1
|
Wang Y, Feng S, Huang Y, Peng R, Liang L, Wang W, Guo M, Zhu B, Zhang H, Liao J, Zhou J, Li H, Li X, Ning Y, Wu F, Wu K. Revealing multiple biological subtypes of schizophrenia through a data-driven approach. J Transl Med 2025; 23:505. [PMID: 40316994 PMCID: PMC12048963 DOI: 10.1186/s12967-025-06503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/12/2025] [Indexed: 05/04/2025] Open
Abstract
INTRODUCTION The brain imaging subtypes of schizophrenia have been widely investigated using data-driven approaches. However, the heterogeneity of SZ in multiple biological data is largely unknown. METHODS A data-driven model was used to classify brain imaging, gut microbiota, and brain-gut fusion data obtained through a dot product fusion method, identifying significant subtypes and calculating their correlations with clinical symptoms and cognitive performance. RESULTS These subtypes remain relatively independent and demonstrate typical features and biomarkers, which are significantly associated with clinical symptoms and cognitive performance. Two brain subtypes with opposite structural and functional changes are identified: (1) a structural variant-dominant brain subtype with negative symptoms and cognitive deficits and (2) a functional alteration-dominant brain subtype with positive symptoms. The three gut subtypes include the following: (1) Collinsella-dominant; (2) Prevotella-dominant with positive symptoms; and (3) Streptococcus-dominant. Two brain-gut subtypes show different abnormalities in brain‒genus linkages: (1) strong connectivity of "brain function in the temporal and parietal lobes-Prevotella" with reduced attention scores and (2) strong connectivity of "brain structure and function in the frontal and parietal lobes-multiple genera" with positive symptoms. Notably, brain subtypes and brain-gut subtypes are most relevant to clinical symptoms, whereas gut subtypes reveal more cognitive biomarkers. CONCLUSION These findings show the potential to identify multiple biological subtypes with distinct biomarkers, thereby suggesting the possibility of personalized and precise treatment for SZ patients.
Collapse
Affiliation(s)
- Yuran Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Shixuan Feng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Yuanyuan Huang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Runlin Peng
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Liqin Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Wei Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Minxin Guo
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Baoyuan Zhu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Heng Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Jianhao Liao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Jing Zhou
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, 510500, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Hehua Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yuping Ning
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, The Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, China.
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China.
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China.
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
2
|
Xu L, Gao Y, Li M, Lawless R, Zhao Y, Schilling KG, Rogers BP, Anderson AW, Ding Z, Landman BA, Gore JC. Functional correlation tensors in brain white matter and the effects of normal aging. Brain Imaging Behav 2024; 18:1197-1214. [PMID: 39235695 PMCID: PMC11582213 DOI: 10.1007/s11682-024-00914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
Resting state correlations between blood oxygenation level dependent (BOLD) MRI signals from voxels in white matter (WM) are demonstrably anisotropic, so that functional correlation tensors (FCT) may be used to quantify the underlying microstructure of BOLD effects in WM tracts. However, the overall spatial distribution of FCTs and their metrics in specific populations has not yet been established, and the factors that affect their precise arrangements remain unclear. Changes in WM occur with normal aging, and these may be expected to affect FCTs. We hypothesized that FCTs exhibit a characteristic spatial pattern and may show systematic changes with aging or other factors. Here we report our analyses of the FCT characteristics of fMRI images of a large cohort of 461 cognitively normal subjects (190 females, 271 males) sourced from the Open Access Series of Imaging Studies (OASIS), with age distributions of 42 y/o - 95 y/o. Group averages and statistics of FCT indices, including axial functional correlations, radial functional correlations, mean functional correlations and fractional anisotropy, were quantified in WM bundles defined by the JHU ICBM-DTI-81 WM atlas. In addition, their variations with normal aging were examined. The results revealed a dimorphic distribution of changes in FCT metrics with age, with decreases of the functional correlations in some regions and increases in others. Supplementary analysis revealed that females exhibited significant age effects on a greater number of WM areas, but the interaction between age and sex was not significant. The findings demonstrate the reproducibility of the spatial distribution of FCT metrics and reveal subtle regional changes with age.
