1
|
Kaur J, Sharma V, Dhaliwal SS, Behera SK, Verma V, Singh P. Comparative assessment of Brassica cultivars for genotypic variability in phytoremediation of soil exposed to lead (Pb) contamination. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-12. [PMID: 39370959 DOI: 10.1080/15226514.2024.2405624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The soil pollution caused with accretion of pollutant elements like lead (Pb) is the major environmental concern nowadays. Phytoremediation of contaminated soils using Brassica cultivars that act as hyperaccumulator plants for Pb emerges as an important technique for decontamination of Pb spiked soils. Therefore, pot study was carried out to compare the efficiency of three Brassica cultivars and select the most efficient cultivar for phytoremediation of Pb spiked soils. The experimental soil was contaminated with Pb applied @ 0, 125, 250, 500, 750, and 1,000 mg kg-1 soil. Our outcomes reflected that increased rates of Pb pollution in soil from 125 to 1,000 mg kg-1 soil resulted in decline of yield but enhanced the Pb acquisition of all Brassica cultivars. Comparison of cultivars indicated the highest biomass production (16.7 g pot-1), Pb acquisition (4,011.7 μg pot-1), contamination indices i.e., tolerance index (70.6), and bioaccumulation coefficient (17.03) by Brassica juncea produced thereby proving it as the most efficient cultivar for phytoremediation of Pb spiked soil.
Collapse
Affiliation(s)
- Janpriya Kaur
- Department Soil Science, Punjab Agricultural University, Ludhiana, India
| | - Vivek Sharma
- Department Soil Science, Punjab Agricultural University, Ludhiana, India
| | | | | | - Vibha Verma
- Department Soil Science, Punjab Agricultural University, Ludhiana, India
| | - Prabhjot Singh
- Department Soil Science, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
2
|
Battisti I, Trentin AR, Franzolin E, Nicoletto C, Masi A, Renella G. Uptake and distribution of perfluoroalkyl substances by grafted tomato plants cultivated in a contaminated site in northern Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170032. [PMID: 38220022 DOI: 10.1016/j.scitotenv.2024.170032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are highly persistent and mobile pollutants raising alarming concerns due to their capability to accumulate in living organisms and exert toxic effects on human health. We studied the accumulation of different PFAS in the leaves and fruits of tomato plants grown on a PFAS-polluted soil in North-East Italy. Tomato plants were grafted with different rootstocks characterized by different vigor, and irrigated with PFAS-polluted groundwater. Leaves and fruits of the first and sixth truss were analyzed at full plant maturity. All tomato varieties accumulated PFAS in leaves and fruits, with the highest concentrations detected in the most vigorous rootstock and reflecting the PFAS concentration profile of the irrigation water. PFAS with a chain length from 4 to 8 C atoms and with carboxylic and sulfonic functional groups were detected in plant leaves, whereas only carboxylic C4, C5, and C6 PFAS were detected in tomato fruits. A general trend of decreasing PFAS concentrations in fruits upon increasing height of the plant trusses was observed. Calculation of the target hazard quotient (THQ) showed increasing values depending on the plant vigor. The hazard index (HI) values showed values slightly higher than 1 for the most vigorous plants, indicating potential risks to human health associated with the consumption of contaminated tomato fruits.
Collapse
Affiliation(s)
- Ilaria Battisti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| | - Anna Rita Trentin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| | - Emma Franzolin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| | - Carlo Nicoletto
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro 35020, Italy.
