1
|
Li Y, Zhou G, Peng J, Liu L, Zhang F, Iturria-Medina Y, Yao D, Biswal BB, Wang P. White matter dysfunction in Alzheimer's disease is associated with disease-related transcriptomic signatures. Commun Biol 2025; 8:820. [PMID: 40437109 PMCID: PMC12120127 DOI: 10.1038/s42003-025-08177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 05/06/2025] [Indexed: 06/01/2025] Open
Abstract
While anatomical white matter (WM) alterations in Alzheimer's disease (AD) are well-established, functional WM dysregulation remains rarely investigated. The current study examines WM functional connectivity and network properties alterations in AD and mild cognitive impairment (MCI) and further describes their spatially correlated genes. AD and MCI shared decreased functional connectivity, clustering coefficient, and local efficiency within WM regions involved in impaired sensory-motor, visual-spatial, language, or memory functions. AD-specific dysfunction (i.e., AD vs. MCI and cognitively unimpaired participants) was predominantly located in WM, including anterior and posterior limb of internal capsule, corona radiata, and left tapetum. This WM dysfunction spatially correlates with specific genes, which are enriched in multiple biological processes related to synaptic function and development, and are mostly active in neurons and astrocytes. These findings may contribute to understanding molecular, cellular, and functional signatures associated with WM damage in AD.
Collapse
Affiliation(s)
- Yilu Li
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Guanyu Zhou
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinzhong Peng
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Liu
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fanyu Zhang
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
| | - Dezhong Yao
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bharat B Biswal
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA.
| | - Pan Wang
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Yu J, Xie W, Wang P. Inflammatory bowel disease and white matter microstructure: A bidirectional Mendelian randomization study. Brain Res 2024; 1845:149206. [PMID: 39208967 DOI: 10.1016/j.brainres.2024.149206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Observational studies have reported changes in the brain white matter (WM) microstructure in patients with inflammatory bowel disease (IBD); however, it remains uncertain whether the relationship between them is causative. The aim of this study is to reveal the potential causal relationship between IBD and WM microstructure through a bidirectional two-sample Mendelian randomization (MR) analysis. METHODS We extracted genome-wide association study (GWAS) summary statistics for IBD and WM microstructure from published GWASs. Two-sample MR analysis was conducted to explore the bidirectional causal associations between IBD and WM microstructure, followed by a series of sensitivity analyses to assess the robustness of the results. RESULTS Although forward MR analysis results showed no evidence of causality from microstructural WM to IBD, reverse MR showed that genetically predicted IBD, consisting of ulcerative colitis and Crohn's disease, has a significant causal effect on the orientation dispersion index (OD) of the right tapetum (β = -0.029, 95% CI = -0.045 to -0.013, p = 3.63 × 10-4). Further sensitivity analysis confirmed the robustness of the association. CONCLUSION Our results suggested the potentially causal association of IBD with reduced OD in the right tapetum.
Collapse
Affiliation(s)
- Jie Yu
- School of Medical Technology, School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Wanyu Xie
- School of Medical Technology, School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Ping Wang
- School of Medical Technology, School of Medical Imaging, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
3
|
Van Dyken PC, MacKinley M, Khan AR, Palaniyappan L. Cortical Network Disruption Is Minimal in Early Stages of Psychosis. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae010. [PMID: 39144115 PMCID: PMC11207789 DOI: 10.1093/schizbullopen/sgae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis Schizophrenia is associated with white matter disruption and topological reorganization of cortical connectivity but the trajectory of these changes, from the first psychotic episode to established illness, is poorly understood. Current studies in first-episode psychosis (FEP) patients using diffusion magnetic resonance imaging (dMRI) suggest such disruption may be detectable at the onset of psychosis, but specific results vary widely, and few reports have contextualized their findings with direct comparison to young adults with established illness. Study Design Diffusion and T1-weighted 7T MR scans were obtained from N = 112 individuals (58 with untreated FEP, 17 with established schizophrenia, 37 healthy controls) recruited from London, Ontario. Voxel- and network-based analyses were used to detect changes in diffusion microstructural parameters. Graph theory metrics were used to probe changes in the cortical network hierarchy and to assess the vulnerability of hub regions to disruption. The analysis was replicated with N = 111 (57 patients, 54 controls) from the Human Connectome Project-Early Psychosis (HCP-EP) dataset. Study Results Widespread microstructural changes were found in people with established illness, but changes in FEP patients were minimal. Unlike the established illness group, no appreciable topological changes in the cortical network were observed in FEP patients. These results were replicated in the early psychosis patients of the HCP-EP datasets, which were indistinguishable from controls in most metrics. Conclusions The white matter structural changes observed in established schizophrenia are not a prominent feature in the early stages of this illness.
