1
|
Marnis H, Syahputra K. Advancing fish disease research through CRISPR-Cas genome editing: Recent developments and future perspectives. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110220. [PMID: 39988220 DOI: 10.1016/j.fsi.2025.110220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
CRISPR-Cas genome editing technology has transformed genetic research, by enabling unprecedented precision in modifying DNA sequences across various organisms, including fish. This review explores the significant advancements and potential uses of CRISPR-Cas technology in the study and management of fish diseases, which pose serious challenges to aquaculture and wild fish populations. Fish diseases cause significant economic losses and environmental impacts, therefore effective disease control a top priority. The review highlights the pivotal role of CRISPR-Cas in identifying disease-associated genes, which is critical to comprehending the genetic causes of disease susceptibility and resistance. Some studies have reported key genetic factors that influence disease outcomes, using targeted gene knockouts and modifications to pave the way for the development of disease-resistant fish strains. The creation of such genetically engineered fish holds great promise for enhancing aquaculture sustainability by reducing the reliance on antibiotics and other conventional disease control measures. In addition, CRISPR-Cas has facilitated in-depth studies of pathogen-host interactions, offering new insights into the mechanisms by which pathogens infect and proliferate within their hosts. By manipulating both host and pathogen genes, this technology provides a powerful tool for uncovering the molecular underpinnings of these interactions, leading to the development of more effective treatment strategies. While CRISPR-Cas has shown great promise in fish research, its application remains limited to a few species, primarily model organisms and some freshwater fish. In addition, challenges such as off-target effects, ecological risks, and ethical concerns regarding the release of genetically modified organisms into the environment must be carefully addressed. This review also discusses these challenges and emphasizes the need for robust regulatory frameworks and ongoing research to mitigate risks. Looking forward, the integration of CRISPR-Cas with other emerging technologies, such as multi-omics approaches, promises to further advance our understanding and management of fish diseases. This review concludes by envisioning the future directions of CRISPR-Cas applications in fish health, underscoring its potential to its growing in the field.
Collapse
Affiliation(s)
- Huria Marnis
- Research Center for Fishery, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia.
| | - Khairul Syahputra
- Research Center for Fishery, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Wu Y, Zhu Y, Cheng A, Yao W, Wang B, Zheng R, Wang J. Effects of tefluthrin exposure on early life stages in zebrafish: Insights into cardiac and skeletal development, oxidative stress and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117931. [PMID: 39978106 DOI: 10.1016/j.ecoenv.2025.117931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Tefluthrin, a pyrethroid insecticide commonly used in soil, has raised concerns due to its widespread use and residual presence in aquatic environments. Nevertheless, studies on the toxicological mechanisms of tefluthrin at relevant concentrations during the early life stages of aquatic species remain limited. In this study, we assessed the developmental effects of tefluthrin exposure at concentrations of 1, 10, and 100 μg/L over 8 days on zebrafish embryos/larvae. Exposure to 100 μg/L of tefluthrin significantly reduced hatchability and survival rates, leading to cardiac edema and skeletal deformities. Alizarin Red and Alcian Blue staining showed reduced skeletal mineralization and disrupted craniofacial morphology. Importantly, tefluthrin exposure resulted in the dysregulation of important genes involved in heart and skeletal development, including nppa, vmhc, sox9b, gata4, runx2a, shha, sp7, and bmp2b. Mechanistically, tefluthrin exposure increased reactive oxygen species (ROS), decreased antioxidant enzyme activities (SOD, CAT), and elevated malondialdehyde (MDA). Furthermore, exposure to tefluthrin caused significant cell apoptosis in larvae, accompanied by dysregulation in the transcriptional expression of apoptotic genes (bcl2, bax, p53, and caspase-3). Treatment with the antioxidant astaxanthin alleviated tefluthrin-induced oxidative stress and provided protection against heart and skeletal toxicity. In conclusion, this study demonstrated that tefluthrin's developmental toxicity affected heart and skeletal development, with mechanisms involving changes in gene expression, oxidative stress, and apoptosis, providing valuable insights for assessing environmental and food contamination risks.
