1
|
Yoashi NT, Hsu CJ, Wang YL, Wu PH, Hseu ZY, Chien LC, Hsi HC. Novel synthesis and application of biochar for controlling release and exposure of mercury in the farmland: From human health risk perspective. ENVIRONMENTAL RESEARCH 2025; 276:121465. [PMID: 40132723 DOI: 10.1016/j.envres.2025.121465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/01/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
Mercury (Hg)-contaminated farmlands have received wide attention because of the adverse risks posed to food security and human health. In addition, climate change altered the mobility of Hg in the soil, limiting soil productivity and nutrient bioavailability, hence elevating health risks. To adapt to these risks, pot experiments were employed to showcase the impacts of single-pyrolytic synthesized biochar with nitrogen and phosphorus impregnation (NPBC) on the nutrient accessibility, Hg immobilization, and human health risks, compared to pristine and control groups. Results revealed that, with increased surface area and abundant function groups, impregnation amplified bulk nitrogen, phosphorus, and oxygen content from 0.47, 0.25, and 9.47 % to 3.01, 4.50, and 21.4 %, respectively. The pot experiments indicated the effectiveness of NPBC900 in immobilizing soil Hg, hence reducing Brassica rapa chinensis' Hg uptake by 88 %. Notably, NPBC transformed ∼93 % of water soluble and exchangeable Hg species to stable fractions, enhancing the residue concentration three-fold higher than the control. Additionally, NPBC700-900 showcased characteristic phosphorus and nitrogen slow-release (best at NPBC900 and NPBC500, respectively; 5 %) contributing to controlled soil available nutrients. Hg bioaccessible fraction exhibited a notably higher level (1.7 mg kg-1) in the control group measured against BC (0.8 mg kg-1) and NPBC treatments (∼0.1 mg kg-1). Through dietary and soil ingestion pathways, NPBC900 treatment demonstrated the best health risk reduction for farmers and the public by ∼93 and 69 %, respectively. With versatile capabilities, NPBC emerges as a practical, green, and sustainable alternative in Hg remedy technologies, a breakthrough for climate change adaptation.
Collapse
Affiliation(s)
- Nathan Thadeo Yoashi
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Che-Jung Hsu
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Ying-Lin Wang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Po-Hui Wu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Zheng-Yei Hseu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Ling-Chu Chien
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Bulgari R, Riahi J, Cecire R, Celi L, Malandrino M, Stefanescu Miralles G, Comba L, Alfarano L, Pugliese M. Characterisation of combined abiotic and biotic stresses effects on lettuce plants via a multi-analysis approach. FRONTIERS IN PLANT SCIENCE 2025; 16:1550577. [PMID: 40433152 PMCID: PMC12106029 DOI: 10.3389/fpls.2025.1550577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/16/2025] [Indexed: 05/29/2025]
Abstract
Crop losses due to abiotic and biotic (in particular fungal diseases) stresses significantly impact yields and quality in agricultural productions. Identifying strategies to prevent or mitigate those stresses is crucial for developing resilient crop systems. To this aim, a deep and complete characterisation of the main effects induced in lettuce, a representative species grown in soilless system within a greenhouse, was conducted by applying water, nutritional, and biotic stresses individually and in combination. Specifically, water stress was induced on plants by 40% irrigation deficit with respect to the reference watering practice. Nutritional stress was induced by - 40% of nitrogen (N) and phosporus (P) in the nutrient solution. As biotic stress, the one induced by Fusarium wilt (caused by Fusarium oxysporum f. sp. lactucae) was considered. To characterise the effects on lettuce induced by the selected stresses, a wide set of analysis was performed, with a multidisciplinary approach: in vivo measurements involved spectral reflectance characterisation and chlorophyll assessment; at harvest, biotic stress severity quantification, based on vascular browning, was evaluated, and fresh and dry weight, chlorophylls, carotenoids, phenolics, anthocyanins, and nitrate, as well as macro, micro, and mesonutrients content were determined with destructive analysis. Results showed that Fusarium wilt had a greater effect on plants than water and nutrition stresses, reducing fresh weight (FW) by 69% while increasing antioxidants and nutrients, highlighting a shift toward stress-induced metabolic reactions. Spectral indices like Pigment Specific Simple Ratio (PSSRa) and Simple Ratio Pigment Index (SRPI) effectively detected the biotic stress, revealing significant differences between stressed and control plants, while there were no visual signs of stress or alterations in leaf color. The principal component analysis (PCA) highlighted FW, disease severity, and mineral content as key drivers of stress-induced changes, emphasizing the metabolic and physiological defense mechanisms of lettuce under biotic stress. These findings pave the way to the development of proactive, reliable, and effective methods for stress detection in lettuce cultivation, also including non-destructive optical approaches.