Collapse
Affiliation(s)
- Peter C Van Dyken
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael MacKinley
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Ali R Khan
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lena Palaniyappan
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, London, ON, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
4
|
Zoghbi AW, Lieberman JA, Girgis RR. The neurobiology of duration of untreated psychosis: a comprehensive review. Mol Psychiatry 2023; 28:168-190. [PMID: 35931757 PMCID: PMC10979514 DOI: 10.1038/s41380-022-01718-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Duration of untreated psychosis (DUP) is defined as the time from the onset of psychotic symptoms until the first treatment. Studies have shown that longer DUP is associated with poorer response rates to antipsychotic medications and impaired cognition, yet the neurobiologic correlates of DUP are poorly understood. Moreover, it has been hypothesized that untreated psychosis may be neurotoxic. Here, we conducted a comprehensive review of studies that have examined the neurobiology of DUP. Specifically, we included studies that evaluated DUP using a range of neurobiologic and imaging techniques and identified 83 articles that met inclusion and exclusion criteria. Overall, 27 out of the total 83 studies (32.5%) reported a significant neurobiological correlate with DUP. These results provide evidence against the notion of psychosis as structurally or functionally neurotoxic on a global scale and suggest that specific regions of the brain, such as temporal regions, may be more vulnerable to the effects of DUP. It is also possible that current methodologies lack the resolution needed to more accurately examine the effects of DUP on the brain, such as effects on synaptic density. Newer methodologies, such as MR scanners with stronger magnets, PET imaging with newer ligands capable of measuring subcellular structures (e.g., the PET ligand [11C]UCB-J) may be better able to capture these limited neuropathologic processes. Lastly, to ensure robust and replicable results, future studies of DUP should be adequately powered and specifically designed to test for the effects of DUP on localized brain structure and function with careful attention paid to potential confounds and methodological issues.
Collapse
Affiliation(s)
- Anthony W Zoghbi
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Institute of Genomic Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Office of Mental Health, New York State Psychiatric Institute, New York, NY, 10032, USA.
| | - Jeffrey A Lieberman
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Ragy R Girgis
- Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Office of Mental Health, New York State Psychiatric Institute, New York, NY, 10032, USA.
