1
|
Zhang M, Hu J, Zhang Y, Cao Y, Rensing C, Dong Q, Hou F, Zhang J. Roles of the soil microbiome in sustaining grassland ecosystem health on the Qinghai-Tibet Plateau. Microbiol Res 2025; 293:128078. [PMID: 39904001 DOI: 10.1016/j.micres.2025.128078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/05/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Soil microbes, as intermediaries in plant-soil interactions, are closely linked to plant health in grassland ecosystems. In recent years, varying degrees of degradation have been observed in the alpine grasslands of the Qinghai-Tibet Plateau (QTP). Addressing grassland degradation, particularly under the influence of climate change, poses a global challenge. Understanding the factors driving grassland degradation on the QTP and developing appropriate mitigation measures is essential for the future sustainability of this fragile ecosystem. In this review, we discuss the environmental and anthropogenic factors affecting grassland degradation and the corresponding impacts on soil microbe community structure. We summarize the current research on the microbiome of the QTP, in particular the effect of vegetation, climate change, grazing, and land use, respectively on the alpine grassland microbiome. The results of these studies indicate that microbially mediated soil bioprocesses are important drivers of grassland ecosystem functional recovery. Therefore, a thorough understanding of the spatial distribution characteristics of the soil microbiome in alpine grasslands is required, and this necessitates an integrated approach in which the interactions among climatic factors, vegetation characteristics, and human activities are evaluated. Additionally, we assess and summarise current technological developments and prospects for applying soil microbiome technologies in sustainable agriculture, including: (i) single-strain inoculation, and (ii) inoculation of synthetic microbial communities, (iii) microbial community transplantation. Grassland restoration projects should be carried out with the understanding that each restoration measure has a unique effect on the soil microbial activity. We propose that the sustainable development of alpine grassland ecosystems can be achieved by adopting advanced microbiome technologies and integrating microbe-based sustainable agricultural practices to maximise grassland biomass, increase soil carbon, and optimise soil nutrient cycling.
Collapse
Affiliation(s)
- Mingxu Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| | - Jinpeng Hu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| | - Yuewei Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| | - Yanhua Cao
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Quanmin Dong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| | - Fujiang Hou
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| | - Jinlin Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Cao X. Stability of Holocene pollen assemblages in eastern China disturbed by human activities over the last two millennia. Sci Bull (Beijing) 2025:S2095-9273(25)00280-4. [PMID: 40122767 DOI: 10.1016/j.scib.2025.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Affiliation(s)
- Xianyong Cao
- Group of Alpine Paleoecology and Human Adaptation (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Jin X, Deng A, Fan Y, Ma K, Zhao Y, Wang Y, Zheng K, Zhou X, Lu G. Diversity, functionality, and stability: shaping ecosystem multifunctionality in the successional sequences of alpine meadows and alpine steppes on the Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2025; 16:1436439. [PMID: 40182548 PMCID: PMC11966483 DOI: 10.3389/fpls.2025.1436439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025]
Abstract
Recent investigations on the Tibetan Plateau have harnessed advancements in digital ground vegetation surveys, high temporal resolution remote sensing data, and sophisticated cloud computing technologies to delineate successional dynamics between alpine meadows and alpine steppes. However, these efforts have not thoroughly explored how different successional stages affect key ecological parameters, such as species and functional diversity, stability, and ecosystem multifunctionality, which are fundamental to ecosystem resilience and adaptability. Given this gap, we systematically investigate variations in vegetation diversity, functional diversity, and the often-overlooked dimension of community stability across the successional gradient from alpine meadows to alpine steppes. We further identify the primary environmental drivers of these changes and evaluate their collective impact on ecosystem multifunctionality. Our analysis reveals that, as vegetation communities progress from alpine meadows toward alpine steppes, multi-year average precipitation and temperature decline significantly, accompanied by reductions in soil nutrients. These environmental shifts led to decreased species diversity, driven by lower precipitation and reduced soil nitrate-nitrogen levels, as well as community differentiation influenced by declining soil pH and precipitation. Consequently, as species loss and community differentiation intensified, these changes diminished functional diversity and eroded community resilience and resistance, ultimately reducing grassland ecosystem multifunctionality. Using linear mixed-effects model and structural equation modeling, we found that functional diversity is the foremost determinant of ecosystem multifunctionality, followed by species diversity. Surprisingly, community stability also significantly influences ecosystem multifunctionality-a factor rarely highlighted in previous studies. These findings deepen our understanding of the interplay among diversity, functionality, stability, and ecosystem multifunctionality, and support the development of an integrated feedback model linking environmental drivers with ecological attributes in alpine grassland ecosystems.
