1
|
Mustafa N, Afroz R, Batool Z, Salman T, Nawaz S, Haleem DJ. Exploring Serotonin-1A receptor function in the effects of buspirone on cognition by molecular receptor expression and EEG analytical studies. Eur J Pharmacol 2025; 990:177275. [PMID: 39855288 DOI: 10.1016/j.ejphar.2025.177275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Buspirone, a commonly prescribed medication for generalized anxiety disorder (GAD), is gaining attention for its narrow window of side effects such as lack of physical dependence, non-sedative properties as compared to other anxiolytic drugs. Its dose-specific therapeutic effects beyond anxiety highlights its clinical significance. Pharmacologically, buspirone activates serotonin-1A pre-synaptic autoreceptors and post-synaptic heteroreceptors which modulate serotonergic neurotransmission induced behavioral changes such as anxiolytic and nootropic effects. This study explored change in neural activity associated serotonin-1A receptors, induced by repeated administration of buspirone at specific doses (0.1 mg/kg and 3 mg/kg). Buspirone induced behavioral changes were assessed by Morris Water Maze (MWM) for cognitive functions, Elevated Plus Maze (EPM) for anxiety, RT-PCR (Reverse transcriptase-polymerase chain reaction) for 5-HT1A receptor expression levels, and EEG (electroencephalography) analysis of neuronal electrical activity in the frontal cortex. Our findings revealed that a low dose of buspirone (0.1 mg/kg) significantly enhanced spatial learning and memory compared to high dose (3 mg/kg). Low-dose treatment elevated mRNA expression levels of serotonin-1A receptors in hippocampus and decreased in midbrain raphe nuclei, with the opposite patterns observed in the high dose. In addition, EEG spectral analysis have revealed dose specific cross coupling frequency of theta-gamma and delta-beta brain waves. At low dose (0.1 mg/kg) positive correlation of theta-gamma coupling effect and negative correlation of delta beta as decoupling effect were observed. Conversely, at high dose (3 mg/kg), results showed opposite pattern with weak correlation of theta gamma coupling effect and positive correlation of delta-beta as coupling effect. These results suggest that buspirone enhances learning and memory with differential activation of pre and postsynaptic serotonin-1A receptors, altering its expression levels which influence neural activity associated with theta-gamma and delta-beta coupling effects. It provides valuable molecular insights on clinical significance of buspirone in mitigating neuropathological disorders such as behavioral disorders and neurocognitive decline associated with disrupted regulation of serotonin-1A neurotransmission at specific doses. Our findings provide molecular insights of dose dependent therapeutic potential of buspirone against neuropathological symptoms of behavioral disorders, neurocognitive decline associated with dysregulated serotonin-1A neurotransmission.
Collapse
Affiliation(s)
- Nazish Mustafa
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Rushda Afroz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Tabinda Salman
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shazia Nawaz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Darakhshan Jabeen Haleem
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
2
|
Yamada R, Wada A, Stickley A, Yokoi Y, Sumiyoshi T. Augmentation therapy with serotonin 1A receptor partial agonists on neurocognitive function in schizophrenia: A systematic review and meta-analysis. Schizophr Res Cogn 2023; 34:100290. [PMID: 37732133 PMCID: PMC10507645 DOI: 10.1016/j.scog.2023.100290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
Background In a previous meta-analysis, the use of serotonin1A(5-HT1A) receptor partial agonists of the azapirone class as an add-on therapy was associated with beneficial effects on positive symptoms and attention/processing speed in schizophrenia patients. This meta-analysis builds on that study by examining the effects of adjunctive treatment with 5-HT1A partial agonists in improving other domains of neurocognitive function in schizophrenia patients. Methods A literature search was performed from 1987 to May 2023 to identify randomized controlled trials. The standardized mean difference (SMD) with 95 % confidence intervals (CI) was calculated when there were two or more studies. Four studies, involving 313 patients, met the inclusion criteria and were used in the analysis. Results 5-HT1A partial agonists (buspirone or tandospirone) did not have a significant effect on verbal learning (SMD = 0.08, 95 % CI = -0.31 to 0.47) or working memory (SMD = 0.15, 95 % CI = -0.09 to 0.39). Regarding executive functions (Wisconsin Card Sorting Test), positive but non-significant results were seen with the category number (SMD = 0.26, 95 % CI = -0.81 to 1.32), while non-significant effects were noted for percent preservation errors (SMD = -0.10, 95 % CI = -0.53 to 0.33). Conclusions The absence of any significant benefits in the cognitive domains studied here may have been due to the variance in the concomitant medication (typical vs atypical antipsychotic drugs), the level of cognition at baseline, or other factors. Further studies with various types of 5-HT1A agonists are warranted to examine the potential cognitive efficacy of stimulating these receptors.