Collapse
Affiliation(s)
- Lyuan Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard Lawless
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Zu Z, Choi S, Zhao Y, Gao Y, Li M, Schilling KG, Ding Z, Gore JC. The missing third dimension-Functional correlations of BOLD signals incorporating white matter. SCIENCE ADVANCES 2024; 10:eadi0616. [PMID: 38277462 PMCID: PMC10816695 DOI: 10.1126/sciadv.adi0616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Correlations between magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) signals from pairs of gray matter areas are used to infer their functional connectivity, but they are unable to describe how white matter is engaged in brain networks. Recently, evidence that BOLD signals in white matter are robustly detectable and are modulated by neural activities has accumulated. We introduce a three-way correlation between BOLD signals from pairs of gray matter volumes (nodes) and white matter bundles (edges) to define the communication connectivity through each white matter bundle. Using MRI images from publicly available databases, we show, for example, that the three-way connectivity is influenced by age. By integrating functional MRI signals from white matter as a third component in network analyses, more comprehensive descriptions of brain function may be obtained.
Collapse
Affiliation(s)
- Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Soyoung Choi
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kurt G. Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Qin T, Wang L, Xu H, Liu C, Shao Y, Li F, Wang Y, Jiang J, Lin H. rTMS concurrent with cognitive training rewires AD brain by enhancing GM-WM functional connectivity: a preliminary study. Cereb Cortex 2024; 34:bhad460. [PMID: 38037857 DOI: 10.1093/cercor/bhad460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) and cognitive training for patients with Alzheimer's disease (AD) can change functional connectivity (FC) within gray matter (GM). However, the role of white matter (WM) and changes of GM-WM FC under these therapies are still unclear. To clarify this problem, we applied 40 Hz rTMS over angular gyrus (AG) concurrent with cognitive training to 15 mild-moderate AD patients and analyzed the resting-state functional magnetic resonance imaging before and after treatment. Through AG-based FC analysis, corona radiata and superior longitudinal fasciculus (SLF) were identified as activated WM tracts. Compared with the GM results with AG as seed, more GM regions were found with activated WM tracts as seeds. The averaged FC, fractional amplitude of low-frequency fluctuation (fALFF), and regional homogeneity (ReHo) of the above GM regions had stronger clinical correlations (r/P = 0.363/0.048 vs 0.299/0.108, 0.351/0.057 vs 0.267/0.153, 0.420/0.021 vs 0.408/0.025, for FC/fALFF/ReHo, respectively) and better classification performance to distinguish pre-/post-treatment groups (AUC = 0.91 vs 0.88, 0.65 vs 0.63, 0.87 vs 0.82, for FC/fALFF/ReHo, respectively). Our results indicated that rTMS concurrent with cognitive training could rewire brain network by enhancing GM-WM FC in AD, and corona radiata and SLF played an important role in this process.