Collapse
Affiliation(s)
- Roberta Bulgari
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università di Torino, Grugliasco, Italy
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agro-energy (DiSAA), Università degli Studi di Milano, Milano, MI, Italy
| | - Jouhaina Riahi
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università di Torino, Grugliasco, Italy
| | - Riccardo Cecire
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università di Torino, Grugliasco, Italy
- Department of Chemistry, Università di Torino, Torino, Italy
| | - Luisella Celi
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università di Torino, Grugliasco, Italy
| | - Mery Malandrino
- Department of Chemistry, Università di Torino, Torino, Italy
| | - Gica Stefanescu Miralles
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università di Torino, Grugliasco, Italy
- Department of Computer Science (DI), Università di Torino, Torino, Italy
| | - Lorenzo Comba
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università di Torino, Grugliasco, Italy
| | - Luca Alfarano
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università di Torino, Grugliasco, Italy
- Agroinnova - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, Università di Torino, Grugliasco, Italy
| | - Massimo Pugliese
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università di Torino, Grugliasco, Italy
- Agroinnova - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, Università di Torino, Grugliasco, Italy
| |
Collapse
|
3
|
Mohammed Ali U, Soresa DN, Fufa TW. Tailoring Tomato ( Solanum lycopersicum L.) Traits to Microclimates: A Multilocation Evaluation of Yield and Quality Responses in Western Ethiopia. SCIENTIFICA 2025; 2025:6345142. [PMID: 40330799 PMCID: PMC12052464 DOI: 10.1155/sci5/6345142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/22/2025] [Indexed: 05/08/2025]
Abstract
Tomato (Solanum lycopersicum L.) is a crucial crop for food security and income generation in Western Ethiopia. However, unsuitable cultivar choices and misalignment between genotype and microclimate conditions often constrain its productivity. This study aimed to evaluate the performance of eight national tomato cultivars and one local landrace across diverse microclimates in Western Ethiopia during the 2022/2023 off-season cropping period. A randomized complete block design with three replications was employed to assess growth, yield, and quality parameters at two locations: Bako Tibe and Gambella Tare. The results revealed significant genotype-environment interactions affecting various traits, underscoring the necessity for microclimatic adaptation in tomato cultivation. Cochoro emerged as a high-yielding cultivar, achieving marketable fruit yields of 91.5 t/ha at Bako and 84.28 t/ha at Gambella Tare, while Komto (43 t/ha at Bako Tibe) and Geli-Lema (42.2 t/ha at Gambella Tare) exhibited the lowest yields. Melka-Salsa demonstrated superior fruit quality, particularly in ascorbic acid content (26.30 mg/100 g), while Cochoro had the lowest (12.81 mg/100 g). A strong positive correlation (r = 0.998∗∗) was identified between total marketable fruit yield and fruit weight per plant, suggesting potential targets for future breeding efforts. This study highlights the critical role of genotype-environment interactions in optimizing tomato production across microclimates in Western Ethiopia. These findings provide valuable information for farmers and stakeholders to select the most suitable cultivars, enhancing yields and improving farmer incomes. Future research should prioritize expanded genotype-environment interaction studies, breeding programs targeting yield components and stress resilience traits, and the development of location-specific agronomic packages integrating optimized irrigation, nutrient management, and climate-smart pest control strategies.
Collapse
Affiliation(s)
- Usman Mohammed Ali
- Department of Plant Sciences, Faculty of Agriculture, Wollega University, Shambu, Oromia, Ethiopia
| | - Desalegn Negasa Soresa
- Department of Plant Sciences, Faculty of Agriculture, Wollega University, Shambu, Oromia, Ethiopia
| | - Tilahun Wondimu Fufa
- Bako Agricultural Research Center, Oromia Agricultural Research Institute, Bako, Oromia, Ethiopia
| |
Collapse
|
4
|
Gen-Jiménez A, Flores-Félix JD, Rincón-Molina CI, Manzano-Gómez LA, Villalobos-Maldonado JJ, Ruiz-Lau N, Roca-Couso R, Ruíz-Valdiviezo VM, Rincón-Rosales R. Native Rhizobium biofertilization enhances yield and quality in Solanum lycopersicum under field conditions. World J Microbiol Biotechnol 2025; 41:126. [PMID: 40189708 DOI: 10.1007/s11274-025-04349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/01/2025] [Indexed: 04/23/2025]
Abstract
In response to growing concerns about the environmental and economic impacts of chemical fertilizers, this study explores the potential of biofertilization using native Rhizobium strains to enhance the growth, yield, and quality of Solanum lycopersicum (tomato) under field conditions. The experiment assessed the effects of Rhizobium biofertilization on plant performance and soil microbial communities by applying R. calliandrae, R. jaguaris, R. mayense, and a bacterial consortium, in comparison to conventional chemical fertilization. Key parameters such as plant height, fruit yield, macronutrient and micronutrient content, and fruit quality (lycopene and β-carotene levels) were measured. Results showed that R. calliandrae and R. jaguaris significantly enhanced fruit yield, nitrogen, potassium, manganese, and boron levels, while also improving fruit quality compared to the control. The impact of strain inoculation on the structure of the microbial community was also examined. Metataxonomic analysis of rhizospheric soils revealed no significant changes in microbial diversity, indicating that biofertilization with Rhizobium strains promotes plant growth without disrupting the composition of the soil microbiome. These findings suggest that Rhizobium biofertilization is a viable and sustainable alternative to chemical fertilizers, providing benefits to both crop productivity and soil health while minimizing the environmental footprint associated with conventional agricultural practices. The study underscores the importance of carefully selecting bacterial species with complementary functions to maximize the effectiveness of biofertilization strategies.