| |
Collapse
|
5
|
The Role of Diffusion Tensor MR Imaging (DTI) of the Brain in Diagnosing Autism Spectrum Disorder: Promising Results. SENSORS 2021; 21:s21248171. [PMID: 34960265 PMCID: PMC8703859 DOI: 10.3390/s21248171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/17/2022]
Abstract
Autism spectrum disorder (ASD) is a combination of developmental anomalies that causes social and behavioral impairments, affecting around 2% of US children. Common symptoms include difficulties in communications, interactions, and behavioral disabilities. The onset of symptoms can start in early childhood, yet repeated visits to a pediatric specialist are needed before reaching a diagnosis. Still, this diagnosis is usually subjective, and scores can vary from one specialist to another. Previous literature suggests differences in brain development, environmental, and/or genetic factors play a role in developing autism, yet scientists still do not know exactly the pathology of this disorder. Currently, the gold standard diagnosis of ASD is a set of diagnostic evaluations, such as the Autism Diagnostic Observation Schedule (ADOS) or Autism Diagnostic Interview-Revised (ADI-R) report. These gold standard diagnostic instruments are an intensive, lengthy, and subjective process that involves a set of behavioral and communications tests and clinical history information conducted by a team of qualified clinicians. Emerging advancements in neuroimaging and machine learning techniques can provide a fast and objective alternative to conventional repetitive observational assessments. This paper provides a thorough study of implementing feature engineering tools to find discriminant insights from brain imaging of white matter connectivity and using a machine learning framework for an accurate classification of autistic individuals. This work highlights important findings of impacted brain areas that contribute to an autism diagnosis and presents promising accuracy results. We verified our proposed framework on a large publicly available DTI dataset of 225 subjects from the Autism Brain Imaging Data Exchange-II (ABIDE-II) initiative, achieving a high global balanced accuracy over the 5 sites of up to 99% with 5-fold cross validation. The data used was slightly unbalanced, including 125 autistic subjects and 100 typically developed (TD) ones. The achieved balanced accuracy of the proposed technique is the highest in the literature, which elucidates the importance of feature engineering steps involved in extracting useful knowledge and the promising potentials of adopting neuroimaging for the diagnosis of autism.
Collapse
|
6
|
Kraguljac NV, Anthony T, Morgan CJ, Jindal RD, Burger MS, Lahti AC. White matter integrity, duration of untreated psychosis, and antipsychotic treatment response in medication-naïve first-episode psychosis patients. Mol Psychiatry 2021; 26:5347-5356. [PMID: 32398721 PMCID: PMC7658031 DOI: 10.1038/s41380-020-0765-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/10/2023]
Abstract
It is becoming increasingly clear that longer duration of untreated psychosis (DUP) is associated with adverse clinical outcomes in patients with psychosis spectrum disorders. Because this association is often cited when justifying early intervention efforts, it is imperative to better understand underlying biological mechanisms. We enrolled 66 antipsychotic-naïve first-episode psychosis (FEP) patients and 45 matched healthy controls in this trial. At baseline, we used a human connectome style diffusion-weighted imaging (DWI) sequence to quantify white matter integrity in both groups. Patients then received 16 weeks of treatment with risperidone, 51 FEP completed the trial. We compared whole-brain fractional anisotropy (FA), mean diffusivity, axial diffusivity (AD), and radial diffusivity between groups. To test if structural white matter integrity mediates the relationship between longer DUP and poorer treatment response, we fit a mediator model and estimated indirect effects. We found decreased whole-brain FA and AD in medication-naive FEP compared with controls. In patients, lower FA was correlated with longer DUP (r = -0.32; p = 0.03) and poorer subsequent response to antipsychotic treatment (r = 0.40; p = 0.01). Importantly, we found a significant mediation effect for FA (indirect effect: -2.70; p = 0.03), indicating that DUP exerts its effects on treatment response through affecting white matter integrity. Our data provide empirical support to the idea the DUP may have fundamental pathogenic effects on the natural history of psychosis, suggest a biological mechanism underlying this phenomenon, and underscore the importance of early intervention efforts in this disabling neuropsychiatric syndrome.