Collapse
Affiliation(s)
- Tong Qin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Luyao Wang
- School of Life Science, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Huanyu Xu
- School of Communication and Information Engineering, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Yuxuan Shao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Fangjie Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Jiehui Jiang
- School of Life Science, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Hua Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
5
|
Wang Y, Gao Y, Zhao M, Hu X, Wang J, Han Y, Wang Q, Fu X, Dai Z, Ren F, Li M, Gao F. Abnormal white and gray matter functional connectivity is associated with cognitive dysfunction in presbycusis. Cereb Cortex 2024; 34:bhad495. [PMID: 38112670 DOI: 10.1093/cercor/bhad495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
Presbycusis is characterized by high-frequency hearing loss and is closely associated with cognitive decline. Previous studies have observed functional reorganization of gray matter in presbycusis, but the information transmission between gray matter and white matter remains ill-defined. Using resting-state functional magnetic resonance imaging, we investigated differences in functional connectivity (GM-GM, WM-WM, and GM-WM) between 60 patients with presbycusis and 57 healthy controls. Subsequently, we examined the correlation between these connectivity differences with high-frequency hearing loss as well as cognitive impairment. Our results revealed significant alterations in functional connectivity involving the body of the corpus callosum, posterior limbs of the internal capsule, retrolenticular region of the internal capsule, and the gray matter regions in presbycusis. Notably, disrupted functional connectivity was observed between the body of the corpus callosum and ventral anterior cingulate cortex in presbycusis, which was associated with impaired attention. Additionally, enhanced functional connectivity was found in presbycusis between the internal capsule and the ventral auditory processing stream, which was related to impaired cognition in multiple domains. These two patterns of altered functional connectivity between gray matter and white matter may involve both bottom-up and top-down regulation of cognitive function. These findings provide novel insights into understanding cognitive compensation and resource redistribution mechanisms in presbycusis.
Collapse
Affiliation(s)
- Yao Wang
- School of Life Sciences, Tiangong University, Tianjin 300387, China
- Tianjin Key Laboratory of Optoelectronic Detection Technology and System, Tiangong University, Tianjin 300387, China
| | - Yuting Gao
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Min Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Xin Hu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Jing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yu Han
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Qinghui Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China
| | - Xinxing Fu
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100069, China
| | - Zongrui Dai
- Department of Biostatistics, University of Michigan Ann Arbor, Ann Arbor, MI 48109, United States
| | - Funxin Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
6
|
Schilling KG, Li M, Rheault F, Gao Y, Cai L, Zhao Y, Xu L, Ding Z, Anderson AW, Landman BA, Gore JC. Whole-brain, gray, and white matter time-locked functional signal changes with simple tasks and model-free analysis. Proc Natl Acad Sci U S A 2023; 120:e2219666120. [PMID: 37824529 PMCID: PMC10589709 DOI: 10.1073/pnas.2219666120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/11/2023] [Indexed: 10/14/2023] Open
Abstract
Recent studies have revealed the production of time-locked blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signals throughout the entire brain in response to tasks, challenging the existence of sparse and localized brain functions and highlighting the pervasiveness of potential false negative fMRI findings. "Whole-brain" actually refers to gray matter, the only tissue traditionally studied with fMRI. However, several reports have demonstrated reliable detection of BOLD signals in white matter, which have previously been largely ignored. Using simple tasks and analyses, we demonstrate BOLD signal changes across the whole brain, in both white and gray matters, in similar manner to previous reports of whole brain studies. We investigated whether white matter displays time-locked BOLD signals across multiple structural pathways in response to a stimulus in a similar manner to the cortex. We find that both white and gray matter show time-locked activations across the whole brain, with a majority of both tissue types showing statistically significant signal changes for all task stimuli investigated. We observed a wide range of signal responses to tasks, with different regions showing different BOLD signal changes to the same task. Moreover, we find that each region may display different BOLD responses to different stimuli. Overall, we present compelling evidence that, just like all gray matter, essentially all white matter in the brain shows time-locked BOLD signal changes in response to multiple stimuli, challenging the idea of sparse functional localization and the prevailing wisdom of treating white matter BOLD signals as artifacts to be removed.
