1
|
Samavati Z, Goh PS, Fauzi Ismail A, Lau WJ, Samavati A, Ng BC, Sohaimi Abdullah M. Advancements in membrane technology for efficient POME treatment: A comprehensive review and future perspectives. J Environ Sci (China) 2025; 155:730-761. [PMID: 40246505 DOI: 10.1016/j.jes.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 04/19/2025]
Abstract
The treatment of POME related contamination is complicated due to its high organic contents and complex composition. Membrane technology is a prominent method for removing POME contaminants on account of its efficiency in removing suspended particles, organic substances, and contaminants from wastewater, leading to the production of high-quality treated effluent. It is crucial to achieve efficient POME treatment with minimum fouling through membrane advancement to ensure the sustainability for large-scale applications. This article comprehensively analyses the latest advancements in membrane technology for the treatment of POME. A wide range of membrane types including forward osmosis, microfiltration, ultrafiltration, nanofiltration, reverse osmosis, membrane bioreactor, photocatalytic membrane reactor, and their combinations is discussed in terms of the innovative design, treatment efficiencies and antifouling properties. The strategies for antifouling membranes such as self-healing and self-cleaning membranes are discussed. In addition to discussing the obstacles that impede the broad implementation of novel membrane technologies in POME treatment, the article concludes by delineating potential avenues for future research and policy considerations. The understanding and insights are expected to enhance the application of membrane-based methods in order to treat POME more efficiently; this will be instrumental in the reduction of environmental pollution.
Collapse
Affiliation(s)
- Zahra Samavati
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia.
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia.
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Alireza Samavati
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Be Cheer Ng
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| |
Collapse
|
2
|
Li R, Zhou Y, Chen Y, Zhou L, Yang Y, Xiao J, Liu GL, Wang J, Huang L, Li Y. High-Electron-Mobility MXene-Enhanced Metasurface Biosensors Integrated with Microfluidics for Real-Time Multifunctional Monitoring. ACS NANO 2025; 19:12007-12020. [PMID: 40126942 DOI: 10.1021/acsnano.4c17289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Two-dimensional MXene materials have gained attention in optics due to their excellent conductivity and light absorption, showing great potential in applications such as photodetectors, photothermal therapy, and laser protection. However, the application of MXene in enhancing plasmonic biosensing on metasurfaces has remained largely unexplored. The MXene functional metasurface plasmonic sensor (MetaSPR), integrated with the advanced microfluidic technology (3MSPR device), enables real-time monitoring of antibodies in three critical fields: precision diagnostics, drug development, and expression process monitoring. The MXene-MetaSPR, retaining the layered structure and high conductivity of MXene, exhibits enhanced sensitivity through its synergistic interaction with the electromagnetic fields within nanoarrays. The sensitivity of label-free IgG detection is increased by more than 250-fold, with a detection limit of 2.56 ng/mL. Experimental results demonstrate that this system is capable of detecting high-affinity (pM) binding between therapeutic antibodies and their targets. Additionally, it enables continuous monitoring during the nanobody expression process in engineered bacteria, with a single antibody concentration analysis completed within a time scale of minutes. The 3MSPR device rapidly and efficiently captures the initial phase of kinetic curves, facilitating precise affinity analysis and optimization of expression efficiency.
Collapse
Affiliation(s)
- Rui Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yuanzhuo Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Youqian Chen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Li Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yihui Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jingrong Xiao
- Biosensor R&D Department, Liangzhun (Wuhan) Life Technology Co., Ltd., Wuhan 430070, P. R. China
| | - Gang Logan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
- Ningbo Institute of Marine Medicines, Peking University, Ningbo 315832, P. R. China
| | - Liping Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
- Biosensor R&D Department, Liangzhun (Wuhan) Life Technology Co., Ltd., Wuhan 430070, P. R. China
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
3
|
Guo Z, Jin H, Sun H, Li B, Yu H, Zhao DL, Lin H. Activation of peroxymonosulfate by novel magnetically recyclable CoFe 2O 4/MXene quantum dots composites for rapid degradation of tetracycline: Synergistic performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122398. [PMID: 39244931 DOI: 10.1016/j.jenvman.2024.122398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Tetracycline (TC), a commonly used antibiotic in wastewater, poses environmental and health risks, thus demanding advanced catalysts for its effective removal. In this work, for the first time, we integrated cobalt ferrite (CoFe2O4) and MXene quantum dots (MQDs) to form magnetic heterojunctions for rapid degradation of TC in the presence of peroxymonosulfate (PMS). Anchoring MQDs on the CoFe2O4 nanoparticles remarkably promoted the overall degradation rate of TC to 98.2% within 20 min via both radical and non-radical pathways. The first-order kinetic constant was 0.170 min-1, 3.5 and 15.5 times higher than that of CoFe2O4 and MQDs alone, respectively. Quenching experiments revealed that the addition of p-benzoquinone (p-BQ) and furfuryl alcohol (FFA) reduced the degradation of TC within 20 min to 56.2% and 28.4%, respectively, indicating that the primary reactive oxygen species for TC degradation in the CoFe2O4/MQDs + PMS system are •O2- and 1O2. CoFe2O4/MQDs also exhibited superparamagnetic property, which enabled their effective recovery by external magnetic field. Their reusability was verified by retaining 81.4% of catalytic efficacy in the consecutive 8th cycle. The CoFe2O4/MQDs + PMS system also exhibited excellent practicability in natural water samples as the degradation rates in both tap water and lake water environments exceeded 90%. Three potential pathways for TC degradation were proposed based on the liquid chromatography-mass spectrometry (LC-MS) characterizations and TC progressively transformed into 13 intermediates. This work may contribute to the ongoing efforts to develop advanced catalysts and strategies for mitigating the environmental impact of antibiotic pollution, offering a pathway toward sustainable and efficient water treatment technologies.