Collapse
Affiliation(s)
- Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Thomas Anthony
- Department of Electrical and Computer Engineering/ IT Research Computing, University of Alabama at Birmingham
| | | | - Ripu Daman Jindal
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham,Department of Neurology, Birmingham VA Medical Center
| | - Mark Steven Burger
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| |
Collapse
|
7
|
Perris F, Sampogna G, Giallonardo V, Agnese S, Palummo C, Luciano M, Fabrazzo M, Fiorillo A, Catapano F. Duration of untreated illness predicts 3-year outcome in patients with obsessive-compulsive disorder: A real-world, naturalistic, follow-up study. Psychiatry Res 2021; 299:113872. [PMID: 33770711 DOI: 10.1016/j.psychres.2021.113872] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/12/2021] [Indexed: 11/29/2022]
Abstract
Duration of untreated illness (DUI) is a predictor of outcome in psychotic and affective disorders. The few available data on the effect of DUI in obsessive-compulsive disorder (OCD) suggest an association between longer DUI and poorer response to treatments. This is a real-world, naturalistic, follow-up study evaluating the impact of DUI on long-term clinical outcomes. The sample consists of 83 outpatients with OCD with a mean DUI of 7.3 (5.8) years. Patients with symmetry/ordering cluster symptoms were younger at onset of the disease (20.4 ± 7.9 vs. 27.8 ± 10.6; p<.05, d = 0.79), had a longer duration of the illness (10.1 ± 4.6 vs. 6.8 ± 4.6, p<.05; d = 0.53) and a longer DUI (7.9 ± 6.5 vs. 5.4 ± 3.6, p<.05, d = 0.49) compared to patients not presenting with those symptoms. Fifty-nine patients completed the follow-up, and 33.9% (N = 20) met the criteria for partial remission, scoring <15 at the Y-BOCS for at least eight weeks. Patients in partial remission for more than 40% of the follow-up were defined as "good outcome" and they had a significantly shorter DUI compared to patients with "poor outcome". Access to adequate treatments is highly delayed in patients with OCD. DUI is strongly associated with poor treatment outcomes. Therefore, strategies to ensure an early diagnosis and treatment are needed.
Collapse
Affiliation(s)
- Francesco Perris
- Department of Psychiatry, University of Campania "L. Vanvitelli", Naples, Italy.
| | - Gaia Sampogna
- Department of Psychiatry, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Salvatore Agnese
- Department of Psychiatry, University of Campania "L. Vanvitelli", Naples, Italy
| | - Carmela Palummo
- Department of Psychiatry, University of Campania "L. Vanvitelli", Naples, Italy
| | - Mario Luciano
- Department of Psychiatry, University of Campania "L. Vanvitelli", Naples, Italy
| | - Michele Fabrazzo
- Department of Psychiatry, University of Campania "L. Vanvitelli", Naples, Italy
| | - Andrea Fiorillo
- Department of Psychiatry, University of Campania "L. Vanvitelli", Naples, Italy
| | - Francesco Catapano
- Department of Psychiatry, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
8
|
Maximo JO, Nelson EA, Armstrong WP, Kraguljac NV, Lahti AC. Duration of Untreated Psychosis Correlates With Brain Connectivity and Morphology in Medication-Naïve Patients With First-Episode Psychosis. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:231-238. [PMID: 31902581 DOI: 10.1016/j.bpsc.2019.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND In the United States, the average duration of untreated psychosis (DUP) is 21 months, and it remains unknown how longer DUP may affect brain functioning in antipsychotic-naïve patients with first-episode psychosis. The objective was to determine the effects of DUP on functional connectivity and brain morphology measured with resting-state functional and structural magnetic resonance imaging. METHODS Medication-naïve patients with first-episode psychosis were referred from various clinical settings. After accounting for exclusion criteria, attrition, and data quality, final analyses included 55 patients (35 male and 20 female; mean age, 24.18 years). Patients with first-episode psychosis were subjected to a 16-week trial of risperidone, a commonly used antipsychotic drug. Treatment response was calculated as change in the psychosis subscale of the Brief Psychiatric Rating Scale between baseline and 16 weeks. Resting-state functional connectivity magnetic resonance imaging and brain morphology (surface area and cortical thickness) were assessed. RESULTS Longer DUP was associated with worse treatment response and reduced functional connectivity-more specifically in the default, salience, and executive networks. Moreover, longer DUP was associated with reduced surface area in the salience and executive networks and with increased cortical thickness in the default mode and salience networks. When the functional connectivity of the default mode network was added as a mediator, the relationship between DUP and treatment response was no longer significant. CONCLUSIONS These data suggest that several neurobiological alterations in the form of reduced functional connectivity and surface area and increased cortical thickness underpin the effect of prolonged DUP.
Collapse
Affiliation(s)
- Jose O Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eric A Nelson
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama
| | - William P Armstrong
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|