Collapse
Affiliation(s)
- Xin Jin
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Abby Deng
- Enterprise High School, Redding, CA, United States
| | - Yuejun Fan
- Qinghai Vocational and Technical Institute of Animal Husbandry, Xining, China
| | - Kun Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Yangan Zhao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Yingcheng Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Kaifu Zheng
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Xueli Zhou
- Qinghai Province Grassland Station, Xining, China
| | - Guangxin Lu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| |
Collapse
|
4
|
Xing T, Liu Y, Dong X, Ji M, Deng Y, Liu P. Glacier melting promotes methane emission via increased methanogenic activity in the foreland alpine meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176947. [PMID: 39426539 DOI: 10.1016/j.scitotenv.2024.176947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Annual glacier melting alters hydrothermal conditions of the foreland alpine meadows, and causes significant fluctuations in methane (CH4) flux. Previously we found that Tibetan glacier foreland alpine meadow shifts to CH4 source from sink during the melting season, but the potential mechanisms remain unclear. This study, via combination of in-situ measurement of seasonal CH4 flux and survey of microbial species that may involve in CH4 metabolism, explores the causes of glacier melting on CH4 flux in a glacier foreland alpine meadow on Tibetan Plateau. We determined a pronounced CH4 emission (13.95 μg·m-2·h-1) in August (melting season) but CH4 uptake in June (-3.76 μg·m-2·h-1) and October (-17.77 μg·m-2·h-1), and 1.4-fold higher soil moisture in August than the other two months. This showed a direct correlation of CH4 flux with glacier melting increased soil water. Additionally, glacier melting caused more CH4 fluxes increase in hollows than in hummocks. Amplicon sequencing determined 126-fold higher abundance of mcrA, the methanogenic marker gene, in August than in June and October, and a higher relative abundance of a fungal phylum Mortierellomycota and syntrophic bacteria that convert the fatty acids, the degradation intermediates of organic complexes to CO2 and acetate, the methanogenic substrates like in August. However, no seasonal variation of pmoA, the marker gene of aerobic methanotrophs, was observed. It appears that glacier melting promotes the CH4 producing but not the consuming microorganisms, thus leading to increased CH4 emission. The findings of this work indicate that global warming resulted glacier melting would increase global CH4 emissions, and in turn worsens global warming, so an alarming positive feedback loop.
Collapse
Affiliation(s)
- Tingting Xing
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China; Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China.
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Mukan Ji
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China
| | - Yongcui Deng
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Pengfei Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Luo Y, Ma N, Zhang Y, Zang C, Szilagyi J, Tian J, Wang L, Xu Z, Tang Z, Wei H. Response of alpine vegetation function to climate change in the Tibetan Plateau: A perspective from solar-induced chlorophyll fluorescence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175845. [PMID: 39209172 DOI: 10.1016/j.scitotenv.2024.175845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Vegetation change in the Tibetan Plateau (TP) is a crucial indicator of climate change in alpine regions. Previous studies have reported an overall greening trend in the vegetation structure across the TP, especially in its northeastern part, in response to a warming climate. However, variations in the vegetation function and the possible drivers remain poorly understood. Considering the optimal temperature for plants in TP is usually higher than the current temperature, our hypothesis is the function and structure of alpine vegetation have changed synchronously over past few decades. To test this hypothesis, we analyzed satellite-observed solar-induced chlorophyll fluorescence (SIF) and leaf area index (LAI) in the Yellow River source (YRS) region in the northeastern TP to quantify the long-term trends in vegetation functional and structural states, respectively. The results suggest that from 1982 to 2018, SIF increased significantly in 77.71 % of the YRS area, resulting in a significant upward trend of 0.52 × 10-3 mW m-2 nm-1 sr-1 yr-1 (p < 0.001) for the regional-mean SIF. This represents a 16.1 % increase in SIF, which is close in magnitude to the increase in LAI over the same period. The synchronous changes between vegetation function and structure suggest that improved greenness corresponds to a similar level of change in carbon uptake across YRS. Additionally, we used a multiple regression approach to quantify the contribution of climatic factors to SIF changes in YRS. Our analyses show that the increases in SIF were primarily driven by rising temperatures. Spatially, temperature dominated SIF changes in most parts of YRS, except for certain dry parts in the northern and western YRS, where precipitation had a greater impact. Our results are crucial for a comprehensive understanding of climate regulations on vegetation structure and function in high-elevation regions.