Collapse
Affiliation(s)
- Kurt G. Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37232
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37232
| | - Francois Rheault
- Department of Electrical Engineering and Computer Engineering, Vanderbilt University, Nashville, TN37235
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
| | - Leon Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
| | - Lyuan Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
| | - Adam W. Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
| | - Bennett A. Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Electrical Engineering and Computer Engineering, Vanderbilt University, Nashville, TN37235
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
| |
Collapse
|
7
|
Gao Y, Zhao Y, Li M, Lawless RD, Schilling KG, Xu L, Shafer AT, Beason-Held LL, Resnick SM, Rogers BP, Ding Z, Anderson AW, Landman BA, Gore JC. Functional alterations in bipartite network of white and grey matters during aging. Neuroimage 2023; 278:120277. [PMID: 37473978 PMCID: PMC10529380 DOI: 10.1016/j.neuroimage.2023.120277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
The effects of normal aging on functional connectivity (FC) within various brain networks of gray matter (GM) have been well-documented. However, the age effects on the networks of FC between white matter (WM) and GM, namely WM-GM FC, remains unclear. Evaluating crucial properties, such as global efficiency (GE), for a WM-GM FC network poses a challenge due to the absence of closed triangle paths which are essential for assessing network properties in traditional graph models. In this study, we propose a bipartite graph model to characterize the WM-GM FC network and quantify these challenging network properties. Leveraging this model, we assessed the WM-GM FC network properties at multiple scales across 1,462 cognitively normal subjects aged 22-96 years from three repositories (ADNI, BLSA and OASIS-3) and investigated the age effects on these properties throughout adulthood and during late adulthood (age ≥70 years). Our findings reveal that (1) heterogeneous alterations occurred in region-specific WM-GM FC over the adulthood and decline predominated during late adulthood; (2) the FC density of WM bundles engaged in memory, executive function and processing speed declined with age over adulthood, particularly in later years; and (3) the GE of attention, default, somatomotor, frontoparietal and limbic networks reduced with age over adulthood, and GE of visual network declined during late adulthood. These findings provide unpresented insights into multi-scale alterations in networks of WM-GM functional synchronizations during normal aging. Furthermore, our bipartite graph model offers an extendable framework for quantifying WM-engaged networks, which may contribute to a wide range of neuroscience research.
Collapse
Affiliation(s)
- Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard D Lawless
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lyuan Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Andrea T Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lori L Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
8
|
Xu H, Zhou Y, Wang J, Liang Z, Wang Y, Wu W, Liu Y, Liu X, Zhang X, Huo L. Effect of HD-tDCS on white matter integrity and associated cognitive function in chronic schizophrenia: A double-blind, sham-controlled randomized trial. Psychiatry Res 2023; 324:115183. [PMID: 37028258 DOI: 10.1016/j.psychres.2023.115183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/09/2023]
Abstract
Schizophrenia is a disabling major mental disorder, which includes critical deficits in cognitive function, for which no effective intervention currently exists. The aim of our double-blind, randomized, sham-controlled trial was to evaluate the effects of high-definition transcranial direct current stimulation (HD-tDCS) on the cognitive deficits in schizophrenia. This study sample consisted of 56 individuals with chronic schizophrenia, randomly allocated to either the active stimulation or sham group. The treatment consisted of ten consecutive days of HD-tDCS, 20 min/day, applied over the left dorsolateral prefrontal lobe. Changes in clinical outcomes, cognitive assessments, and diffusion tensor imaging were evaluated pre- to post-intervention. Matched-healthy controls (HCs) were included to identify white matter changes in patients with schizophrenia before treatment. Compared to HCs, schizophrenia was associated with reduced integrity of the white matter tracts of the corpus callosum and corona radiata. HD-tDCS enhanced integrity in the corpus callosum and anterior and superior corona radiata, which was associated with the change in cognitive performance. HD-tDCS offers a potential approach to improve cognition deficits in schizophrenia through a modulatory effect on white matter tracts. Given the lack of approved treatments for cognitive deficits, these findings are clinically relevant.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China; Peter Boris Centre for Addictions Research, McMaster University, Hamilton, Canada
| | - Yongjie Zhou
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China