Collapse
Affiliation(s)
- Risa Yamada
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo 187-8553, Japan
- Department of Psychiatry, National Center Hospital of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo 187-8551, Japan
- Department of Psychiatry, The Jikei University School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Ayumu Wada
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo 187-8553, Japan
- Department of Psychiatry, National Center Hospital of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo 187-8551, Japan
- Department of Brain Bioregulatory Science, The Jikei University School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Andrew Stickley
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo 187-8553, Japan
| | - Yuma Yokoi
- Department of Educational Promotion, Clinical Research and Education Promotion Division, National Center of Neurology and Psychiatry, National Center Hospital, 4-1-1, Ogawahigashi, Kodaira, Tokyo 187-8551, Japan
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo 187-8553, Japan
- Department of Psychiatry, National Center Hospital of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo 187-8551, Japan
- Department of Brain Bioregulatory Science, The Jikei University School of Medicine, 3-25-8, Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
3
|
Raucher-Chéné D, Lavigne KM, Lepage M. Episodic Memory and Schizophrenia: From Characterization of Relational Memory Impairments to Neuroimaging Biomarkers. Curr Top Behav Neurosci 2022; 63:115-136. [PMID: 35902545 DOI: 10.1007/7854_2022_379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Episodic memory research in schizophrenia has a long history already which has clearly established significant impairments and strong associations with brain measures and functional outcome. The purpose of this chapter is not to make an exhaustive review of the recent literature but to highlight some relatively recent developments in the cognitive neuroscience field of episodic memory and schizophrenia. Hence, we present a contemporary view focusing specifically of relational memory which represents a form of episodic memory that refers to associations or binding among items or elements presented together. We describe the major tasks used and illustrate how their combination with brain imaging has: (1) favored the use of experimental memory tasks to isolate specific processes with specific neural correlates, (2) led to a distributed view of the neural correlates of memory impairments in schizophrenia where multiple regions are contributing, and (3) made possible the identification of fMRI biomarkers specific to episodic memory. We then briefly propose what we see as the next steps for memory research in schizophrenia so that the impact of this work can be maximized.
Collapse
Affiliation(s)
- Delphine Raucher-Chéné
- Cognition, Health, and Society Laboratory (EA 6291), University of Reims Champagne-Ardenne, Reims, France.,Academic Department of Psychiatry, University Hospital of Reims, EPSM Marne, Reims, France
| | - Katie M Lavigne
- Douglas Research Centre, Verdun, QC, Canada.,Department of Psychiatry, McGill University, Montréal, QC, Canada.,McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Martin Lepage
- Douglas Research Centre, Verdun, QC, Canada. .,Department of Psychiatry, McGill University, Montréal, QC, Canada.
| |
Collapse
|
4
|
Miskowiak KW, Seeberg I, Jensen MB, Balanzá‐Martínez V, del Mar Bonnin C, Bowie CR, Carvalho AF, Dols A, Douglas K, Gallagher P, Hasler G, Lafer B, Lewandowski KE, López‐Jaramillo C, Martinez‐Aran A, McIntyre RS, Porter RJ, Purdon SE, Schaffer A, Stokes P, Sumiyoshi T, Torres IJ, Van Rheenen TE, Yatham LN, Young AH, Kessing LV, Burdick KE, Vieta E. Randomised controlled cognition trials in remitted patients with mood disorders published between 2015 and 2021: A systematic review by the International Society for Bipolar Disorders Targeting Cognition Task Force. Bipolar Disord 2022; 24:354-374. [PMID: 35174594 PMCID: PMC9541874 DOI: 10.1111/bdi.13193] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cognitive impairments are an emerging treatment target in mood disorders, but currently there are no evidence-based pro-cognitive treatments indicated for patients in remission. With this systematic review of randomised controlled trials (RCTs), the International Society for Bipolar Disorders (ISBD) Targeting Cognition Task force provides an update of the most promising treatments and methodological recommendations. METHODS The review included RCTs of candidate pro-cognitive interventions in fully or partially remitted patients with major depressive disorder or bipolar disorder. We followed the procedures of the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) 2020 statement. Searches were conducted on PubMed/MEDLINE, PsycInfo, EMBASE and Cochrane Library from January 2015, when two prior systematic reviews were conducted, until February 2021. Two independent authors reviewed the studies with the Revised Cochrane Collaboration's Risk of Bias tool for Randomised trials. RESULTS We identified 16 RCTs (N = 859) investigating cognitive remediation (CR; k = 6; N = 311), direct current or repetitive magnetic stimulation (k = 3; N = 127), or pharmacological interventions (k = 7; N = 421). CR showed most consistent cognitive benefits, with two trials showing improvements on primary outcomes. Neuromodulatory interventions revealed no clear efficacy. Among pharmacological interventions, modafinil and lurasidone showed early positive results. Sources of bias included small samples, lack of pre-screening for objective cognitive impairment, no primary outcome and no information on allocation sequence masking. CONCLUSIONS Evidence for pro-cognitive treatments in mood disorders is emerging. Recommendations are to increase sample sizes, pre-screen for impairment in targeted domain(s), select one primary outcome, aid transfer to real-world functioning, investigate multimodal interventions and include neuroimaging.