Collapse
Affiliation(s)
- Adriana Gen-Jiménez
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, 29050, Mexico
| | - José David Flores-Félix
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, 37007, Spain
- Instituto de Investigación en Agrobiotecnología (CIALE), Salamanca, 37185, Spain
| | - Clara Ivette Rincón-Molina
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, 29050, Mexico
| | - Luis Alberto Manzano-Gómez
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, 29050, Mexico
- 3R Biotec SA de CV, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Juan José Villalobos-Maldonado
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, 29050, Mexico
| | - Nancy Ruiz-Lau
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, 29050, Mexico
| | - Rocio Roca-Couso
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, 37007, Spain
- Instituto de Investigación en Agrobiotecnología (CIALE), Salamanca, 37185, Spain
| | - Víctor Manuel Ruíz-Valdiviezo
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, 29050, Mexico
| | - Reiner Rincón-Rosales
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, 29050, Mexico.
| |
Collapse
|
5
|
Ahmed N, Li J, Li Y, Deng L, Deng L, Chachar M, Chachar Z, Chachar S, Hayat F, Raza A, Umrani JH, Gong L, Tu P. Symbiotic synergy: How Arbuscular Mycorrhizal Fungi enhance nutrient uptake, stress tolerance, and soil health through molecular mechanisms and hormonal regulation. IMA Fungus 2025; 16:e144989. [PMID: 40162002 PMCID: PMC11953731 DOI: 10.3897/imafungus.16.144989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
Arbuscular Mycorrhizal (AM) symbiosis is integral to sustainable agriculture and enhances plant resilience to abiotic and biotic stressors. Through their symbiotic association with plant roots, AM improves nutrient and water uptake, activates antioxidant defenses, and facilitates hormonal regulation, contributing to improved plant health and productivity. Plants release strigolactones, which trigger AM spore germination and hyphal branching, a process regulated by genes, such as D27, CCD7, CCD8, and MAX1. AM recognition by plants is mediated by receptor-like kinases (RLKs) and LysM domains, leading to the formation of arbuscules that optimize nutrient exchange. Hormonal regulation plays a pivotal role in this symbiosis; cytokinins enhance AM colonization, auxins support arbuscule formation, and brassinosteroids regulate root growth. Other hormones, such as salicylic acid, gibberellins, ethylene, jasmonic acid, and abscisic acid, also influence AM colonization and stress responses, further bolstering plant resilience. In addition to plant health, AM enhances soil health by improving microbial diversity, soil structure, nutrient cycling, and carbon sequestration. This symbiosis supports soil pH regulation and pathogen suppression, offering a sustainable alternative to chemical fertilizers and improving soil fertility. To maximize AM 's potential of AM in agriculture, future research should focus on refining inoculation strategies, enhancing compatibility with different crops, and assessing the long-term ecological and economic benefits. Optimizing AM applications is critical for improving agricultural resilience, food security, and sustainable farming practices.
Collapse
Affiliation(s)
- Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| | - Juan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| | - Lifang Deng
- Institute of Biomass Engineering, South China Agricultural University, 510642, Guangzhou, China
| | - Lansheng Deng
- Institute of Biomass Engineering, South China Agricultural University, 510642, Guangzhou, China
| | - Muzafaruddin Chachar
- College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China
| | - Zaid Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| | - Faisal Hayat
- Faculty of Crop Production, Sindh Agriculture University, 70060), Tandojam, Pakistan
| | - Ahmed Raza
- College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China
| | - Javed Hussain Umrani
- College of Natural Resources and Environment, South China Agricultural University, 510642, Guangzhou, China
| | - Lin Gong
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| | - Panfeng Tu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China
| |
Collapse
|
6
|
Mondal S, Sen A. Deciphering the consequences of heavy metals and metalloid hazard in agricultural soil of West Bengal: A comprehensive soil to health risk analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:178976. [PMID: 40043647 DOI: 10.1016/j.scitotenv.2025.178976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/01/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
Heavy metals and metalloids (HMMs) pollution is an escalating global concern, driven by rapid industrialization, urbanization, and agricultural intensification. Contaminated soil not only compromise crop productivity but also introduce toxic elements into the food chain, posing serious risks to human health and ecological integrity. This study investigates the extent of HMMs-contamination (As, Cd, Pb, Ni, Cu, and Zn) in agricultural soils across the Gangetic plain and surrounding industrial regions of West Bengal, India, a microcosm of global challenges in soil pollution. Using Inductively Coupled Plasma - Atomic Emission Spectroscopy, we have analyzed a total 50 soil samples from Malda, Paschim Bardhaman, and Murshidabad districts. Results indicate significant contamination with arsenic (8.89-21.85 and 3.74-33.28 mg kg-1) and nickel, dominating the Gangetic plain soils due to overuse of contaminated groundwater and agrochemicals. While, industrial areas exhibited alarming levels of cadmium (0.89-3.39 mg kg-1), nickel (31.87-92.06 mg kg-1), and zinc. A pot experiment with soybean (Glycine max) seedlings revealed that HMMs-toxicity impaired growth, elevated reactive oxygen species, and caused DNA-damage. Human health risk assessments identified arsenic and cadmium as primary carcinogens (target carcinogenic risk >1.0 × 10-4) for adults and children under prolonged exposure. These findings underscore the urgency of global regulatory measures and innovative remediation strategies to mitigate soil pollution, safeguard food security, protect public health and prevent further environmental degradation. This also study highlights the Gangetic plain as a critical area reflecting broader environmental challenges, offering insights applicable to regions facing similar industrial and agricultural pressures worldwide.