| | - Jiesi Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Liang
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yang Wang
- College of Management, Shenzhen University, Shenzhen, China
| | - Weibin Wu
- The Third People's Hospital of Foshan, Foshan, China
| | - Yiliang Liu
- The Third People's Hospital of Foshan, Foshan, China
| | - Xia Liu
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China
| | - Xin Zhang
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China
| | - Lijuan Huo
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China; Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Schilling KG, Li M, Rheault F, Gao Y, Cai L, Zhao Y, Xu L, Ding Z, Anderson AW, Landman BA, Gore JC. Whole-brain, gray and white matter time-locked functional signal changes with simple tasks and model-free analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528557. [PMID: 36824784 PMCID: PMC9948951 DOI: 10.1101/2023.02.14.528557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Recent studies have revealed the production of time-locked blood oxygenation-level dependent (BOLD) functional MRI (fMRI) signals throughout the entire brain in response to a task, challenging the idea of sparse and localized brain functions, and highlighting the pervasiveness of potential false negative fMRI findings. In these studies, 'whole-brain' refers to gray matter regions only, which is the only tissue traditionally studied with fMRI. However, recent reports have also demonstrated reliable detection and analyses of BOLD signals in white matter which have been largely ignored in previous reports. Here, using model-free analysis and simple tasks, we investigate BOLD signal changes in both white and gray matters. We aimed to evaluate whether white matter also displays time-locked BOLD signals across all structural pathways in response to a stimulus. We find that both white and gray matter show time-locked activations across the whole-brain, with a majority of both tissue types showing statistically significant signal changes for all task stimuli investigated. We observed a wide range of signal responses to tasks, with different regions showing very different BOLD signal changes to the same task. Moreover, we find that each region may display different BOLD responses to different stimuli. Overall, we present compelling evidence that the whole brain, including both white and gray matter, show time-locked activation to multiple stimuli, not only challenging the idea of sparse functional localization, but also the prevailing wisdom of treating white matter BOLD signals as artefacts to be removed.
Collapse
Affiliation(s)
- Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Francois Rheault
- Department of Electrical Engineering and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Leon Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lyuan Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Electrical Engineering and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
10
|
Gao Y, Lawless RD, Li M, Zhao Y, Schilling KG, Xu L, Shafer AT, Beason-Held LL, Resnick SM, Rogers BP, Ding Z, Anderson AW, Landman BA, Gore JC, Alzheimer’s Disease Neuroimaging Initiative. Automatic Preprocessing Pipeline for White Matter Functional Analyses of Large-Scale Databases. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12464:124640U. [PMID: 37600506 PMCID: PMC10437151 DOI: 10.1117/12.2653132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Recently, increasing evidence suggests that fMRI signals in white matter (WM), conventionally ignored as nuisance, are robustly detectable using appropriate processing methods and are related to neural activity, while changes in WM with aging and degeneration are also well documented. These findings suggest variations in patterns of BOLD signals in WM should be investigated. However, existing fMRI analysis tools, which were designed for processing gray matter signals, are not well suited for large-scale processing of WM signals in fMRI data. We developed an automatic pipeline for high-performance preprocessing of fMRI images with emphasis on quantifying changes in BOLD signals in WM in an aging population. At the image processing level, the pipeline integrated existing software modules with fine parameter tunings and modifications to better extract weaker WM signals. The preprocessing results primarily included whole-brain time-courses, functional connectivity, maps and tissue masks in a common space. At the job execution level, this pipeline exploited a local XNAT to store datasets and results, while using DAX tool to automatic distribute batch jobs that run on high-performance computing clusters. Through the pipeline, 5,034 fMRI/T1 scans were preprocessed. The intraclass correlation coefficient (ICC) of test-retest experiment based on the preprocessed data is 0.52 - 0.86 (N=1000), indicating a high reliability of our pipeline, comparable to previously reported ICC in gray matter experiments. This preprocessing pipeline highly facilitates our future analyses on WM functional alterations in aging and may be of benefit to a larger community interested in WM fMRI studies.
