1
|
Wu X, Wu H, Wu Y, Xu Z, Shan H, Gao T. Effects of Different Sediment Improvers on the Growth Environment, Innate Immune Responses, and Intestinal Health of Procambarus clarkii. BIOLOGY 2025; 14:407. [PMID: 40282273 PMCID: PMC12025267 DOI: 10.3390/biology14040407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Sediment improvers are important mediators of aquatic animals' growth performance and the surrounding environmental quality. However, the physiological responses of crayfish (Procambarus clarkii) to different sediment improvers remain unclear. Here, we cultivated crayfish using two chemical (potassium monopersulfate and potassium ferrate) and two biological (purple nonsulfur photosynthetic bacteria and Bacillus subtilis) sediment improvers at low and high concentrations. After 42 days, we found that the addition of chemical sediment improvers was more effective in improving water quality than biological sediment improvers (e.g., more stable pH and lower nutrient concentrations). By contrast, the application of biological sediment improvers resulted in considerably enhanced final weight, weight gains, and survival rates. In all low-concentration groups, the activity of immune-related enzymes (e.g., superoxide dismutase and glutathione peroxidase) in the hemolymph and hepatopancreas considerably increased, whereas the malondialdehyde activity and mRNA expression of AMP genes (PcALF and PcCru) considerably decreased. Crayfish exposed to low concentrations of sediment improvers exhibited enhanced intestinal and hepatopancreatic integrity, with a thickened mucosal layer and increased density of epithelial cell granules. Additionally, the composition of the gut microbiota varied after the addition of different sediment improvers. In summary, our research indicated that different types of sediment improvers not only improved the farming environment but also had varying effects on crayfish. Therefore, an appropriate sediment improver based on specific aquaculture conditions is needed.
Collapse
Affiliation(s)
- Xinyu Wu
- College of Oceanography, Hohai University, Nanjing 210024, China; (X.W.); (H.W.); (Y.W.)
| | - Hao Wu
- College of Oceanography, Hohai University, Nanjing 210024, China; (X.W.); (H.W.); (Y.W.)
| | - Yifan Wu
- College of Oceanography, Hohai University, Nanjing 210024, China; (X.W.); (H.W.); (Y.W.)
| | - Zhiqiang Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China;
| | - Hong Shan
- Nanjing Institute of Fisheries Science, Nanjing 210017, China
| | - Tianheng Gao
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
2
|
Zhang W, Song Y, Ma S, Lu J, Zhu J, Wang J, Li X. Rice-crayfish farming system promote subsoil microbial residual carbon accumulation and stabilization by mediating microbial metabolism process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174188. [PMID: 38925393 DOI: 10.1016/j.scitotenv.2024.174188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Rice-crayfish farming systems (RCs) can help mitigate climate change by enhancing soil organic carbon (SOC) sequestration. However, the mechanisms that govern the responses of microbial residues carbon (MRC), a key component of SOC, in RCs are not fully understood. We conducted a 6-year field experiment comparing RCs and rice monoculture systems (RMs). Specifically, we explored how MRC formation and stabilization differ between the two systems and how those differences are linked to changes in the metabolic processes of microbes. Results showed that MRC levels in RCs were 5.2 % and 40.0 % higher in the topsoil and subsoil, respectively, compared to RMs, indicating depth-dependent effects. Notably, MRC accumulation and stabilization in RCs were promoted through a cascade of processes of dissolved organic carbon (DOC) accessibility-microbial metabolism-mineral protection. In addition, the mechanism of MRC accumulation in subsoil differed between the two systems. Specifically, RMs improved accessibility of DOC by reducing humification and aromaticity of subsoil DOC, which helped microbes access to resources at lower cost. This decreased the respiration rate of microbes, thereby increasing microbial carbon pump (MCP) efficiency and thus promoting MRC accumulation. By contrast, the crayfish in RCs facilitated carbon exchange between topsoil and subsoil through their burrowing behaviors. This increased carbon allocation for microbial metabolism in the subsoil, supporting a larger microbial population and thus enhancing the MCP capacity, while reducing MRC re-decomposition via enhanced mineral protection, further increasing subsoil MRC accumulation. That is, MRC accumulation in the subsoil of RCs was predominantly driven by microbial population numbers (MCP capacity) whereas that of RMs was mostly driven by microbial anabolic efficacy (MCP efficiency). Our findings reveal a key mechanism by which RCs promoted soil MRC accumulation and stabilization, highlighting the potential role of DOC accessibility-microbial metabolism-mineral protection pathway in regulating MRC accumulation and stabilization.