| | - Giancarlo Renella
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| |
Collapse
|
3
|
Cui L, Chen Y, Liu J, Zhang Q, Xu L, Yang Z. Spraying Zinc Sulfate to Reveal the Mechanism through the Glutathione Metabolic Pathway Regulates the Cadmium Tolerance of Seashore Paspalum ( Paspalum vaginatum Swartz). PLANTS (BASEL, SWITZERLAND) 2023; 12:1982. [PMID: 37653899 PMCID: PMC10221796 DOI: 10.3390/plants12101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023]
Abstract
Cadmium (Cd) is considered to be one of the most toxic metals, causing serious harm to plants' growth and humans' health. Therefore, it is necessary to study simple, practical, and environmentally friendly methods to reduce its toxicity. Until now, people have applied zinc sulfate to improve the Cd tolerance of plants. However, related studies have mainly focused on physiological and biochemical aspects, with a lack of in-depth molecular mechanism research. In this study, we sprayed high (40 mM) and low (2.5 mM) concentrations of zinc sulfate on seashore paspalum (Paspalum vaginatum Swartz) plants under 0.5 mM Cd stress. Transcriptome sequencing and physiological indicators were used to reveal the mechanism of Cd tolerance. Compared with the control treatment, we found that zinc sulfate decreased the content of Cd2+ by 57.03-73.39%, and that the transfer coefficient of Cd decreased by 58.91-75.25% in different parts of plants. In addition, our results indicate that the antioxidant capacity of plants was improved, with marked increases in the glutathione content and the activity levels of glutathione reductase (GR), glutathione S-transferase (GST), and other enzymes. Transcriptome sequencing showed that the differentially expressed genes in both the 0.5 Zn and 40 Zn treatments were mainly genes encoding GST. This study suggests that genes encoding GST in the glutathione pathway may play an important role in regulating the Cd tolerance of seashore paspalum. Furthermore, the present study provides a theoretical reference for the regulation mechanism caused by zinc sulfate spraying to improve plants' Cd tolerance.
Collapse
Affiliation(s)
- Liwen Cui
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | - Zhimin Yang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Dhaliwal SS, Sharma V, Kaur J, Shukla AK, Singh J, Singh P. Cadmium phytoremediation potential of Brassica genotypes grown in Cd spiked Loamy sand soils: Accumulation and tolerance. CHEMOSPHERE 2022; 302:134842. [PMID: 35525450 DOI: 10.1016/j.chemosphere.2022.134842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Phytoremediation acts as an efficient methodology for management of toxic elements spiked soils. The accumulation and tolerance potential of hyper-accumulator plants for toxic elements act as an index for in-situ removal of toxic elements. Extraction of cadmium (Cd) through its accumulation in harvestable parts of plants has attracted attention as the economic and environment friendly technique. Brassica genotypes have greater potential to accumulate Cd when grown in Cd spiked soils. Therefore, for evaluation of comparative efficiency of three Brassica genotypes (B. juncea, B. campestris and B. napus) in phytoremediation of Cd spiked soils, a pot study was carried out in Cd contaminated soil with 6 levels as 0, 5, 10, 20, 40, and 80 mg kg-1 soil. Results indicated that dry biomass production of Brassica genotypes declined with the enhanced Cd contamination in soil. The reduction in grain and shoot yield varied from 2.87 to 1.85 and 11.85 to 8.00 g pot-1 with increased Cd contamination from 5 to 80 mg kg-1 soil. Similarly, increased levels of Cd contamination resulted in enhanced concentration and accumulation in grains as well as shoots of all Brassica genotypes. Among Brassica genotypes, B. juncea recorded the highest production of dry biomass (12.8 g pot-1), Cd accumulation (736.0 μg pot-1). Also, the bioaccumulation coefficient and tolerance index indicated that B. juncea is the most tolerant genotype to Cd contamination in soil. Therefore, B. juncea could act as the most potential genotypes for decontamination of Cd spiked soils by preventing its entry into food chain.
Collapse
Affiliation(s)
| | - Vivek Sharma
- Department of Soil Science, Punjab Agricultural University, Ludhiana,141004, India
| | - Janpriya Kaur
- Department of Soil Science, Punjab Agricultural University, Ludhiana,141004, India
| | | | - Jaswinder Singh
- Department of Zoology, Khalsa College, Amritsar, Punjab, India.