Collapse
Affiliation(s)
- Yuanzhao Wu
- Zhejiang Key Laboratory of Drug Prevention and Control Technology, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang Province, China
| | - Ye'anlun Zhu
- Zhejiang Key Laboratory of Drug Prevention and Control Technology, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang Province, China
| | - An Cheng
- Zhejiang Key Laboratory of Drug Prevention and Control Technology, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang Province, China
| | - Weixuan Yao
- Zhejiang Key Laboratory of Drug Prevention and Control Technology, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang Province, China
| | - Binjie Wang
- Zhejiang Key Laboratory of Drug Prevention and Control Technology, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang Province, China.
| | - Ruonan Zheng
- Zhejiang Key Laboratory of Drug Prevention and Control Technology, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang Province, China
| | - Jiye Wang
- Zhejiang Key Laboratory of Drug Prevention and Control Technology, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Wang Z, Ren L, Li Z, Qiu Q, Wang H, Huang X, Ma D. Impact of Different Cell Types on the Osteogenic Differentiation Process of Mesenchymal Stem Cells. Stem Cells Int 2025; 2025:5551222. [PMID: 39980864 PMCID: PMC11842143 DOI: 10.1155/sci/5551222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/15/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
The skeleton is an important organ in the human body. Bone defects caused by trauma, inflammation, tumors, and other reasons can impact the quality of life of patients. Although the skeleton has a certain ability to repair itself, the current most effective method is still autologous bone transplantation due to factors such as blood supply and defect size. Modern medicine is attempting to overcome these limitations through cell therapy, with mesenchymal stem cells (MSCs) playing a crucial role. MSCs can be extracted from different tissues, and their differentiation potential varies depending on the source. Various cells and cell secretions can influence this process. This article, based on previous research, reviews the effects of macrophages, endothelial cells (ECs), nerve cells, periodontal cells, and even some bacteria on MSC osteogenic differentiation, aiming to provide a reference for multicell coculture strategies related to osteogenesis.
Collapse
Affiliation(s)
- Zixin Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Lina Ren
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Zhengtao Li
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Qingyuan Qiu
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Haonan Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Xin Huang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Dongyang Ma
- School of Stomatology, Lanzhou University, Lanzhou, China
- Department of Oral and Maxillofacial Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| |
Collapse
|
4
|
Wang X, Sun K, Xu Z, Chen Z, Wu W. Roles of SP/KLF transcription factors in odontoblast differentiation: From development to diseases. Oral Dis 2024; 30:3745-3760. [PMID: 38409677 DOI: 10.1111/odi.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES A zinc-finger transcription factor family comprising specificity proteins (SPs) and Krüppel-like factor proteins (KLFs) plays an important role in dentin development and regeneration. However, a systematic regulatory network involving SPs/KLFs in odontoblast differentiation has not yet been described. This review examined the expression patterns of SP/KLF gene family members and their current known functions and mechanisms in odontoblast differentiation, and discussed prospective research directions for further exploration of mechanisms involving the SP/KLF gene family in dentin development. MATERIALS AND METHODS Relevant literature on SP/KLF gene family members and dentin development was acquired from PubMed and Web of Science. RESULTS We discuss the expression patterns, functions, and related mechanisms of eight members of the SP/KLF gene family in dentin development and genetic disorders with dental problems. We also summarize current knowledge about their complementary or synergistic actions. Finally, we propose future research directions for investigating the mechanisms of dentin development. CONCLUSIONS The SP/KLF gene family plays a vital role in tooth development. Studying the complex complementary or synergistic interactions between SPs/KLFs is helpful for understanding the process of odontoblast differentiation. Applications of single-cell and spatial multi-omics may provide a more complete investigation of the mechanism involved in dentin development.
Collapse
Affiliation(s)
- Xuefei Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Kaida Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zekai Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Wenzhi Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Breuer M, Rummler M, Singh J, Maher S, Zaouter C, Jamadagni P, Pilon N, Willie BM, Patten SA. CHD7 regulates craniofacial cartilage development via controlling HTR2B expression. J Bone Miner Res 2024; 39:498-512. [PMID: 38477756 PMCID: PMC11262153 DOI: 10.1093/jbmr/zjae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 03/14/2024]
Abstract
Mutations in the Chromodomain helicase DNA-binding protein 7 - coding gene (CHD7) cause CHARGE syndrome (CS). Although craniofacial and skeletal abnormalities are major features of CS patients, the role of CHD7 in bone and cartilage development remain largely unexplored. Here, using a zebrafish (Danio rerio) CS model, we show that chd7-/- larvae display abnormal craniofacial cartilage development and spinal deformities. The craniofacial and spine defects are accompanied by a marked reduction of bone mineralization. At the molecular level, we show that these phenotypes are associated with significant reduction in the expression levels of osteoblast differentiation markers. Additionally, we detected a marked depletion of collagen 2α1 in the cartilage of craniofacial regions and vertebrae, along with significantly reduced number of chondrocytes. Chondrogenesis defects are at least in part due to downregulation of htr2b, which we found to be also dysregulated in human cells derived from an individual with CHD7 mutation-positive CS. Overall, this study thus unveils an essential role for CHD7 in cartilage and bone development, with potential clinical relevance for the craniofacial defects associated with CS.