Collapse
Affiliation(s)
- Yiwen Luo
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; School of Geography, South China Normal University, Guangzhou, China
| | - Ning Ma
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
| | - Yongqiang Zhang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Chuanfu Zang
- School of Geography, South China Normal University, Guangzhou, China
| | - Jozsef Szilagyi
- Department of Hydraulic and Water Resources Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - Jing Tian
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Longhao Wang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhenwu Xu
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zixuan Tang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haoshan Wei
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Xu X, Jiao F, Liu J, Ma J, Lin D, Gong H, Yang Y, Lin N, Wu Q, Zhu Y, Qiu J, Zhang K, Zou C. Stability of gross primary productivity and its sensitivity to climate variability in China. FRONTIERS IN PLANT SCIENCE 2024; 15:1440993. [PMID: 39309176 PMCID: PMC11412862 DOI: 10.3389/fpls.2024.1440993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024]
Abstract
Identifying the stability and sensitivity of land ecosystems to climate change is vital for exploring nature-based solutions. However, the underlying mechanisms governing ecosystem stability and sensitivity, especially in regions with overlapping ecological projects, remain unclear. based on Mann-Kendall, stability analysis method, and multiple regression method, this study quantified the stability and sensitivity of gross primary productivity (GPP) to climate variables [temperature, vapor pressure deficit (VPD), soil moisture, and radiation] in China from 1982 to 2019. Our findings revealed the following: (1) GPP demonstrated an increased trend with lower stability in Eastern regions, whereas a decreasing trend with higher stability was observed in Western and Southwest China. Notably, the stability of GPP was highest (74.58%) in areas with five overlapping ecological projects: Grain to Green, Natural Forest Resource Protection Project, Three-River Ecological Conservation and Restoration Project, Return Grazing to Grassland Project, and Three-North Shelter Forestation Project. (2) In regions with minimal or no overlapping ecological projects, temperature and radiation jointly dominated GPP variations. In contrast, water-related factors (VPD and soil moisture) significantly affected GPP in areas with multiple overlapping ecological projects. (3) In the southwestern and northeastern regions, GPP exhibited the highest sensitivity to climate change, whereas, in the eastern coastal areas and Tibet, GPP showed low sensitivity to climate change. In the Loess Plateau, where five ecological projects overlap extensively, carbon sinks primarily demonstrate a monotonic increasing trend, high stability, and low sensitivity to climate change. This study aimed to assess the stability of the land ecosystems and delineate their sensitivity to climate changes, thereby laying the groundwork for understanding ecosystem resilience.