| | - Prabhjot Singh
- Department of Soil Science, Punjab Agricultural University, Ludhiana,141004, India
| |
Collapse
|
5
|
Parvathi MS, Antony PD, Kutty MS. Multiple Stressors in Vegetable Production: Insights for Trait-Based Crop Improvement in Cucurbits. FRONTIERS IN PLANT SCIENCE 2022; 13:861637. [PMID: 35592574 PMCID: PMC9111534 DOI: 10.3389/fpls.2022.861637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
Vegetable production is a key determinant of contribution from the agricultural sector toward national Gross Domestic Product in a country like India, the second largest producer of fresh vegetables in the world. This calls for a careful scrutiny of the threats to vegetable farming in the event of climate extremes, environmental degradation and incidence of plant pests/diseases. Cucurbits are a vast group of vegetables grown almost throughout the world, which contribute to the daily diet on a global scale. Increasing food supply to cater to the ever-increasing world population, calls for intensive, off-season and year-round cultivation of cucurbits. Current situation predisposes these crops to a multitude of stressors, often simultaneously, under field conditions. This scenario warrants a systematic understanding of the different stress specific traits/mechanisms/pathways and their crosstalk that have been examined in cucurbits and identification of gaps and formulation of perspectives on prospective research directions. The careful dissection of plant responses under specific production environments will help in trait identification for genotype selection, germplasm screens to identify superior donors or for direct genetic manipulation by modern tools for crop improvement. Cucurbits exhibit a wide range of acclimatory responses to both biotic and abiotic stresses, among which a few like morphological characters like waxiness of cuticle; primary and secondary metabolic adjustments; membrane thermostability, osmoregulation and, protein and reactive oxygen species homeostasis and turnover contributing to cellular tolerance, appear to be common and involved in cross talk under combinatorial stress exposures. This is assumed to have profound influence in triggering system level acclimation responses that safeguard growth and metabolism. The possible strategies attempted such as grafting initiatives, molecular breeding, novel genetic manipulation avenues like gene editing and ameliorative stress mitigation approaches, have paved way to unravel the prospects for combined stress tolerance. The advent of next generation sequencing technologies and big data management of the omics output generated have added to the mettle of such emanated concepts and ideas. In this review, we attempt to compile the progress made in deciphering the biotic and abiotic stress responses of cucurbits and their associated traits, both individually and in combination.
Collapse
Affiliation(s)
- M. S. Parvathi
- Department of Plant Physiology, College of Agriculture Vellanikkara, Kerala Agricultural University, Thrissur, India
| | - P. Deepthy Antony
- Centre for Intellectual Property Rights, Technology Management and Trade, College of Agriculture Vellanikkara, Kerala Agricultural University, Thrissur, India
| | - M. Sangeeta Kutty
- Department of Vegetable Science, College of Agriculture Vellanikkara, Kerala Agricultural University, Thrissur, India
| |
Collapse
|
6
|
He J, Zhou J, Wan H, Zhuang X, Li H, Qin S, Lyu D. Rootstock-Scion Interaction Affects Cadmium Accumulation and Tolerance of Malus. FRONTIERS IN PLANT SCIENCE 2020; 11:1264. [PMID: 32922429 PMCID: PMC7457089 DOI: 10.3389/fpls.2020.01264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/31/2020] [Indexed: 05/17/2023]
Abstract
To understand the roles of Malus rootstock, scion, and their interaction in Cd accumulation and tolerance, four scion/rootstock combinations consisting of the apple cultivars "Hanfu" (HF) and "Fuji" (FJ) grafted onto M. baccata (Mb) or M. micromalus "qingzhoulinqin" (Mm) rootstocks differing in relative Cd tolerance were exposed either to 0 µM or 50 µM CdCl2 for 18 d. Cd accumulation and tolerance in grafted Malus plants varied within rootstock, scion, and rootstock-scion interaction. Cd-induced decreases in photosynthesis, photosynthetic pigment level, and biomass were lower for HF grafted onto Mb than those for HF grafted onto Mm. Reductions in growth and photosynthetic rate were always the lowest for HF/Mb. Cd concentration, bioconcentration factor (BCF), and translocation factor (Tf ) were always comparatively higher in HF and FJ grafted onto rootstock Mm than in HF and FJ grafted on Mb, respectively. When HF and FJ were grafted onto the same rootstock, the root Cd concentrations were always higher in HF than FJ, whereas the shoot Cd concentrations displayed the opposite trend. The shoot Cd concentrations and Tf were lower for HF/Mb than the other scion/rootstock combinations. Rootstock, scion, and rootstock-scion interaction also affected subcellular Cd distribution. Immobilization of Cd in the root cell walls may be a primary Cd mobility and toxicity reduction strategy in Malus. The rootstock and scion also had statistically significant influences on ROS level and antioxidant activity. Cd induced more severe oxidative stress in HF and FJ grafted onto Mm than it did in HF and FJ grafted onto Mb. Compared with FJ, HF had lower foliar O2 -, root H2O2, and root and leaf MDA levels, but higher ROS-scavenging capacity. The rootstock, scion, and rootstock-scion interaction affected the mRNA transcript levels of several genes involved in Cd uptake, transport, and detoxification including HA7, FRO2-like, NRAMP1, NRAMP3, HMA4, MT2, NAS1, and ABCC1. Hence, the responses of grafted Malus plants to Cd toxicity vary with rootstock, scion, and rootstock-scion interaction.