Collapse
Affiliation(s)
- Maximilian Breuer
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Maximilian Rummler
- Research Centre, Shriners Hospital for Children-Canada, Department of Biological and Biomedical Engineering, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal H4A 0A9, Canada
| | - Jaskaran Singh
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Sabrina Maher
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
- Research Centre, Shriners Hospital for Children-Canada, Department of Biological and Biomedical Engineering, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal H4A 0A9, Canada
- Département de Neurosciences, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Charlotte Zaouter
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Priyanka Jamadagni
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Départment des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, QC H3C 3P8, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC H3C 3P8, Canada
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Department of Biological and Biomedical Engineering, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal H4A 0A9, Canada
| | - Shunmoogum A Patten
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
- Département de Neurosciences, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC H3C 3P8, Canada
| |
Collapse
|
6
|
Raman R, Antony M, Nivelle R, Lavergne A, Zappia J, Guerrero-Limón G, Caetano da Silva C, Kumari P, Sojan JM, Degueldre C, Bahri MA, Ostertag A, Collet C, Cohen-Solal M, Plenevaux A, Henrotin Y, Renn J, Muller M. The Osteoblast Transcriptome in Developing Zebrafish Reveals Key Roles for Extracellular Matrix Proteins Col10a1a and Fbln1 in Skeletal Development and Homeostasis. Biomolecules 2024; 14:139. [PMID: 38397376 PMCID: PMC10886564 DOI: 10.3390/biom14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Zebrafish are now widely used to study skeletal development and bone-related diseases. To that end, understanding osteoblast differentiation and function, the expression of essential transcription factors, signaling molecules, and extracellular matrix proteins is crucial. We isolated Sp7-expressing osteoblasts from 4-day-old larvae using a fluorescent reporter. We identified two distinct subpopulations and characterized their specific transcriptome as well as their structural, regulatory, and signaling profile. Based on their differential expression in these subpopulations, we generated mutants for the extracellular matrix protein genes col10a1a and fbln1 to study their functions. The col10a1a-/- mutant larvae display reduced chondrocranium size and decreased bone mineralization, while in adults a reduced vertebral thickness and tissue mineral density, and fusion of the caudal fin vertebrae were observed. In contrast, fbln1-/- mutants showed an increased mineralization of cranial elements and a reduced ceratohyal angle in larvae, while in adults a significantly increased vertebral centra thickness, length, volume, surface area, and tissue mineral density was observed. In addition, absence of the opercle specifically on the right side was observed. Transcriptomic analysis reveals up-regulation of genes involved in collagen biosynthesis and down-regulation of Fgf8 signaling in fbln1-/- mutants. Taken together, our results highlight the importance of bone extracellular matrix protein genes col10a1a and fbln1 in skeletal development and homeostasis.
Collapse
Affiliation(s)
- Ratish Raman
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Mishal Antony
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Renaud Nivelle
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Arnaud Lavergne
- GIGA Genomics Platform, B34, GIGA Institute, University of Liège, 4000 Liège, Belgium;
| | - Jérémie Zappia
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, 4000 Liège, Belgium (Y.H.)
| | - Gustavo Guerrero-Limón
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Caroline Caetano da Silva
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
| | - Priyanka Kumari
- Laboratory of Pharmaceutical and Analytical Chemistry, Department of Pharmacy, CIRM, Sart Tilman, 4000 Liège, Belgium;
| | - Jerry Maria Sojan
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Christian Degueldre
- GIGA CRC In Vivo Imaging, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.D.); (M.A.B.); (A.P.)
| | - Mohamed Ali Bahri
- GIGA CRC In Vivo Imaging, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.D.); (M.A.B.); (A.P.)