Collapse
Affiliation(s)
- Wanyang Zhang
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Song
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Shihao Ma
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwei Lu
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Zhu
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shuangshui Shuanglv Institute, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaokun Li
- College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Shuangshui Shuanglv Institute, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Huang Y, Huang Q, Zhou K, Luo X, Long W, Yin Z, Huang Z, Hong Y. Effects of glyphosate on neurotoxicity, oxidative stress and immune suppression in red swamp crayfish, Procambarus Clarkii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107050. [PMID: 39178750 DOI: 10.1016/j.aquatox.2024.107050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/19/2024] [Accepted: 08/10/2024] [Indexed: 08/26/2024]
Abstract
Glyphosate, a prevalent herbicide, has raised concerns due to its potential ecological impact, especially on aquatic ecosystems. While it is crucial for managing agricultural productivity, its inadvertent effects on non-target aquatic species like the red swamp crayfish, Procambarus clarkii, are not fully understood. In the present study, the neurotoxicity, oxidative stress, and immune suppression of glyphosate on P. clarkii were investigated. Sublethal glyphosate exposure (5, 10 and 20 mg/L) for 96 h was found to significantly decrease AChE activity in both brain and hepatopancreas, correlating with reduced foraging efficiency and increased turnover time. Oxidative stress was evident through increased lipid peroxidation (LPO) and malondialdehyde (MDA) levels and altered antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). In addition, the total antioxidative capacity (T-AOC) was inhibited at 10 and 20 mg/L of glyphosate exposure. Immune assays revealed a decrease in total hemocyte counts (THC) and suppression of key immune enzyme activities and transcriptional expressions at higher concentrations, suggesting compromised immune defenses. The findings demonstrate that glyphosate can induce considerable neurotoxic and immunotoxic effects in P. clarkii, disrupting essential physiological functions and behavior.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan 415000, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Qiang Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan 415000, China
| | - Kelei Zhou
- Agricultural and Rural Bureau of Liangshan Yi Autonomous Prefecture of Sichuan Province, Liangshan, China
| | - Xiongwei Luo
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan 415000, China
| | - Wei Long
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan 415000, China
| | - Zeyu Yin
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan 415000, China
| | - Zhiqiu Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan 415000, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan 415000, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China.
| |
Collapse
|
4
|
Wang R, Feng L, Xu Q, Jiang L, Liu Y, Xia L, Zhu YG, Liu B, Zhuang M, Yang Y. Sustainable Blue Foods from Rice-Animal Coculture Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5310-5324. [PMID: 38482792 DOI: 10.1021/acs.est.3c07660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Global interest grows in blue foods as part of sustainable diets, but little is known about the potential and environmental performance of blue foods from rice-animal coculture systems. Here, we compiled a large experimental database and conducted a comprehensive life cycle assessment to estimate the impacts of scaling up rice-fish and rice-crayfish systems in China. We find that a large amount of protein can be produced from the coculture systems, equivalent to ∼20% of freshwater aquaculture and ∼70% of marine wild capture projected in 2030. Because of the ecological benefits created by the symbiotic relationships, cocultured fish and crayfish are estimated to be carbon-negative (-9.8 and -4.7 kg of CO2e per 100 g of protein, respectively). When promoted at scale to displace red meat, they can save up to ∼98 million tons of greenhouse gases and up to ∼13 million hectares of farmland, equivalent to ∼44% of China's total rice acreage. These results suggest that rice-animal coculture systems can be an important source of blue foods and contribute to a sustainable dietary shift, while reducing the environmental footprints of rice production. To harvest these benefits, robust policy supports are required to guide the sustainable development of coculture systems and promote healthy and sustainable dietary change.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Pollution Control & Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Lei Feng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
| | - Qiang Xu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P. R. China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, P. R. China
- Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, P. R. China
| | - Lu Jiang
- State Key Laboratory of Pollution Control & Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Yize Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, P. R. China
| | - LongLong Xia
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen 82467, Germany
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Beibei Liu
- State Key Laboratory of Pollution Control & Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Minghao Zhuang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, P. R. China
| | - Yi Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- College of Environment and Ecology, Chongqing University, Chongqing 400044, P. R. China
- The National Centre for International Research of Low-carbon & Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing 400044, P. R. China
- The Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- China Chongqing Field Observation Station for River and Lake Ecosystems, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
5
|
Xi W, Zhang X, Zhu X, Wang J, Xue H, Pan H. Distribution patterns and influential factors of pathogenic bacteria in freshwater aquaculture sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16028-16047. [PMID: 38308166 DOI: 10.1007/s11356-024-31897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Pathogenic bacteria, the major causative agents of aquaculture diseases, are a serious impediment to the aquaculture industry. However, the bioinformatics of pathogenic bacteria and virulence factors (VFs) in sediments, an important component of freshwater aquaculture ecosystems, are not well characterized. In this study, 20 sediment samples were collected from fish pond sediments (FPS), shrimp field sediments (SFS), fish pond sediment control (FPSC), and shrimp field sediment control (SFSC). Molecular biological information was obtained on a total of 173 pathogenic bacteria, 1093 virulence factors (VFs), and 8475 mobile genetic elements (MGEs) from these samples. The results indicated that (1) aquaculture patterns and sediment characteristics can affect the distribution of pathogenic bacteria. According to the results of the Kruskal-Wallis H test, except for Mycobacterium gilvum, there were significant differences (P < 0.05) among the four sediment types in the average abundance of major pathogenic bacteria (top 30 in abundance), and the average abundance of major pathogenic bacteria in the four sediment types followed the following pattern: FPS > SFS > FPSC > SFSC. (2) Pathogenic bacteria are able to implement a variety of complex pathogenic mechanisms such as adhesion, invasion, immune evasion, and metabolic regulation in the host because they carry a variety of VFs such as type IV pili, HSI-I, Alginate, Colibactin, and Capsule. According to the primary classification of the Virulence Factor Database (VFDB), the abundance of VFs in all four types of sediments showed the following pattern: offensive VFs > non-specific VFs > defensive VFs > regulation of virulence-related genes. (3) Total organic carbon (TOC), total phosphorus (TP), available phosphorus (AP), nitrite, and nitrate were mostly only weakly positively correlated with the major pathogenic bacteria and could promote the growth of pathogenic bacteria to some extent, whereas ammonia was significantly positively correlated with most of the major pathogenic bacteria and could play an important role in promoting the growth and reproduction of pathogenic bacteria. (4) Meanwhile, there was also a significant positive correlation between CAZyme genes and major pathogenic bacteria (0.62 ≤ R ≤ 0.89, P < 0.05). This suggests that these pathogenic bacteria could be the main carriers of CAZyme genes and, to some extent, gained a higher level of metabolic activity by degrading organic matter in the sediments to maintain their competitive advantage. (5) Worryingly, the results of correlation analyses indicated that MGEs in aquaculture sediments could play an important role in the spread of VFs (R = 0.82, P < 0.01), and in particular, plasmids (R = 0.75, P < 0.01) and integrative and conjugative elements (ICEs, R = 0.65, P < 0.05) could be these major vectors of VFs. The results of this study contribute to a comprehensive understanding of the health of freshwater aquaculture sediments and provide a scientific basis for aquaculture management and conservation.
Collapse
Affiliation(s)
- Wenxiang Xi
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Xun Zhang
- China Coal Mine Construction Group Co., LTD, Hefei, 230071, Anhui, China
| | - Xianbin Zhu
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Jiaming Wang
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Han Xue
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Hongzhong Pan
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China.
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China.
| |
Collapse
|