Collapse
Affiliation(s)
- Jiali He
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jiangtao Zhou
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
| | - Huixue Wan
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xiaolei Zhuang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Huifeng Li
- Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, China
| | - Sijun Qin
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Sijun Qin,
| | - Deguo Lyu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
7
|
Ropokis A, Ntatsi G, Kittas C, Katsoulas N, Savvas D. Impact of Cultivar and Grafting on Nutrient and Water Uptake by Sweet Pepper ( Capsicum annuum L.) Grown Hydroponically Under Mediterranean Climatic Conditions. FRONTIERS IN PLANT SCIENCE 2018; 9:1244. [PMID: 30197653 PMCID: PMC6117410 DOI: 10.3389/fpls.2018.01244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
In closed-cycle hydroponic systems (CHS), nutrients and water should be delivered to the plants at identical ratios to those they are removed via plant uptake, to avoid their depletion or accumulation in the root zone. For a particular plant species and developmental stage, the nutrient to water uptake ratios, henceforth termed "uptake concentrations" (UC), remain relatively constant over time under similar climatic conditions. Thus, the nutrient to water uptake ratios can be used as nutrient concentrations in the nutrient solution (NS) supplied to CHS to compensate for nutrient and water uptake by plants. In the present study, mean UC of macro- and micronutrients were determined during five developmental stages in different pepper cultivars grown in a closed hydroponic system by measuring the water uptake and the nutrient removal from the recirculating NS. The experiment was conducted in a heated glasshouse located in Athens Mediterranean environment and the tested cultivars were 'Orangery,' 'Bellisa,' 'Sondela,' 'Sammy,' self-grafted and 'Sammy' grafted onto the commercial rootstock 'RS10' (Capsicum annuum). 'Sondela' exhibited significantly higher NO3-, Mg2+, Ca2+ and B UC, while Bellisa exhibited higher K UC in comparison with all other cultivars. The UC of all nutrients were similar in the grafted and the non-grafted 'Sammy' plants, which indicates that this Capsicum annum rootstock does not modify the uptake of nutrients and water by the scion. The UC of macronutrients estimated in the present study (mmol L-1) ranged from 2.4 to 3.7 for Ca, 1.0 to 1.5 for Mg, 6.2 to 9.0 for K, 11.7 to 13.7 for N, and 0.7 to 1.1 for P. The UC of N, K, Ca, and Mg were appreciably higher than the corresponding values found in Dutch tomato glasshouse, while that of P was similar in both locations during the vegetative stage and higher in the present study thereafter. The UC of Fe, Zn and B tended to decrease with time, while that of Mn increased initially and subsequently decreased slightly during the reproductive developmental stage.