| | - Agnes Ostertag
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
| | - Corinne Collet
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
- UF de Génétique Moléculaire, Hôpital Robert Debré, APHP, F-75019 Paris, France
| | - Martine Cohen-Solal
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
| | - Alain Plenevaux
- GIGA CRC In Vivo Imaging, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.D.); (M.A.B.); (A.P.)
| | - Yves Henrotin
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, 4000 Liège, Belgium (Y.H.)
| | - Jörg Renn
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| |
Collapse
|
7
|
Raterman ST, Von Den Hoff JW, Dijkstra S, De Vriend C, Te Morsche T, Broekman S, Zethof J, De Vrieze E, Wagener FADTG, Metz JR. Disruption of the foxe1 gene in zebrafish reveals conserved functions in development of the craniofacial skeleton and the thyroid. Front Cell Dev Biol 2023; 11:1143844. [PMID: 36994096 PMCID: PMC10040582 DOI: 10.3389/fcell.2023.1143844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction: Mutations in the FOXE1 gene are implicated in cleft palate and thyroid dysgenesis in humans.Methods: To investigate whether zebrafish could provide meaningful insights into the etiology of developmental defects in humans related to FOXE1, we generated a zebrafish mutant that has a disruption in the nuclear localization signal in the foxe1 gene, thereby restraining nuclear access of the transcription factor. We characterized skeletal development and thyroidogenesis in these mutants, focusing on embryonic and larval stages.Results: Mutant larvae showed aberrant skeletal phenotypes in the ceratohyal cartilage and had reduced whole body levels of Ca, Mg and P, indicating a critical role for foxe1 in early skeletal development. Markers of bone and cartilage (precursor) cells were differentially expressed in mutants in post-migratory cranial neural crest cells in the pharyngeal arch at 1 dpf, at induction of chondrogenesis at 3 dpf and at the start of endochondral bone formation at 6 dpf. Foxe1 protein was detected in differentiated thyroid follicles, suggesting a role for the transcription factor in thyroidogenesis, but thyroid follicle morphology or differentiation were unaffected in mutants.Discussion: Taken together, our findings highlight the conserved role of Foxe1 in skeletal development and thyroidogenesis, and show differential signaling of osteogenic and chondrogenic genes related to foxe1 mutation.
Collapse
Affiliation(s)
- Sophie T. Raterman
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
- *Correspondence: Sophie T. Raterman,
| | - Johannes W. Von Den Hoff
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Sietske Dijkstra
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Cheyenne De Vriend
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Tim Te Morsche
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Sanne Broekman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan Zethof
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Erik De Vrieze
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank A. D. T. G. Wagener
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Juriaan R. Metz
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| |
Collapse
|
8
|
Yu K, Jiang Z, Miao X, Yu Z, Du X, Lai K, Wang Y, Yang G. circRNA422 enhanced osteogenic differentiation of bone marrow mesenchymal stem cells during early osseointegration through the SP7/LRP5 axis. Mol Ther 2022; 30:3226-3240. [PMID: 35642253 PMCID: PMC9552913 DOI: 10.1016/j.ymthe.2022.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/27/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022] Open
Abstract
Circular RNAs (circRNAs) play an important role in biological activities, especially in regulating osteogenic differentiation of stem cells. However, no studies have reported the role of circRNAs in early osseointegration. Here we identified a new circRNA, circRNA422, from rat bone marrow mesenchymal stem cells (BMSCs) cultured on sandblasted, large-grit, acid-etched titanium surfaces. The results showed that circRNA422 significantly enhanced osteogenic differentiation of BMSCs with increased expression levels of alkaline phosphatase, the SP7 transcription factor (SP7/osterix), and lipoprotein receptor-related protein 5 (LRP5). Silencing of circRNA422 had opposite effects. There were two SP7 binding sites on the LRP5 promoter, indicating a direct regulatory relationship between SP7 and LRP5. circRNA422 could regulate early osseointegration in in vivo experiments. These findings revealed an important function of circRNA422 during early osseointegration. Therefore, circRNA422 may be a potential therapeutic target for enhancing implant osseointegration.