Collapse
Affiliation(s)
- Kamilla W. Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC)Psychiatric Centre CopenhagenCopenhagen University HospitalCopenhagenDenmark,Department of PsychologyUniversity of CopenhagenCopenhagenDenmark
| | - Ida Seeberg
- Copenhagen Affective Disorder Research Centre (CADIC)Psychiatric Centre CopenhagenCopenhagen University HospitalCopenhagenDenmark,Department of PsychologyUniversity of CopenhagenCopenhagenDenmark
| | - Mette B. Jensen
- Copenhagen Affective Disorder Research Centre (CADIC)Psychiatric Centre CopenhagenCopenhagen University HospitalCopenhagenDenmark
| | - Vicent Balanzá‐Martínez
- Teaching Unit of Psychiatry and Psychological MedicineDepartment of MedicineUniversity of ValenciaCIBERSAMValenciaSpain
| | - Caterina del Mar Bonnin
- Clinical Institute of NeuroscienceHospital ClinicUniversity of BarcelonaIDIBAPSCIBERSAMBarcelonaSpain
| | | | - Andre F. Carvalho
- IMPACT Strategic Research Centre (Innovation in Mental and Physical Health and Clinical Treatment)Deakin UniversityGeelongVic.Australia
| | - Annemieke Dols
- Department of Old Age PsychiatryGGZ in GeestAmsterdam UMC, Location VUmcAmsterdam NeuroscienceAmsterdam Public Health Research InstituteAmsterdamThe Netherlands
| | - Katie Douglas
- Department of Psychological MedicineUniversity of OtagoChristchurchNew Zealand
| | - Peter Gallagher
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Gregor Hasler
- Psychiatry Research UnitUniversity of FribourgFribourgSwitzerland
| | - Beny Lafer
- Bipolar Disorder Research ProgramInstitute of PsychiatryHospital das ClinicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrazil
| | - Kathryn E. Lewandowski
- McLean HospitalSchizophrenia and Bipolar Disorder ProgramBelmontMassachusettsUSA,Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - Carlos López‐Jaramillo
- Research Group in PsychiatryDepartment of PsychiatryUniversidad de AntioquiaMedellínColombia
| | - Anabel Martinez‐Aran
- Clinical Institute of NeuroscienceHospital ClinicUniversity of BarcelonaIDIBAPSCIBERSAMBarcelonaSpain
| | - Roger S. McIntyre
- Mood Disorders Psychopharmacology Unit, Brain and Cognition Discovery FoundationUniversity of TorontoTorontoCanada
| | - Richard J. Porter
- Department of Psychological MedicineUniversity of OtagoChristchurchNew Zealand
| | - Scot E. Purdon
- Department of PsychiatryUniversity of AlbertaEdmontonCanada
| | | | - Paul Stokes
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUK
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric DisordersNational Institute of Mental HealthNational Center of Neurology and PsychiatryTokyoJapan
| | - Ivan J. Torres
- Department of PsychiatryUniversity of British ColumbiaVancouverCanada
| | - Tamsyn E. Van Rheenen
- Melbourne Neuropsychiatry CentreDepartment of PsychiatryUniversity of MelbourneCarltonAustralia,Centre for Mental HealthFaculty of Health, Arts and DesignSwinburne UniversityAustralia
| | - Lakshmi N. Yatham
- Department of PsychiatryUniversity of British ColumbiaVancouverCanada
| | - Allan H. Young
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUK
| | - Lars V. Kessing
- Copenhagen Affective Disorder Research Centre (CADIC)Psychiatric Centre CopenhagenCopenhagen University HospitalCopenhagenDenmark,Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Katherine E. Burdick
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA,Department of PsychiatryBrigham and Women’s HospitalBostonMassachusettsUSA
| | - Eduard Vieta
- Clinical Institute of NeuroscienceHospital ClinicUniversity of BarcelonaIDIBAPSCIBERSAMBarcelonaSpain
| |
Collapse
|