Collapse
Affiliation(s)
- Andreas Ropokis
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Athens, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization – ELGO DEMETER, Thessaloniki, Greece
| | - Constantinos Kittas
- Laboratory of Agricultural Constructions and Environmental Control, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Nikolaos Katsoulas
- Laboratory of Agricultural Constructions and Environmental Control, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
8
|
Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, Imtiaz M, Bie Z, Huang Y. Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:115-127. [PMID: 29172132 DOI: 10.1016/j.jplph.2017.11.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/11/2017] [Accepted: 11/11/2017] [Indexed: 05/18/2023]
Abstract
Vanadium (V) is an important heavy metal with ubiquitous presence in the Earth's crust, but limited information is available as to its effect on plants and management strategies. Melatonin is a widely studied biomolecule; it acts as an antioxidant and a signaling molecule that enhances the abiotic stress tolerance of plants. Melatonin improves copper, zinc, and cadmium tolerance in plants. In this study, we investigated the response of watermelon seedlings to V stress and the potential role of melatonin in enhancing V stress tolerance of watermelon seedlings. The results showed that seedlings pretreated with melatonin (0.1μM) exposed to V (50mg/L) had a higher relative chlorophyll content (SPAD index), photosynthetic assimilation, and plant growth compared with non-melatonin pretreated seedlings. Melatonin pretreatment lowered leaf and stem V concentrations by reducing V transport from root to shoot. Melatonin pretreatment enhanced superoxide dismutase (SOD) and catalase (CAT) activities, and reduced the hydrogen peroxide (H2O2) and malondialdehyde (MDA) content of watermelon seedlings, by regulating melatonin biosynthesis and gene expression for superoxide dismutase, peroxidase, ascorbate peroxidase, glutathione peroxidase, and glutathione S-transferase. So far as we know, these results are the first evidence that melatonin improves plant growth of watermelon seedlings under vanadium stress conditions. Considering these observations, melatonin can be utilized to reduce the availability of V to plants, and improve plant growth and V stress tolerance.
Collapse
Affiliation(s)
- Muhammad Azher Nawaz
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Department of Horticulture, University College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Yanyan Jiao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chen Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fareeha Shireen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zuhua Zheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Imtiaz
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zhilong Bie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Yuan Huang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
9
|
Rizwan M, Ali S, Adrees M, Ibrahim M, Tsang DCW, Zia-Ur-Rehman M, Zahir ZA, Rinklebe J, Tack FMG, Ok YS. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. CHEMOSPHERE 2017; 182:90-105. [PMID: 28494365 DOI: 10.1016/j.chemosphere.2017.05.013] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) accumulation in vegetables is an important environmental issue that threatens human health globally. Understanding the response of vegetables to Cd stress and applying management strategies may help to reduce the Cd uptake by vegetables. The aim of the present review is to summarize the knowledge concerning the uptake and toxic effects of Cd in vegetables and the different management strategies to combat Cd stress in vegetables. Leafy vegetables grown in Cd contaminated soils potentially accumulate higher concentrations of Cd, posing a threat to food commodities. The Cd toxicity decreases seed germination, growth, biomass and quality of vegetables. This reduces the photosynthesis, stomatal conductance and alteration in mineral nutrition. Toxicity of Cd toxicity also interferes with vegetable biochemistry causing oxidative stress and resulting in decreased antioxidant enzyme activities. Several management options have been employed for the reduction of Cd uptake and toxicity in vegetables. The exogenous application of plant growth regulators, proper mineral nutrition, and the use of organic and inorganic amendments might be useful for reducing Cd toxicity in vegetables. The use of low Cd accumulating vegetable cultivars in conjunction with insolubilizing amendments and proper agricultural practices might be a useful technique for reducing Cd exposure in the food chain.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Muhammad Ibrahim
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment and Energy, Sejong University, 98 Gunja-dong, Gwnagjin-gu, Seoul, 143-747, South Korea
| | - Filip M G Tack
- Department of Applied Analytical and Physical Chemistry, Ghent University, Gent, Belgium
| | - Yong Sik Ok
- O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Gaion LA, Braz LT, Carvalho RF. Grafting in Vegetable Crops: A Great Technique for Agriculture. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/19315260.2017.1357062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lucas Aparecido Gaion
- Department of Biology Applied to Agriculture, São Paulo State University, Jaboticabal, Brazil