Collapse
Affiliation(s)
- Sourik Mondal
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India
| | - Arnab Sen
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India.
| |
Collapse
|
7
|
Li D, Min Y, Cheng C, Liu X, Xie X, Chalchisa G, Peng C, Jiang Q, Xiao N, Cai J, Zhong C. The diversity and disparity of mineral elements in global kiwifruits. Food Res Int 2025; 203:115844. [PMID: 40022367 DOI: 10.1016/j.foodres.2025.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
Mineral elements in fruits are essential for various physiological functions and offer significant health benefits. While kiwifruit is valued for its vitamin C and nutritional content, the role of its mineral composition and distribution in fruit safety and disease remains unclear. This study analyzed the mineral composition of kiwifruits from 12 cultivars across 4 countries, identifying 20 mineral elements. Notably, potassium and magnesium concentrations were significantly higher compared to those in most commonly consumed fruits. The mineral profiles varied by flesh color: red-fleshed kiwifruits had more iron and phosphorus, green-fleshed varieties contained more calcium and manganese, and yellow-fleshed fruits had higher levels of potassium, chlorine. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was optimized to visualize mineral distribution, revealing heterogeneous patterns of potassium, calcium, chlorine, sodium and boron in kiwifruits affected by soft rot. These findings underscore the potential of LA-ICP-MS as an effective tool for studying the distribution of nutrients in fruit and assessing its physiological disorders. The target hazard quotient (THQ) values of the mineral contents in all kiwifruit samples were below 1, indicating no significant risk of heavy metal contamination. Furthermore, agricultural practices such as fertilization and fungicide application influenced mineral content, with red-fleshed kiwifruits showing elevated copper and lead levels, likely from heavy metal-based disease and pest control agents. This study provides a comprehensive analysis of mineral diversity in kiwifruits and introduces a novel visual mapping technique, offering valuable insights into both the nutritional profile and safety of kiwifruit.
Collapse
Affiliation(s)
- Dawei Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yan Min
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang Cheng
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoying Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaodong Xie
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Gudeta Chalchisa
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, China
| | - Cheng Peng
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Quan Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Naidong Xiao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianbo Cai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Caihong Zhong
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
8
|
Kļaviņa D, Osvalde A, Tabors G, Jakobsone G. Current Status of Pulsatilla patens in Latvia-Population Size, Demographic and Seed Viability Indicators, Soil Parameters and Their Relationships. PLANTS (BASEL, SWITZERLAND) 2025; 14:375. [PMID: 39942937 PMCID: PMC11819818 DOI: 10.3390/plants14030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025]
Abstract
Pulsatilla patens (L.) Mill. (Eastern pasque flower) is classified as a highly endangered and declining species in Europe. The present research assessed the current status of P. patens in Latvia by collecting data on its distribution in historical places, Natura 2000 territories, and other areas, largely covering the entire country. We aimed to analyze the relationships between P. patens populations size, demographic indicators, and soil parameters, in order to gain knowledge on the impact of local ecological factors and optimal growth conditions, which are important for conservation and potential reintroduction. Although P. patens was not detected in more than a third of the surveyed 624 locations, more than 18 thousand individuals were recorded. Our results indicate that optimal growth conditions for P. patens occurred near highways, forest roads, and paths, that is, in places with reduced competition from other species and improved lighting conditions. The seed viability ranging from 22% to 62% can be considered potentially sufficient for the continuation of the species if enough flowering plants and moss-free spaces for germination are maintained. Although P. patens tolerates a broad soil pH range, in Latvia this species mainly grows in acidic sandy soils with an average pHKCl of 4.07. The soil parameters that most strongly positively correlated with P. patens regional population size and performance included higher soil pH level and plant available nutrient content, particularly P, K, Ca, Mg, Mn and B. Increased soil P and Mn levels significantly enhanced flowering, while high organic matter content could be associated with reduced population sizes. Despite its still large current population, long-term risks remain without active management. Conservation measures, such as creating open soil areas, where vegetation is removed and shading is reduced, are necessary to mitigate population decline.
Collapse
Affiliation(s)
- Dace Kļaviņa
- National Botanic Garden of Latvia, 1 Miera Street, LV-2169 Salaspils, Latvia; (D.K.); (G.J.)
| | - Anita Osvalde
- Institute of Biology, Faculty of Medicine and Life Sciences, University of Latvia, 4 O. Vaciesa Street, LV-1004 Riga, Latvia
| | - Guntis Tabors
- Faculty of Medicine and Life Sciences, University of Latvia, 1 Jelgavas Street, LV-1004 Riga, Latvia;
| | - Gunta Jakobsone
- National Botanic Garden of Latvia, 1 Miera Street, LV-2169 Salaspils, Latvia; (D.K.); (G.J.)
| |
Collapse
|
9
|
Ahmed N, Tu P, Deng L, Chachar S, Chachar Z, Deng L. Optimizing the dual role of biochar for phosphorus availability and arsenic immobilization in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177810. [PMID: 39616926 DOI: 10.1016/j.scitotenv.2024.177810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
Soil Phosphorus (P) fixation and Arsenic (As) contamination pose significant challenges to agriculture and environmental health. Biochar has emerged as a promising soil amendment capable of enhancing P availability while immobilizing As. This review explored the mechanisms by which biochar influences P dynamics and As sequestration. Biochar enhances P availability by reducing fixation, stimulating P-solubilizing microorganisms, and gradually releasing the adsorbed P. Specific biochars, such as Mg-modified and La-modified types, demonstrate high P adsorption capacities, reaching up to 263 mg/g, while cerium and iron-modified biochars show As adsorption efficiencies up to 99 % under certain conditions. Biochar's surface functional groups are essential for P and As adsorption through mechanisms such as surface adsorption, ligand exchange, and inner-sphere complexation. The competitive adsorption between P and As is influenced by pH, biochar modification, and co-existing anions. Under acidic conditions, As shows a higher affinity for biochar, forming stable complexes with metal oxides like iron and aluminum. Biochars modified with calcium, magnesium, lanthanum, zinc, cerium, and iron demonstrate enhanced adsorption capacities. In neutral to alkaline conditions, calcium- and magnesium-modified biochars benefit P retention, while iron-modified biochar is preferable for As adsorption. Additionally, biochar promotes microbial activity and enzymatic processes that facilitate As transformation and P mineralization, enhancing overall soil health. These findings underscore biochar's dual role in increasing nutrient availability and reducing contaminant risks, making it a valuable tool for sustainable agriculture. Field-scale applications should be prioritized in future research to optimize biochar's impact on soil fertility and environmental remediation.