Collapse
Affiliation(s)
- Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Richard D Lawless
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lyuan Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Andrea T Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lori L Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
11
|
Zhao Y, Gao Y, Zu Z, Li M, Schilling KG, Anderson AW, Ding Z, Gore JC. Detection of functional activity in brain white matter using fiber architecture informed synchrony mapping. Neuroimage 2022; 258:119399. [PMID: 35724855 PMCID: PMC9388229 DOI: 10.1016/j.neuroimage.2022.119399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/12/2023] Open
Abstract
A general linear model is widely used for analyzing fMRI data, in which the blood oxygenation-level dependent (BOLD) signals in gray matter (GM) evoked in response to neural stimulation are modeled by convolving the time course of the expected neural activity with a canonical hemodynamic response function (HRF) obtained a priori. The maps of brain activity produced reflect the magnitude of local BOLD responses. However, detecting BOLD signals in white matter (WM) is more challenging as the BOLD signals are weaker and the HRF is different, and may vary more across the brain. Here we propose a model-free approach to detect changes in BOLD signals in WM by measuring task-evoked increases of BOLD signal synchrony in WM fibers. The proposed approach relies on a simple assumption that, in response to a functional task, BOLD signals in relevant fibers are modulated by stimulus-evoked neural activity and thereby show greater synchrony than when measured in a resting state, even if their magnitudes do not change substantially. This approach is implemented in two technical stages. First, for each voxel a fiber-architecture-informed spatial window is created with orientation distribution functions constructed from diffusion imaging data. This provides the basis for defining neighborhoods in WM that share similar local fiber architectures. Second, a modified principal component analysis (PCA) is used to estimate the synchrony of BOLD signals in each spatial window. The proposed approach is validated using a 3T fMRI dataset from the Human Connectome Project (HCP) at a group level. The results demonstrate that neural activity can be reliably detected as increases in fMRI signal synchrony within WM fibers that are engaged in a task with high sensitivities and reproducibility.
Collapse
Affiliation(s)
- Yu Zhao
- Vanderbilt University Institute of Imaging Science, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States.
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, United States,Department of Biomedical Engineering, Vanderbilt University, United States
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, United States,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, United States,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States
| | - Kurt G. Schilling
- Vanderbilt University Institute of Imaging Science, United States,Department of Biomedical Engineering, Vanderbilt University, United States
| | - Adam W. Anderson
- Vanderbilt University Institute of Imaging Science, United States,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States,Department of Biomedical Engineering, Vanderbilt University, United States
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, United States; Department of Biomedical Engineering, Vanderbilt University, United States; Department of Electrical and Computer Engineering, Vanderbilt University, United States.
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, United States,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States,Department of Biomedical Engineering, Vanderbilt University, United States,Department of Molecular Physiology and Biophysics, Vanderbilt University, United States,Department of Physics and Astronomy, Vanderbilt University, United States
| |
Collapse
|
12
|
Schilling KG, Li M, Rheault F, Ding Z, Anderson AW, Kang H, Landman BA, Gore JC. Anomalous and heterogeneous characteristics of the BOLD hemodynamic response function in white matter. Cereb Cortex Commun 2022; 3:tgac035. [PMID: 36196360 PMCID: PMC9519945 DOI: 10.1093/texcom/tgac035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/12/2023] Open
Abstract
Detailed knowledge of the BOLD hemodynamic response function (HRF) is crucial for accurate analyses and interpretation of functional MRI data. Considerable efforts have been made to characterize the HRF in gray matter (GM), but much less attention has been paid to BOLD effects in white matter (WM). However, several recent reports have demonstrated reliable detection and analyses of WM BOLD signals both after stimulation and in a resting state. WM and GM differ in composition, energy requirements, and blood flow, so their neurovascular couplings also may well be different. We aimed to derive a comprehensive characterization of the HRF in WM across a population, including accurate measurements of its shape and its variation along and between WM pathways, using resting-state fMRI acquisitions. Our results show that the HRF is significantly different between WM and GM. Features of the HRF, such as a prominent initial dip, show strong relationships with features of the tissue microstructure derived from diffusion imaging, and these relationships differ between WM and GM, consistent with BOLD signal fluctuations reflecting different energy demands and neurovascular couplings in tissues of different composition and function. We also show that the HRF varies in shape significantly along WM pathways and is different between different WM pathways, suggesting the temporal evolution of BOLD signals after an event vary in different parts of the WM. These features of the HRF in WM are especially relevant for interpretation of the biophysical basis of BOLD effects in WM.