| | - Leila Trevisan Braz
- Department of Crop Production, São Paulo State University, Jaboticabal, Brazil
| | | |
Collapse
|
11
|
Zhou J, Wan H, He J, Lyu D, Li H. Integration of Cadmium Accumulation, Subcellular Distribution, and Physiological Responses to Understand Cadmium Tolerance in Apple Rootstocks. FRONTIERS IN PLANT SCIENCE 2017; 8:966. [PMID: 28638400 PMCID: PMC5461368 DOI: 10.3389/fpls.2017.00966] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/23/2017] [Indexed: 05/26/2023]
Abstract
Cadmium (Cd) is a nonessential and highly toxic element causing agricultural problems. However, little information is available about the variation in Cd tolerance among apple rootstocks and its underlying physiological regulation mechanisms. This study investigated Cd accumulation, subcellular distribution, and chemical forms as well as physiological changes among four apple rootstocks exposed to either 0 or 300 μM CdCl2. The results showed that variations in Cd tolerance existed among these rootstocks. Cd exposure caused decline in photosynthesis, chlorophyll and biomass in four apple rootstocks, which was less pronounced in M. baccata, indicating its higher Cd tolerance. This finding was corroborated with higher Cd tolerance indexes (TIs) of the whole plant in M. baccata than those in the other three apple rootstocks. Among the four apple rootstocks, M. baccata displayed the lowest Cd concentrations in roots, wood, and leaves, the smallest total Cd amounts as well as the lowest BCF. In apple rootstocks, it was found that to immobilize Cd in cell wall and soluble fraction (most likely in vacuole) and to convert it into pectate- or protein- integrated forms and undissolved Cd phosphate forms may be the primary strategies to reduce Cd mobility and toxicity. The physiological changes including ROS, carbohydrates and antioxidants were in line with the variations of Cd tolerance among four apple rootstocks. In comparison with the other three apple rootstocks, M. baccata had lower concentrations of ROS in roots and bark, H2O2 in roots and leaves and MDA in roots, wood and bark, but higher concentrations of soluble sugars in bark and starch in roots and leaves, and enhanced antioxidants. These results indicate that M. baccata are more tolerant to Cd stress than the other three apple rootstocks under the current experiment conditions, which is probably related to Cd accumulation, subcellular partitioning and chemical forms of Cd and well-coordinated antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Jiangtao Zhou
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning ProvinceShenyang, China
| | - Huixue Wan
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning ProvinceShenyang, China
| | - Jiali He
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning ProvinceShenyang, China
| | - Deguo Lyu
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Lab of Fruit Quality Development and Regulation of Liaoning ProvinceShenyang, China
| | - Huifeng Li
- Institute of Pomology, Shandong Academy of Agricultural SciencesTai'an, China
| |
Collapse
|
12
|
Rouphael Y, Rea E, Cardarelli M, Bitterlich M, Schwarz D, Colla G. Can Adverse Effects of Acidity and Aluminum Toxicity Be Alleviated by Appropriate Rootstock Selection in Cucumber? FRONTIERS IN PLANT SCIENCE 2016; 7:1283. [PMID: 27621740 PMCID: PMC5002429 DOI: 10.3389/fpls.2016.01283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/11/2016] [Indexed: 05/21/2023]
Abstract
Low-pH and aluminum (Al) stresses are the major constraints that limit crop yield in acidic soils. Grafting vegetable elite cultivars onto appropriate rootstocks may represent an effective tool to improve crop tolerance to acidity and Al toxicity. Two greenhouse hydroponic experiments were performed to evaluate growth, yield, biomass production, chlorophyll index, electrolyte leakage, mineral composition, and assimilate partitioning in plant tissues of cucumber plants (Cucumis sativus L. "Ekron") either non-grafted or grafted onto "P360" (Cucurbita maxima Duchesne × Cucurbita moschata Duchesne; E/C) or figleaf gourd (Cucurbita ficifolia Bouché; E/F). Cucumber plants were cultured in pots and supplied with nutrient solutions having different pH and Al concentrations: pH 6, pH 3.5, pH 3.5 + 1.5 mM Al, and pH 3.5 + 3 mM Al (Experiment 1, 14 days) and pH 6, pH 3.5, and pH 3.5 + 0.75 mM Al (Experiment 2, 67 days). Significant depression in shoot and root biomass was observed in response to acidity and Al concentrations, with Al-stress being more phytotoxic than low pH treatment. Significant decrease in yield, shoot, and root biomass, leaf area, SPAD index, N, K, Ca, Mg, Mn, and B concentration in aerial parts (leaves and stems) in response to low pH with more detrimental effects at pH 3.5 + Al. Grafted E/C plants grown under low pH and Al had higher yield, shoot, and root biomass compared to E/F and non-grafted plants. This better crop performance of E/C plants in response to Al stress was related to (i) a reduced translocation of Al from roots to the shoot, (ii) a better shoot and root nutritional status in K, Ca, Mg, Mn, and Zn concentration, (iii) a higher chlorophyll synthesis, as well as (iv) the ability to maintain cell membrane stability and integrity (lower electrolyte leakage). Data provide insight into the role of grafting on Al stress tolerance in cucumber.