Collapse
Affiliation(s)
- Ke Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xiaoyan Miao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Zhou Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xue Du
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
9
|
Gomez-Picos P, Ovens K, Eames BF. Limb Mesoderm and Head Ectomesenchyme Both Express a Core Transcriptional Program During Chondrocyte Differentiation. Front Cell Dev Biol 2022; 10:876825. [PMID: 35784462 PMCID: PMC9247276 DOI: 10.3389/fcell.2022.876825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
To explain how cartilage appeared in different parts of the vertebrate body at discrete times during evolution, we hypothesize that different embryonic populations co-opted expression of a core gene regulatory network (GRN) driving chondrocyte differentiation. To test this hypothesis, laser-capture microdissection coupled with RNA-seq was used to reveal chondrocyte transcriptomes in the developing chick humerus and ceratobranchial, which are mesoderm- and neural crest-derived, respectively. During endochondral ossification, two general types of chondrocytes differentiate. Immature chondrocytes (IMM) represent the early stages of cartilage differentiation, while mature chondrocytes (MAT) undergo additional stages of differentiation, including hypertrophy and stimulating matrix mineralization and degradation. Venn diagram analyses generally revealed a high degree of conservation between chondrocyte transcriptomes of the limb and head, including SOX9, COL2A1, and ACAN expression. Typical maturation genes, such as COL10A1, IBSP, and SPP1, were upregulated in MAT compared to IMM in both limb and head chondrocytes. Gene co-expression network (GCN) analyses of limb and head chondrocyte transcriptomes estimated the core GRN governing cartilage differentiation. Two discrete portions of the GCN contained genes that were differentially expressed in limb or head chondrocytes, but these genes were enriched for biological processes related to limb/forelimb morphogenesis or neural crest-dependent processes, respectively, perhaps simply reflecting the embryonic origin of the cells. A core GRN driving cartilage differentiation in limb and head was revealed that included typical chondrocyte differentiation and maturation markers, as well as putative novel "chondrocyte" genes. Conservation of a core transcriptional program during chondrocyte differentiation in both the limb and head suggest that the same core GRN was co-opted when cartilage appeared in different regions of the skeleton during vertebrate evolution.
Collapse
Affiliation(s)
- Patsy Gomez-Picos
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Sojan JM, Gioacchini G, Giorgini E, Orlando P, Tiano L, Maradonna F, Carnevali O. Zebrafish caudal fin as a model to investigate the role of probiotics in bone regeneration. Sci Rep 2022; 12:8057. [PMID: 35577882 PMCID: PMC9110718 DOI: 10.1038/s41598-022-12138-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
Probiotics are live microorganisms that confer several beneficial effects to the host, including enhancement of bone mineralization. However, probiotic action on bone regeneration is not well studied and therefore we analysed various effects of probiotic treatment on the caudal fin regeneration of zebrafish. Morphological analysis revealed an increased regenerated area with shorter and thicker lepidotrichia segments after probiotic treatment. Fourier transform infrared spectroscopy imaging analysis highlighted the distribution of phosphate groups in the regenerated fins and probiotic group showed higher amounts of well-crystallized hydroxyapatite. At the midpoint (5 days post amputation) of regeneration, probiotics were able to modulate various stages of osteoblast differentiation as confirmed by the upregulation of some key marker genes such as runx2b, sp7, col10a1a, spp1 and bglap, besides suppressing osteoclast activity as evidenced from the downregulation of ctsk. Probiotics also caused an enhanced cell cycle by regulating the expression of genes involved in Retinoic acid (rarga, cyp26b1) and Wnt/β-catenin (ctnnb1, ccnd1, axin2, sost) signaling pathways, and also modulated phosphate homeostasis by increasing the entpd5a levels. These findings provide new outlooks for the use of probiotics as a prophylactic treatment in accelerating bone regeneration and improving skeletal health in both aquaculture and biomedical fields.
Collapse
Affiliation(s)
- Jerry Maria Sojan
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
- Biostructures and Biosystems National Institute-Interuniversity Consortium, Viale delle Medaglie d'Oro 305, 00136, Rome, Italy.