Collapse
Affiliation(s)
- Xiaojuan Xu
- Ecological Protection and Restoration Center, Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Fusheng Jiao
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Jing Liu
- Ecological Protection and Restoration Center, Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Jie Ma
- Ecological Protection and Restoration Center, Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Dayi Lin
- Ecological Protection and Restoration Center, Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Haibo Gong
- College of Urban, and Environmental Sciences, Peking University, Beijing, China
| | - Yue Yang
- Ecological Protection and Restoration Center, Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Naifeng Lin
- Ecological Protection and Restoration Center, Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Qian Wu
- Ecological Protection and Restoration Center, Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Yingying Zhu
- Ecological Protection and Restoration Center, Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Jie Qiu
- Ecological Protection and Restoration Center, Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Kun Zhang
- Ecological Protection and Restoration Center, Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Changxin Zou
- Ecological Protection and Restoration Center, Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| |
Collapse
|
7
|
Li M, Zhang Y, Yang Y, Wang T, Wu C, Zhang X. Prediction of Historical, Current, and Future Configuration of Tibetan Medicinal Herb Gymnadenia orchidis Based on the Optimized MaxEnt in the Qinghai-Tibet Plateau. PLANTS (BASEL, SWITZERLAND) 2024; 13:645. [PMID: 38475491 DOI: 10.3390/plants13050645] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Climate change plays a pivotal role in shaping the shifting patterns of plant distribution, and gaining insights into how medicinal plants in the plateau region adapt to climate change will be instrumental in safeguarding the rich biodiversity of the highlands. Gymnosia orchidis Lindl. (G. orchidis) is a valuable Tibetan medicinal resource with significant medicinal, ecological, and economic value. However, the growth of G. orchidis is severely constrained by stringent natural conditions, leading to a drastic decline in its resources. Therefore, it is crucial to study the suitable habitat areas of G. orchidis to facilitate future artificial cultivation and maintain ecological balance. In this study, we investigated the suitable zones of G. orchidis based on 79 occurrence points in the Qinghai-Tibet Plateau (QTP) and 23 major environmental variables, including climate, topography, and soil type. We employed the Maximum Entropy model (MaxEnt) to simulate and predict the spatial distribution and configuration changes in G. orchidis during different time periods, including the last interglacial (LIG), the Last Glacial Maximum (LGM), the Mid-Holocene (MH), the present, and future scenarios (2041-2060 and 2061-2080) under three different climate scenarios (SSP126, SSP370, and SSP585). Our results indicated that annual precipitation (Bio12, 613-2466 mm) and mean temperature of the coldest quarter (Bio11, -5.8-8.5 °C) were the primary factors influencing the suitable habitat of G. orchidis, with a cumulative contribution of 78.5%. The precipitation and temperature during the driest season had the most significant overall impact. Under current climate conditions, the suitable areas of G. orchidis covered approximately 63.72 × 104/km2, encompassing Yunnan, Gansu, Sichuan, and parts of Xizang provinces, with the highest suitability observed in the Hengduan, Yunlin, and Himalayan mountain regions. In the past, the suitable area of G. orchidis experienced significant changes during the Mid-Holocene, including variations in the total area and centroid migration direction. In future scenarios, the suitable habitat of G. orchidis is projected to expand significantly under SSP370 (30.33-46.19%), followed by SSP585 (1.41-22.3%), while contraction is expected under SSP126. Moreover, the centroids of suitable areas exhibited multidirectional movement, with the most extensive displacement observed under SSP585 (100.38 km2). This study provides a theoretical foundation for the conservation of biodiversity and endangered medicinal plants in the QTP.
Collapse
Affiliation(s)
- Ming Li
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Yi Zhang
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Yongsheng Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota and Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Tongxin Wang
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiujuan Zhang
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
8
|
Chen X, Hou G, Shi P, Zong N, Yu J. Functional Groups Dominate Aboveground Net Primary Production under Long-Term Nutrient Additions in a Tibetan Alpine Meadow. PLANTS (BASEL, SWITZERLAND) 2024; 13:344. [PMID: 38337876 PMCID: PMC10857096 DOI: 10.3390/plants13030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Anthropogenic nutrient additions are influencing the structure and function of alpine grassland ecosystems. However, the underlying mechanisms of the direct and indirect effects of nutrient additions on aboveground net primary productivity (ANPP) are not well understood. In this study, we conducted an eight-year field experiment to explore the ecological consequences of nitrogen (N) and/or phosphorous (P) additions on the northern Tibetan Plateau. ANPP, species diversity, functional diversity, and functional groups were used to assess species' responses to increasing nutrients. Our results showed that nutrient additions significantly increased ANPP due to the release in nutrient limitations. Although N addition had a significant effect on species richness and functional richness, and P and N + P additions altered functional diversity, it was functional groups rather than biodiversity that drove changes in ANPP in the indirect pathways. We identified the important roles of N and P additions in begetting the dominance of grasses and forbs, respectively. The study highlights that the shift of functional groups should be taken into consideration to better predict the structure, function, and biodiversity-ANPP relationship in grasslands, particularly under future multifaceted global change.
Collapse
Affiliation(s)
- Xueying Chen
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (G.H.); (N.Z.); (J.Y.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ge Hou
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (G.H.); (N.Z.); (J.Y.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Peili Shi
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (G.H.); (N.Z.); (J.Y.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ning Zong
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (G.H.); (N.Z.); (J.Y.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jialuo Yu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (G.H.); (N.Z.); (J.Y.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|