Collapse
Affiliation(s)
- Nazir Ahmed
- South China Agricultural University, Guangzhou 510642, China; College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Panfeng Tu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Lansheng Deng
- South China Agricultural University, Guangzhou 510642, China
| | - Sadaruddin Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Lifang Deng
- South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Zhou H, Huang S, Zhang Z, Li T, Li Y, Zhuang G, Liu G, Fu B, Kuang X. Network and stoichiometry analysis revealed a fast magnesium and calcium deficiency of mulched Phyllostachys violascens. FRONTIERS IN PLANT SCIENCE 2024; 15:1492137. [PMID: 39665104 PMCID: PMC11632225 DOI: 10.3389/fpls.2024.1492137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/16/2024] [Indexed: 12/13/2024]
Abstract
The imbalanced fertilization and the consequential deterioration on the rhizosphere microbial community (RMC) were two potential reasons for the quick yielding degradation of Phyllostachys violascens (Lei-bamboo), a high-value shoot-oriented bamboo. However, most research only focused on nitrogen, phosphorus, and potassium; the studies on the dynamics of other nutrients, such as calcium and magnesium; and their driving mechanisms, lags far behind. Thus, Lei-bamboo fields of different mulching and recovery ages were selected to investigate the dynamics of calcium and magnesium in both soil and bamboo tissue, and to explore their relationship to RMC composition and network patterns. The results showed that mulching increased the content of soil acidification, total organic carbon, alkali-hydrolysable nitrogen, available phosphorus, and available potassium but reduced soil exchangeable magnesium and calcium in soil as well as the magnesium and calcium content in rhizome, stem, and leaf of Lei-bamboo, which indicated an increased relative limitation on magnesium and calcium. Mulching also enhanced the α-diversity and reshaped the composition of RMC, which had a close link to Mg rather than nitrogen, phosphorus, and potassium. As the mulching years increased, the RMC network became bigger and more complex, and the magnesium and calcium gradually appeared in the network center, which further support the magnesium and calcium deficiency to RMC. Nearly all the variation mentioned above could be revered after the removing of mulching. Structural equation modeling showed two main pathways that mulching leads to magnesium and calcium deficiency in Lei-bamboo, one is directly by lowering soil magnesium and calcium content, the other one is indirectly by improving RMC network interactions, a sign of weakened mutualism between RMC and plant roots that hampering the uptake of nutrients. This research highlights the quick magnesium and calcium deficiency caused by mulching in Lei-bamboo forest and the contribution of RMC in amplify the effects of soil magnesium and calcium deficiency, which offers valuable information on balancing fertilization pattern for future sustainable Lei-bamboo cultivation.
Collapse
Affiliation(s)
- Hanchang Zhou
- The Bamboo Institute, Jiangxi Academy of Forestry, Nanchang, China
- The Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Siyuan Huang
- The Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ziying Zhang
- The Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ting Li
- The Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yi Li
- The Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Zhuang
- The Bamboo Institute, Jiangxi Academy of Forestry, Nanchang, China
| | - Guohua Liu
- The Bamboo Institute, Jiangxi Academy of Forestry, Nanchang, China
| | - Bojie Fu
- The Bamboo Institute, Jiangxi Academy of Forestry, Nanchang, China
| | - Xiaobao Kuang
- The Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Hernandez LE, Ruiz JM, Espinosa F, Alvarez-Fernandez A, Carvajal M. Plant nutrition challenges for a sustainable agriculture of the future. PHYSIOLOGIA PLANTARUM 2024; 176:e70018. [PMID: 39691080 DOI: 10.1111/ppl.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
This article offers a comprehensive review of sustainable plant nutrition concepts, examining a multitude of cutting-edge techniques that are revolutionizing the modern area. The review copes with the crucial role of biostimulants as products that stimulate plant nutrition processes, including their potential for biofertilization, followed by an exploration of the significance of micronutrients in plant health and growth. We then delve into strategies for enhancing plants' tolerance to mineral nutrient contaminants and the promising realm of biofortification to increase the essential nutrients necessary for human health. Furthermore, this work also provides a concise overview of the burgeoning field of nanotechnologies in fertilization, while the integration of circular economy principles underscores the importance of sustainable resource management. Then, with examined the interrelation between micronutrients. We conclude with the future challenges and opportunities that lie ahead in the pursuit of more sustainable and resilient plant systems.
Collapse
Affiliation(s)
- Luis E Hernandez
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Madrid, Spain
| | - Juan M Ruiz
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Francisco Espinosa
- Plant Biology, Ecology and Earth Sciences Department, Extremadura University, Badajoz, Spain
| | | | - Micaela Carvajal
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS, CSIC), Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
12
|
Ilakiyalakshmi M, Dhanasekaran K, Napoleon AA. A Review on Recent Development of Phenothiazine-Based Chromogenic and Fluorogenic Sensors for the Detection of Cations, Anions, and Neutral Analytes. Top Curr Chem (Cham) 2024; 382:29. [PMID: 39237745 DOI: 10.1007/s41061-024-00474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
This review provides an in-depth examination of recent progress in the development of chemosensors, with a particular emphasis on colorimetric and fluorescent probes. It systematically explores various sensing mechanisms, including metal-to-ligand charge transfer (MLCT), ligand-to-metal charge transfer (LMCT), photoinduced electron transfer (PET), intramolecular charge transfer (ICT), and fluorescence resonance energy transfer (FRET), and elucidates the mechanism of action for cation and anion chemosensors. Special attention is given to phenothiazine-based fluorescence probes, highlighting their exceptional sensitivity and rapid detection abilities for a broad spectrum of analytes, including cations, anions, and small molecules. Phenothiazine chemosensors have emerged as versatile tools widely employed in a multitude of applications, spanning environmental and biomedical fields. Furthermore, it addresses existing challenges and offers insights into future research directions, aiming to facilitate the continued advancement of phenothiazine-based fluorescent probes.