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
- Biostructures and Biosystems National Institute-Interuniversity Consortium, Viale delle Medaglie d'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
11
|
Sojan JM, Gundappa MK, Carletti A, Gaspar V, Gavaia P, Maradonna F, Carnevali O. Zebrafish as a Model to Unveil the Pro-Osteogenic Effects of Boron-Vitamin D3 Synergism. Front Nutr 2022; 9:868805. [PMID: 35571926 PMCID: PMC9105455 DOI: 10.3389/fnut.2022.868805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
The micronutrient boron (B) plays a key role during the ossification process as suggested by various in vitro and in vivo studies. To deepen our understanding of the molecular mechanism involved in the osteogenicity of B and its possible interaction with vitamin D3 (VD), wild-type AB zebrafish (Danio rerio) were used for morphometric analysis and transcriptomic analysis in addition to taking advantage of the availability of specific zebrafish osteoblast reporter lines. First, osteoactive concentrations of B, VD, and their combinations were established by morphometric analysis of the opercular bone in alizarin red-stained zebrafish larvae exposed to two selected concentrations of B (10 and 100 ng/ml), one concentration of VD (10 pg/ml), and their respective combinations. Bone formation, as measured by opercular bone growth, was significantly increased in the two combination treatments than VD alone. Subsequently, a transcriptomic approach was adopted to unveil the molecular key regulators involved in the synergy. Clustering of differentially expressed genes revealed enrichment toward bone and skeletal functions in the groups co-treated with B and VD. Downstream analysis confirmed mitogen-activated protein kinase as the most regulated pathway by the synergy groups in addition to transforming growth factor-β signaling, focal adhesion, and calcium signaling. The best-performing synergistic treatment, B at 10 ng/ml and VD at 10 pg/ml, was applied to two zebrafish transgenic lines, Tg(sp7:mCherry) and Tg(bglap:EGFP), at multiple time points to further explore the results of the transcriptomic analysis. The synergistic treatment with B and VD induced enrichment of intermediate (sp7+) osteoblast at 6 and 9 days post fertilization (dpf) and of mature (bglap +) osteoblasts at 15 dpf. The results obtained validate the role of B in VD-dependent control over bone mineralization and can help to widen the spectrum of therapeutic approaches to alleviate pathological conditions caused by VD deficiency by using low concentrations of B as a nutritional additive.
Collapse
Affiliation(s)
- Jerry Maria Sojan
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
| | - Alessio Carletti
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Vasco Gaspar
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Paulo Gavaia
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
12
|
Fabik J, Psutkova V, Machon O. The Mandibular and Hyoid Arches-From Molecular Patterning to Shaping Bone and Cartilage. Int J Mol Sci 2021; 22:7529. [PMID: 34299147 PMCID: PMC8303155 DOI: 10.3390/ijms22147529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The mandibular and hyoid arches collectively make up the facial skeleton, also known as the viscerocranium. Although all three germ layers come together to assemble the pharyngeal arches, the majority of tissue within viscerocranial skeletal components differentiates from the neural crest. Since nearly one third of all birth defects in humans affect the craniofacial region, it is important to understand how signalling pathways and transcription factors govern the embryogenesis and skeletogenesis of the viscerocranium. This review focuses on mouse and zebrafish models of craniofacial development. We highlight gene regulatory networks directing the patterning and osteochondrogenesis of the mandibular and hyoid arches that are actually conserved among all gnathostomes. The first part of this review describes the anatomy and development of mandibular and hyoid arches in both species. The second part analyses cell signalling and transcription factors that ensure the specificity of individual structures along the anatomical axes. The third part discusses the genes and molecules that control the formation of bone and cartilage within mandibular and hyoid arches and how dysregulation of molecular signalling influences the development of skeletal components of the viscerocranium. In conclusion, we notice that mandibular malformations in humans and mice often co-occur with hyoid malformations and pinpoint the similar molecular machinery controlling the development of mandibular and hyoid arches.