Collapse
Affiliation(s)
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Francois Rheault
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37232, USA
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
13
|
Combined functional and structural imaging of brain white matter reveals stage-dependent impairment in multiple system atrophy of cerebellar type. NPJ Parkinsons Dis 2022; 8:105. [PMID: 35977953 PMCID: PMC9385720 DOI: 10.1038/s41531-022-00371-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Advances in fMRI of brain white matter (WM) have established the feasibility of understanding how functional signals of WM evolve with brain diseases. By combining functional signals with structural features of WM, the current study characterizes functional and structural impairments of WM in cerebelar type multiple system atrophy, with the goal to derive new mechanistic insights into the pathological progression of this disease. Our analysis of 30 well-diagnosed patients revealed pronounced decreases in functional connectivity in WM bundles of the cerebellum and brainstem, and concomitant local structural alterations that depended on the disease stage. The novel findings implicate a critical time point in the pathological evolution of the disease, which could guide optimal therapeutic interventions. Furthermore, fMRI signals of impaired WM bundles exhibited superior sensitivity in differentiating initial disease development, which demonstrates great potential of using these signals to inform disease management.
Collapse
|
14
|
Abramian D, Larsson M, Eklund A, Aganj I, Westin CF, Behjat H. Diffusion-informed spatial smoothing of fMRI data in white matter using spectral graph filters. Neuroimage 2021; 237:118095. [PMID: 34000402 PMCID: PMC8356807 DOI: 10.1016/j.neuroimage.2021.118095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/07/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Brain activation mapping using functional magnetic resonance imaging (fMRI) has been extensively studied in brain gray matter (GM), whereas in large disregarded for probing white matter (WM). This unbalanced treatment has been in part due to controversies in relation to the nature of the blood oxygenation level-dependent (BOLD) contrast in WM and its detectability. However, an accumulating body of studies has provided solid evidence of the functional significance of the BOLD signal in WM and has revealed that it exhibits anisotropic spatio-temporal correlations and structure-specific fluctuations concomitant with those of the cortical BOLD signal. In this work, we present an anisotropic spatial filtering scheme for smoothing fMRI data in WM that accounts for known spatial constraints on the BOLD signal in WM. In particular, the spatial correlation structure of the BOLD signal in WM is highly anisotropic and closely linked to local axonal structure in terms of shape and orientation, suggesting that isotropic Gaussian filters conventionally used for smoothing fMRI data are inadequate for denoising the BOLD signal in WM. The fundamental element in the proposed method is a graph-based description of WM that encodes the underlying anisotropy observed across WM, derived from diffusion-weighted MRI data. Based on this representation, and leveraging graph signal processing principles, we design subject-specific spatial filters that adapt to a subject's unique WM structure at each position in the WM that they are applied at. We use the proposed filters to spatially smooth fMRI data in WM, as an alternative to the conventional practice of using isotropic Gaussian filters. We test the proposed filtering approach on two sets of simulated phantoms, showcasing its greater sensitivity and specificity for the detection of slender anisotropic activations, compared to that achieved with isotropic Gaussian filters. We also present WM activation mapping results on the Human Connectome Project's 100-unrelated subject dataset, across seven functional tasks, showing that the proposed method enables the detection of streamline-like activations within axonal bundles.
Collapse
Affiliation(s)
- David Abramian
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Martin Larsson
- Centre of Mathematical Sciences, Lund University, Lund, Sweden
| | - Anders Eklund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden; Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Iman Aganj
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, USA
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Hamid Behjat
- Department of Biomedical Engineering, Lund University, Lund, Sweden; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|