Collapse
Affiliation(s)
- Mohan Ilakiyalakshmi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Kumudhavalli Dhanasekaran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ayyakannu Arumugam Napoleon
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
13
|
Altaf MT, Liaqat W, Jamil A, Jan MF, Baloch FS, Barutçular C, Nadeem MA, Mohamed HI. Strategies and bibliometric analysis of legumes biofortification to address malnutrition. PLANTA 2024; 260:85. [PMID: 39227398 DOI: 10.1007/s00425-024-04504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024]
Abstract
MAIN CONCLUSION Biofortification of legumes using diverse techniques such as plant breeding, agronomic practices, genetic modification, and nano-technological approaches presents a sustainable strategy to address micronutrient deficiencies of underprivileged populations. The widespread issue of chronic malnutrition, commonly referred to as "hidden hunger," arises from the consumption of poor-quality food, leading to various health and cognitive impairments. Biofortified food crops have been a sustainable solution to address micronutrient deficiencies. This review highlights multiple biofortification techniques, such as plant breeding, agronomic practices, genetic modification, and nano-technological approaches, aimed at enhancing the nutrient content of commonly consumed crops. Emphasizing the biofortification of legumes, this review employs bibliometric analysis to examine research trends from 2000 to 2023. It identifies key authors, influential journals, contributing countries, publication trends, and prevalent keywords in this field. The review highlights the progress in developing biofortified crops and their potential to improve global nutrition and help underprivileged populations.
Collapse
Affiliation(s)
- Muhammad Tanveer Altaf
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey.
| | - Waqas Liaqat
- Department of Field Crops, Faculty of Agriculture, Institute of Natural and Applied Sciences, Çukurova University, 01330, Adana, Turkey
| | - Amna Jamil
- Department of Horticulture, MNS University of Agriculture, Multan, Pakistan
| | - Muhammad Faheem Jan
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, 33343, Yenişehir, Mersin, Turkey
| | - Celaleddin Barutçular
- Department of Field Crops, Faculty of Agriculture, Institute of Natural and Applied Sciences, Çukurova University, 01330, Adana, Turkey
| | - Muhammad Azhar Nadeem
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
14
|
Zhang Y, Yaphary YL, Jiao X, Yau Li SF. Valorization of sewage sludge incineration ash as a novel soilless growing medium for urban agriculture and greenery. CHEMOSPHERE 2024; 364:143059. [PMID: 39134181 DOI: 10.1016/j.chemosphere.2024.143059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Limited open areas for urban agriculture and greenery have led to the search for innovative, sustainable growing media to strengthen the food supply and improve atmospheric quality for a resilient city. Rampant land developments have caused soil to become increasingly scarce. Sewage sludge incineration ash (SSIA), the by-product of waste-to-energy (WtE) incineration of sewage sludge, is a major municipal waste containing phosphorus-fertilizing nutrients. For the first time, we investigated the novel application of SSIA as a soilless plant-growing medium with built-in fertilizer. SSIA outperformed topsoil in bulk density, water-holding capacity, porosity, and nutrient content. However, it was found that SSIA has a high salinity and should be treated first. Wheatgrass (Triticum aestivum L.), a fast-growing glycophyte, thrived in the desalinated SSIA, showing growth and nutrient content comparable to the topsoil case. Simultaneously, it demonstrated phytoremediation. The SSIA residue was then recycled into cementitious materials, using desalinating water for mixing. SSIA upcycle into a growing medium facilitates urban resource management by utilizing nutrients in sewage waste for eco-friendly plant cultivation, benefiting urban agriculture and greenery. It is also a prudent valorization step before further recycling SSIA to reduce landfill requirements.
Collapse
Affiliation(s)
- Yijie Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yohannes L Yaphary
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| | - Xiaotong Jiao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
15
|
Ahmed N, Deng L, Narejo MUN, Baloch I, Deng L, Chachar S, Li Y, Li J, Bozdar B, Chachar Z, Hayat F, Chachar M, Gong L, Tu P. Bridging agro-science and human nutrition: zinc nanoparticles and biochar as catalysts for enhanced crop productivity and biofortification. FRONTIERS IN PLANT SCIENCE 2024; 15:1435086. [PMID: 39220014 PMCID: PMC11361987 DOI: 10.3389/fpls.2024.1435086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The integration of zinc nanoparticles (Zn NPs) with biochar offers a transformative approach to sustainable agriculture by enhancing plant productivity and human nutrition. This combination improves soil health, optimizes nutrient uptake, and increases resilience to environmental stressors, leading to superior crop performance. Our literature review shows that combining Zn NPs with biochar significantly boosts the crop nutrient composition, including proteins, vitamins, sugars, and secondary metabolites. This enhancement improves the plant tolerance to environmental challenges, crop quality, and shelf life. This technique addresses the global issue of Zn deficiency by biofortifying food crops with increased Zn levels, such as mung beans, lettuce, tomatoes, wheat, maize, rice, citrus, apples, and microgreens. Additionally, Zn NPs and biochar improve soil properties by enhancing water retention, cation exchange capacity (CEC), and microbial activity, making soils more fertile and productive. The porous structure of biochar facilitates the slow and sustained release of Zn, ensuring its bioavailability over extended periods and reducing the need for frequent fertilizer applications. This synergy promotes sustainable agricultural practices and reduces the environmental footprint of the traditional farming methods. However, potential ecological risks such as biomagnification, nanoparticle accumulation, and toxicity require careful consideration. Comprehensive risk assessments and management strategies are essential to ensure that agricultural benefits do not compromise the environmental or human health. Future research should focus on sustainable practices for deploying Zn NPs in agriculture, balancing food security and ecological integrity and positioning this approach as a viable solution for nutrient-efficient and sustainable agriculture.