Collapse
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| | - Elvira Rea
- Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia AgrariaRome, Italy
| | - Mariateresa Cardarelli
- Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia AgrariaRome, Italy
| | | | - Dietmar Schwarz
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
| | - Giuseppe Colla
- Department of Agricultural and Forestry Sciences, University of TusciaViterbo, Italy
| |
Collapse
|
13
|
Nawaz MA, Imtiaz M, Kong Q, Cheng F, Ahmed W, Huang Y, Bie Z. Grafting: A Technique to Modify Ion Accumulation in Horticultural Crops. FRONTIERS IN PLANT SCIENCE 2016; 7:1457. [PMID: 27818663 PMCID: PMC5073839 DOI: 10.3389/fpls.2016.01457] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/12/2016] [Indexed: 05/06/2023]
Abstract
Grafting is a centuries-old technique used in plants to obtain economic benefits. Grafting increases nutrient uptake and utilization efficiency in a number of plant species, including fruits, vegetables, and ornamentals. Selected rootstocks of the same species or close relatives are utilized in grafting. Rootstocks absorb more water and ions than self-rooted plants and transport these water and ions to the aboveground scion. Ion uptake is regulated by a complex communication mechanism between the scion and rootstock. Sugars, hormones, and miRNAs function as long-distance signaling molecules and regulate ion uptake and ion homeostasis by affecting the activity of ion transporters. This review summarizes available information on the effect of rootstock on nutrient uptake and utilization and the mechanisms involved. Information on specific nutrient-efficient rootstocks for different crops of commercial importance is also provided. Several other important approaches, such as interstocking (during double grafting), inarching, use of plant-growth-promoting rhizobacteria, use of arbuscular mycorrhizal fungi, use of plant growth substances (e.g., auxin and melatonin), and use of genetically engineered rootstocks and scions (transgrafting), are highlighted; these approaches can be combined with grafting to enhance nutrient uptake and utilization in commercially important plant species. Whether the rootstock and scion affect each other's soil microbiota and their effect on the nutrient absorption of rootstocks remain largely unknown. Similarly, the physiological and molecular bases of grafting, crease formation, and incompatibility are not fully identified and require investigation. Grafting in horticultural crops can help reveal the basic biology of grafting, the reasons for incompatibility, sensing, and signaling of nutrients, ion uptake and transport, and the mechanism of heavy metal accumulation and restriction in rootstocks. Ion transporter and miRNA-regulated nutrient studies have focused on model and non-grafted plants, and information on grafted plants is limited. Such information will improve the development of nutrient-efficient rootstocks.
