
25
|
Wilcox CE, Abbott CC, Calhoun VD. Alterations in resting-state functional connectivity in substance use disorders and treatment implications. Prog Neuropsychopharmacol Biol Psychiatry 2019; 91:79-93. [PMID: 29953936 PMCID: PMC6309756 DOI: 10.1016/j.pnpbp.2018.06.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/18/2018] [Accepted: 06/23/2018] [Indexed: 02/06/2023]
Abstract
Substance use disorders (SUD) are diseases of the brain, characterized by aberrant functioning in the neural circuitry of the brain. Resting state functional connectivity (rsFC) can illuminate these functional changes by measuring the temporal coherence of low-frequency fluctuations of the blood oxygenation level-dependent magnetic resonance imaging signal in contiguous or non-contiguous regions of the brain. Because this data is easy to obtain and analyze, and therefore fairly inexpensive, it holds promise for defining biological treatment targets in SUD, which could help maximize the efficacy of existing clinical interventions and develop new ones. In an effort to identify the most likely "treatment targets" obtainable with rsFC we summarize existing research in SUD focused on 1) the relationships between rsFC and functionality within important psychological domains which are believed to underlie relapse vulnerability 2) changes in rsFC from satiety to deprived or abstinent states 3) baseline rsFC correlates of treatment outcome and 4) changes in rsFC induced by treatment interventions which improve clinical outcomes and reduce relapse risk. Converging evidence indicates that likely "treatment target" candidates, emerging consistently in all four sections, are reduced connectivity within executive control network (ECN) and between ECN and salience network (SN). Other potential treatment targets also show promise, but the literature is sparse and more research is needed. Future research directions include data-driven prediction analyses and rsFC analyses with longitudinal datasets that incorporate time since last use into analysis to account for drug withdrawal. Once the most reliable biological markers are identified, they can be used for treatment matching, during preliminary testing of new pharmacological compounds to establish clinical potential ("target engagement") prior to carrying out costly clinical trials, and for generating hypotheses for medication repurposing.
Collapse
|
26
|
Balducci T, González-Olvera JJ, Angeles-Valdez D, Espinoza-Luna I, Garza-Villarreal EA. Borderline Personality Disorder With Cocaine Dependence: Impulsivity, Emotional Dysregulation and Amygdala Functional Connectivity. Front Psychiatry 2018; 9:328. [PMID: 30108525 PMCID: PMC6079279 DOI: 10.3389/fpsyt.2018.00328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022] Open
Abstract
Background: Borderline personality disorder is present in 19% of cocaine dependence cases; however, this dual pathology is poorly understood. We wished to characterize the dual pathology and find its functional connectivity correlates to better understand it. Methods: We recruited 69 participants divided into 4 groups: dual pathology (n = 20), cocaine dependence without borderline personality disorder (n = 19), borderline personality without cocaine dependence (n = 10) and healthy controls (n = 20). We used self-reported instruments to measure impulsivity and emotional dysregulation. We acquired resting state fMRI and performed seed-based analyses of the functional connectivity of bilateral amygdala. Results: Borderline personality disorder and cocaine dependence as factors had opposing effects in impulsivity and emotional dysregulation, as well as on functional connectivity between left amygdala and medial prefrontal cortex. On the other hand, in the functional connectivity between right amygdala and left insula, the effect of having both disorders was instead additive, reducing functional connectivity strength. The significant functional connectivity clusters were correlated with impulsivity and emotional dysregulation. Conclusions: In this study, we found that clinical scores of dual pathology patients were closer to those of borderline personality disorder without cocaine dependence than to those of cocaine dependence without borderline personality disorder, while amygdala-medial prefrontal cortex functional connectivity patterns in dual pathology patients were closer to healthy controls than expected.
Collapse
Affiliation(s)
- Thania Balducci
- Clinical Research Division, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Mexico City, Mexico.,Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jorge J González-Olvera
- Clinical Research Division, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Mexico City, Mexico
| | - Diego Angeles-Valdez
- Clinical Research Division, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Mexico City, Mexico.,Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Isabel Espinoza-Luna
- Clinical Services Division, Psychiatric Hospital "Fray Bernardino Álvarez", Mexico City, Mexico
| | - Eduardo A Garza-Villarreal
- Clinical Research Division, National Institute of Psychiatry "Ramón de la Fuente Muñiz", Mexico City, Mexico.,Center of Functionally Integrative Neuroscience and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|