Collapse
Affiliation(s)
- Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lifang Deng
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, China
| | | | - Iqra Baloch
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Lansheng Deng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Juan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Bilquees Bozdar
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Faisal Hayat
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | | | - Lin Gong
- Dongguan Yixiang Liquid Fertilizer Co. Ltd., Dongguan, China
| | - Panfeng Tu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Gupta R, Verma N, Tewari RK. Micronutrient deficiency-induced oxidative stress in plants. PLANT CELL REPORTS 2024; 43:213. [PMID: 39133336 DOI: 10.1007/s00299-024-03297-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Micronutrients like iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), boron (B), nickel (Ni), and molybdenum (Mo) perform significant roles in the regulation of plant metabolism, growth, and development. Micronutrients, namely Fe, Zn, Cu, Mn, and Ni, are involved in oxidative stress and antioxidant defense as they are cofactors or activators of various antioxidant enzymes, viz., superoxide dismutase (Fe, Cu/Zn, Mn, and Ni), catalase (Fe), and ascorbate peroxidase (Fe). An effort has been made to incorporate recent advances along with classical work done on the micronutrient deficiency-induced oxidative stress and associated antioxidant responses of plants. Deficiency of a micronutrient produces ROS in the cellular compartments. Enzymatic and non-enzymatic antioxidant defense systems are often modulated by micronutrient deficiency to regulate redox balance and scavenge deleterious ROS for the safety of cellular constituents. ROS can strike cellular constituents such as lipids, proteins, and nucleic acids and can destruct cellular membranes and proteins. ROS might act as a signaling molecule and activate the antioxidant proteins by interacting with signaling partners such as respiratory burst oxidase homolog (RBOH), G-proteins, Ca2+, mitogen activated protein kinases (MAPKs), and various transcription factors (TFs). Opinions on probable ROS signaling under micronutrient deficiency have been described in this review. However, further research is required to decipher micronutrient deficiency-induced ROS generation, perception, and associated downstream signaling events, leading to the development of antioxidant responses in plants.
Collapse
Affiliation(s)
- Roshani Gupta
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Nikita Verma
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | | |
Collapse
|
17
|
Śniatała B, Al-Hazmi HE, Sobotka D, Zhai J, Mąkinia J. Advancing sustainable wastewater management: A comprehensive review of nutrient recovery products and their applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173446. [PMID: 38788940 DOI: 10.1016/j.scitotenv.2024.173446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Wastewater serves as a vital resource for sustainable fertilizer production, particularly in the recovery of nitrogen (N) and phosphorus (P). This comprehensive study explores the recovery chain, from technology to final product reuse. Biomass growth is the most cost-effective method, valorizing up to 95 % of nutrients, although facing safety concerns. Various techniques enable the recovery of 100 % P and up to 99 % N, but challenges arise during the final product crystallization due to the high solubility of ammonium salts. Among these techniques, chemical precipitation and ammonia stripping/ absorption have achieved full commercialization, with estimated recovery costs of 6.0-10.0 EUR kgP-1 and 4.4-4.8 £ kgN-1, respectively. Multiple technologies integrating biomass thermo-chemical processing and P and/or N have also reached technology readiness level TRL = 9. However, due to maturing regulatory of waste-derived products, not all of their products are commercially available. The non-homogenous nature of wastewater introduces impurities into nutrient recovery products. While calcium and iron impurities may impact product bioavailability, some full-scale P recovery technologies deliver products containing this admixture. Recovered mineral nutrient forms have shown up to 60 % higher yield biomass growth compared to synthetic fertilizers. Life cycle assessment studies confirm the positive environmental outcomes of nutrient recycling from wastewater to agricultural applications. Integration of novel technologies may increase wastewater treatment costs by a few percent, but this can be offset through renewable energy utilization and the sale of recovered products. Moreover, simultaneous nutrient recovery and energy production via bio-electrochemical processes contributes to carbon neutrality achieving. Interdisciplinary cooperation is essential to offset both energy and chemicals inputs, increase their cos-efficiency and optimize technologies and understand the nutrient release patterns of wastewater-derived products on various crops. Addressing non-technological factors, such as legal and financial support, infrastructure redesign, and market-readiness, is crucial for successfully implementation and securing the global food production.