Collapse
Affiliation(s)
- Zhenyu Guo
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Haiyi Jin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongyu Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Huadong Yu
- Zhejiang HI-TECH Environmental Technology Co., Ltd., Hangzhou, 310000, China.
| | - Die Ling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
4
|
Zhou Y, Zhang Y, Ruan K, Guo H, He M, Qiu H, Gu J. MXene-based fibers: Preparation, applications, and prospects. Sci Bull (Beijing) 2024; 69:2776-2792. [PMID: 39098564 DOI: 10.1016/j.scib.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024]
Abstract
With the vigorous development and huge demand for portable wearable devices, wearable electronics based on functional fibers continue to emerge in a wide range of energy storage, motion monitoring, disease prevention, electromagnetic interference (EMI) shielding, etc. MXene, as an emerging two-dimensional inorganic compound, has shown great potential in functional fiber manufacturing and has attracted much research attention due to its own good mechanical properties, high electrical conductivity, excellent electrochemical properties and favorable processability. Herein, this paper reviews recent advances of MXene-based fibers. Speaking to MXene dispersions, the properties of MXene dispersions including dispersion stability, rheological properties and liquid crystalline properties are highlighted. The preparation techniques used to produce MXene-based fibers and application progress regarding MXene-based fibers into supercapacitors, sensors, EMI shielding and Joule heaters are summarized. Challenges and prospects surrounding the development of MXene-based fibers are proposed in future. This review aims to provide processing guidelines for MXene-based fiber manufacturing, thereby achieving more possibilities of MXene-based fibers in advanced applications with a view to injecting more vitality into the field of smart wearables.
Collapse
Affiliation(s)
- Yuxiao Zhou
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mukun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
5
|
Keneshbekova A, Smagulova G, Kaidar B, Imash A, Ilyanov A, Kazhdanbekov R, Yensep E, Lesbayev A. MXene/Carbon Nanocomposites for Water Treatment. MEMBRANES 2024; 14:184. [PMID: 39330525 PMCID: PMC11434601 DOI: 10.3390/membranes14090184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
One of the most critical problems faced by modern civilization is the depletion of freshwater resources due to their continuous consumption and contamination with different organic and inorganic pollutants. This paper considers the potential of already discovered MXenes in combination with carbon nanomaterials to address this problem. MXene appears to be a highly promising candidate for water purification due to its large surface area and electrochemical activity. However, the problems of swelling, stability, high cost, and scalability need to be overcome. The synthesis methods for MXene and its composites with graphene oxide, carbon nanotubes, carbon nanofibers, and cellulose nanofibers, along with their structure, properties, and mechanisms for removing various pollutants from water, are described. This review discusses the synthesis methods, properties, and mechanisms of water purification using MXene and its composites. It also explores the fundamental aspects of MXene/carbon nanocomposites in various forms, such as membranes, aerogels, and textiles. A comparative analysis of the latest research on this topic shows the progress in this field and the limitations for the practical application of MXene/carbon nanocomposites to solve the problem of drinking water scarcity. Consequently, this review demonstrates the relevance and promise of the material and underscores the importance of further research and development of MXene/carbon nanocomposites to provide effective water treatment solutions.
Collapse
Affiliation(s)
- Aruzhan Keneshbekova
- Institute of Combustion Problems, 172 Bogenbay Batyr Str., Almaty 050012, Kazakhstan
| | - Gaukhar Smagulova
- Institute of Combustion Problems, 172 Bogenbay Batyr Str., Almaty 050012, Kazakhstan
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| | - Bayan Kaidar
- Institute of Combustion Problems, 172 Bogenbay Batyr Str., Almaty 050012, Kazakhstan
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| | - Aigerim Imash
- Institute of Combustion Problems, 172 Bogenbay Batyr Str., Almaty 050012, Kazakhstan
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Akram Ilyanov
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Ramazan Kazhdanbekov
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Eleonora Yensep
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Aidos Lesbayev
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| |
Collapse
|
6
|
Zhao DL, Zhou W, Shen L, Li B, Sun H, Zeng Q, Tang CY, Lin H, Chung TS. New directions on membranes for removal and degradation of emerging pollutants in aqueous systems. WATER RESEARCH 2024; 251:121111. [PMID: 38211412 DOI: 10.1016/j.watres.2024.121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Emerging pollutants (EPs) refer to a group of non-regulated chemical or biological substances that have been recently introduced or detected in the environment. These pollutants tend to exhibit resistance to conventional treatment methods and can persist in the environment for prolonged periods, posing potential adverse effects on ecosystems and human health. As we enter a new era of managing these pollutants, membrane-based technologies hold significant promise in mitigating impact of EPs on the environment and safeguarding human health due to their high selectivity, efficiency, cost-effectiveness and capability for simultaneous separation and degradation. Moreover, these technologies continue to evolve rapidly with the development of new membrane materials and functionalities, advanced treatment strategies, and analyses for effectively treating EPs of more recent concerns. The objective of this review is to present the latest directions and advancements in membrane-based technologies for addressing EPs. By highlighting the progress in this field, we aim to share valuable perspectives with researchers and contribute to the development of future directions in sustainable treatments for EPs.
Collapse
Affiliation(s)
- Die Ling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wangyi Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bowen Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongyu Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Qianqian Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chuyang Y Tang
- Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Tai-Shung Chung
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 10607, Taiwan; Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|