Collapse
Affiliation(s)
- Muhammad A. Nawaz
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of EducationWuhan, China
- Department of Horticulture, University College of Agriculture, University of SargodhaSargodha, Pakistan
| | - Muhammad Imtiaz
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Qiusheng Kong
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of EducationWuhan, China
| | - Fei Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of EducationWuhan, China
| | - Waqar Ahmed
- United States Agency for International Development (USDA) and Cultivating New Frontiers in Agriculture (CNFA)Lahore, Pakistan
| | - Yuan Huang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of EducationWuhan, China
- *Correspondence: Yuan Huang
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of EducationWuhan, China
- Zhilong Bie
| |
Collapse
|
14
|
Kumar P, Lucini L, Rouphael Y, Cardarelli M, Kalunke RM, Colla G. Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato. FRONTIERS IN PLANT SCIENCE 2015; 6:477. [PMID: 26167168 PMCID: PMC4481154 DOI: 10.3389/fpls.2015.00477] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/15/2015] [Indexed: 05/18/2023]
Abstract
Physiological, biochemical, metabolite changes, and gene expression analysis of greenhouse tomato (Solanum lycopersicum L.) were investigated in two grafting combinations (self-grafted 'Ikram' and 'Ikram' grafted onto interspecific hybrid rootstock `Maxifort'), with and without arbuscular mycorrhizal (AM), exposed to 0 and 25 μM Cd. Tomato plants responded to moderate Cadmium (Cd) concentration by decreasing yield and crop growth parameters due to the accumulation of Cd in leaf tissue, inhibition of the PS II activity, reduced nutrients translocation, and also to the oxidative stress as evidenced by enhanced hydrogen peroxide (H2O2) generation, ion leakage, and lipid peroxidation. AM inoculation significantly enhanced the metal concentration in shoots and reduced growth and yield. The Ikram/Maxifort combination induced higher antioxidant enzymes, higher accumulation of proline and reduction of lipid peroxidation products. This suggests that the use of Maxifort rootstock in tomato has a high reactive oxygen species scavenging activity since lower H2O2 concentrations were observed in the presence of Cd. The higher crop performance of Ikram/Maxifort in comparison to Ikram/Ikram combination was also due to the improved nutritional status (higher P, K, Ca, Fe, Mn, and Zn) and increased availability of metabolites involved in cadmium tolerance (phytochelatin PC2, fructans, and inulins). The up-regulation of LeNRAMP3 gene in leaf of Ikram/Maxifort could explain the better nutritional status of interspecific grafting combination (higher Fe, Mn, and Zn).
Collapse
Affiliation(s)
- Pradeep Kumar
- Indian Council of Agricultural Research–Central Arid Zone Research Institute, JodhpurIndia
- Department of Agriculture, Forestry, Nature and Energy, University of Tuscia, ViterboItaly
| | - Luigi Lucini
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, PiacenzaItaly
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, PorticiItaly
| | - Mariateresa Cardarelli
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo, RomaItaly
| | - Raviraj M. Kalunke
- Department of Agriculture, Forestry, Nature and Energy, University of Tuscia, ViterboItaly
| | - Giuseppe Colla
- Department of Agriculture, Forestry, Nature and Energy, University of Tuscia, ViterboItaly
| |
Collapse
|
15
|
Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. Biometals 2015; 28:803-16. [DOI: 10.1007/s10534-015-9867-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 12/25/2022]
|
16
|
Ansari MKA, Ahmad A, Umar S, Zia MH, Iqbal M, Owens G. Genotypic variation in phytoremediation potential of Indian mustard exposed to nickel stress: a hydroponic study. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:135-144. [PMID: 25237724 DOI: 10.1080/15226514.2013.862206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ten Indian mustard (Brassica juncea L.) genotypes were screened for their nickel (Ni) phytoremediation potential under controlled environmental conditions. All ten genotypes were grown hydroponically in aqueous solution containing Ni concentrations (as nickel chloride) ranging from 0 to 50 μM and changes in plant growth, biomass and total Ni uptake were evaluated. Of the ten genotypes (viz. Agrini, BTO, Kranti, Pusa Basant, Pusa Jai Kisan, Pusa Bahar, Pusa Bold, Vardhan, Varuna, and Vaibhav), Pusa Jai Kisan was the most Ni tolerant genotype accumulating up to 1.7 μg Ni g(-1) dry weight (DW) in its aerial parts. Thus Pusa Jai Kisan had the greatest potential to become a viable candidate in the development of practical phytoremediation technologies for Ni contaminated sites.
Collapse
Affiliation(s)
- Mohd Kafeel Ahmad Ansari
- a Molecular Ecology Laboratory, Department of Botany, Faculty of Science , Hamdard University , New Delhi , India
| | | | | | | | | | | |
Collapse
|