Collapse
Affiliation(s)
- Jaroslav Fabik
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
| |
Collapse
|
13
|
Liu Q, Li M, Wang S, Xiao Z, Xiong Y, Wang G. Recent Advances of Osterix Transcription Factor in Osteoblast Differentiation and Bone Formation. Front Cell Dev Biol 2020; 8:601224. [PMID: 33384998 PMCID: PMC7769847 DOI: 10.3389/fcell.2020.601224] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
With increasing life expectations, more and more patients suffer from fractures either induced by intensive sports or other bone-related diseases. The balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption is the basis for maintaining bone health. Osterix (Osx) has long been known to be an essential transcription factor for the osteoblast differentiation and bone mineralization. Emerging evidence suggests that Osx not only plays an important role in intramembranous bone formation, but also affects endochondral ossification by participating in the terminal cartilage differentiation. Given its essentiality in skeletal development and bone formation, Osx has become a new research hotspot in recent years. In this review, we focus on the progress of Osx's function and its regulation in osteoblast differentiation and bone mass. And the potential role of Osx in developing new therapeutic strategies for osteolytic diseases was discussed.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| | - Mao Li
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| | - Shiyi Wang
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yuanyuan Xiong
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guangwei Wang
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
14
|
Valenti MT, Marchetto G, Mottes M, Dalle Carbonare L. Zebrafish: A Suitable Tool for the Study of Cell Signaling in Bone. Cells 2020; 9:E1911. [PMID: 32824602 PMCID: PMC7465296 DOI: 10.3390/cells9081911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/23/2022] Open
Abstract
In recent decades, many studies using the zebrafish model organism have been performed. Zebrafish, providing genetic mutants and reporter transgenic lines, enable a great number of studies aiming at the investigation of signaling pathways involved in the osteoarticular system and at the identification of therapeutic tools for bone diseases. In this review, we will discuss studies which demonstrate that many signaling pathways are highly conserved between mammals and teleost and that genes involved in mammalian bone differentiation have orthologs in zebrafish. We will also discuss as human diseases, such as osteogenesis imperfecta, osteoarthritis, osteoporosis and Gaucher disease can be investigated in the zebrafish model.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Medicine, University of Verona, Ple Scuro 10, 37100 Verona, Italy; (G.M.); (L.D.C.)
| | - Giulia Marchetto
- Department of Medicine, University of Verona, Ple Scuro 10, 37100 Verona, Italy; (G.M.); (L.D.C.)
| | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy;
| | - Luca Dalle Carbonare
- Department of Medicine, University of Verona, Ple Scuro 10, 37100 Verona, Italy; (G.M.); (L.D.C.)
| |
Collapse
|
15
|
Sun Y, Zhu Z. Designing future farmed fishes using genome editing. SCIENCE CHINA-LIFE SCIENCES 2019; 62:420-422. [DOI: 10.1007/s11427-018-9467-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/16/2019] [Indexed: 12/16/2022]
|
16
|
Kague E, Witten PE, Soenens M, Campos CL, Lubiana T, Fisher S, Hammond C, Brown KR, Passos-Bueno MR, Huysseune A. Zebrafish sp7 mutants show tooth cycling independent of attachment, eruption and poor differentiation of teeth. Dev Biol 2018; 435:176-184. [PMID: 29409769 DOI: 10.1016/j.ydbio.2018.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/10/2018] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
The capacity to fully replace teeth continuously makes zebrafish an attractive model to explore regeneration and tooth development. The requirement of attachment bone for the appearance of replacement teeth has been hypothesized but not yet investigated. The transcription factor sp7 (osterix) is known in mammals to play an important role during odontoblast differentiation and root formation. Here we study tooth replacement in the absence of attachment bone using sp7 zebrafish mutants. We analysed the pattern of tooth replacement at different stages of development and demonstrated that in zebrafish lacking sp7, attachment bone is never present, independent of the stage of tooth development or fish age, yet replacement is not interrupted. Without bone of attachment we observed abnormal orientation of teeth, and abnormal connection of pulp cavities of predecessor and replacement teeth. Mutants lacking sp7 show arrested dentinogenesis, with non-polarization of odontoblasts and only a thin layer of dentin deposited. Osteoclast activity was observed in sp7 mutants; due to the lack of bone of attachment, remodelling was diminished but nevertheless present along the pharyngeal bone. We conclude that tooth replacement is ongoing in the sp7 mutant despite poor differentiation and defective attachment. Without bone of attachment tooth orientation and pulp organization are compromised.
Collapse
Affiliation(s)
- E Kague
- Department of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, United Kingdom; Centro de Pesquisa sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil.
| | - P E Witten
- Evolutionary Developmental Biology, Ghent University, Belgium
| | - M Soenens
- Evolutionary Developmental Biology, Ghent University, Belgium
| | - C L Campos
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - T Lubiana
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - S Fisher
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, United States
| | - C Hammond
- Department of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, United Kingdom
| | - K Robson Brown
- School of Archaeology and Anthropology, University of Bristol, United Kingdom
| | - M R Passos-Bueno
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - A Huysseune
- Evolutionary Developmental Biology, Ghent University, Belgium
| |
Collapse
|
17
|
Genome editing opens a new era for physiological study and directional breeding of fishes. Sci Bull (Beijing) 2017; 62:157-158. [PMID: 36659398 DOI: 10.1016/j.scib.2017.01.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 01/21/2023]
|