Collapse
Affiliation(s)
- Bogna Śniatała
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland.
| | - Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland
| | - Jun Zhai
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland.
| |
Collapse
|
18
|
Bacelar E, Pinto T, Anjos R, Morais MC, Oliveira I, Vilela A, Cosme F. Impacts of Climate Change and Mitigation Strategies for Some Abiotic and Biotic Constraints Influencing Fruit Growth and Quality. PLANTS (BASEL, SWITZERLAND) 2024; 13:1942. [PMID: 39065469 PMCID: PMC11280748 DOI: 10.3390/plants13141942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Factors such as extreme temperatures, light radiation, and nutritional condition influence the physiological, biochemical, and molecular processes associated with fruit development and its quality. Besides abiotic stresses, biotic constraints can also affect fruit growth and quality. Moreover, there can be interactions between stressful conditions. However, it is challenging to predict and generalize the risks of climate change scenarios on seasonal patterns of growth, development, yield, and quality of fruit species because their responses are often highly complex and involve changes at multiple levels. Advancements in genetic editing technologies hold great potential for the agricultural sector, particularly in enhancing fruit crop traits. These improvements can be tailored to meet consumer preferences, which is crucial for commercial success. Canopy management and innovative training systems are also key factors that contribute to maximizing yield efficiency and improving fruit quality, which are essential for the competitiveness of orchards. Moreover, the creation of habitats that support pollinators is a critical aspect of sustainable agriculture, as they play a significant role in the production of many crops, including fruits. Incorporating these strategies allows fruit growers to adapt to changing climate conditions, which is increasingly important for the stability of food production. By investing in these areas, fruit growers can stay ahead of challenges and opportunities in the industry, ultimately leading to increased success and profitability. In this review, we aim to provide an updated overview of the current knowledge on this important topic. We also provide recommendations for future research.
Collapse
Affiliation(s)
- Eunice Bacelar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Teresa Pinto
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Rosário Anjos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Maria Cristina Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Ivo Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Alice Vilela
- Chemistry Research Centre–Vila Real (CQ-VR), Department of Agronomy, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| | - Fernanda Cosme
- Chemistry Research Centre–Vila Real (CQ-VR), Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| |
Collapse
|
19
|
Nie H, Yang X, Zheng S, Hou L. Gene-Based Developments in Improving Quality of Tomato: Focus on Firmness, Shelf Life, and Pre- and Post-Harvest Stress Adaptations. HORTICULTURAE 2024; 10:641. [DOI: 10.3390/horticulturae10060641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Tomato (Solanum lycopersicum) is a widely consumed vegetable crop with significant economic and nutritional importance. This review paper discusses the recent advancements in gene-based approaches to enhance the quality of tomatoes, particularly focusing on firmness, shelf life, and adaptations to pre- and post-harvest stresses. Utilizing genetic engineering techniques, such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins 9 (CRISPR/Cas9) and Transcription Activator-like Effector Nucleases (TALENs), researchers have made remarkable progress in developing tomatoes with improved traits that address key challenges faced during cultivation, storage, and transportation. We further highlighted the potential of genetic modifications in enhancing tomato firmness, thereby reducing post-harvest losses and improving consumer satisfaction. Furthermore, strategies to extend tomato shelf life through genetic interventions are discussed, emphasizing the importance of maintaining quality and freshness for sustainable food supply chains. Furthermore, the review delves into the ways in which gene-based adaptations can bolster tomatoes against environmental stresses, pests, and diseases, thereby enhancing crop resilience and ensuring stable yields. Emphasizing these crucial facets, this review highlights the essential contribution of genetic advancements in transforming tomato production, elevating quality standards, and promoting the sustainability of tomato cultivation practices.
Collapse
Affiliation(s)
- Hongmei Nie
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Xiu Yang
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Shaowen Zheng
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Leiping Hou
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| |
Collapse
|
20
|
Tamindžić G, Azizbekian S, Miljaković D, Ignjatov M, Nikolić Z, Budakov D, Vasiljević S, Grahovac M. Assessment of Various Nanoprimings for Boosting Pea Germination and Early Growth in Both Optimal and Drought-Stressed Environments. PLANTS (BASEL, SWITZERLAND) 2024; 13:1547. [PMID: 38891355 PMCID: PMC11174956 DOI: 10.3390/plants13111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
One of the main climate change-related variables limiting agricultural productivity that ultimately leads to food insecurity appears to be drought. With the use of a recently discovered nanopriming technology, seeds can endure various abiotic challenges. To improve seed quality and initial growth of 8-day-old field pea seedlings (cv. NS Junior) under optimal and artificial drought (PEG-induced) laboratory conditions, this study aimed to assess the efficacy of priming with three different nanomaterials: Nanoplant Ultra (Co, Mn, Cu, Fe, Zn, Mo, and Se), Nanoplant Ca-Si (Ca, Si, B, and Fe), and Nanoplant Sulfur (S). The findings indicate that nanopriming seed treatments have a positive impact on seed quality indicators, early plant growth, and drought resilience in field pea plants established in both optimal and drought-stressed conditions. Nevertheless, all treatments showed a positive effect, but their modes of action varied. Nanoplant Ultra proved to be the most effective under optimal conditions, whereas Nanoplant Ca-Si and Nanoplant Sulfur were the most efficient under drought stress. After a field evaluation, the examined comprehensive nanomaterials may be utilized as priming agents for pea seed priming to boost seed germination, initial plant growth, and crop productivity under various environmental conditions.
Collapse
Affiliation(s)
- Gordana Tamindžić
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (D.M.); (M.I.); (Z.N.); (S.V.)
| | - Sergei Azizbekian
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
| | - Dragana Miljaković
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (D.M.); (M.I.); (Z.N.); (S.V.)
| | - Maja Ignjatov
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (D.M.); (M.I.); (Z.N.); (S.V.)
| | - Zorica Nikolić
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (D.M.); (M.I.); (Z.N.); (S.V.)
| | - Dragana Budakov
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (D.B.); (M.G.)
| | - Sanja Vasiljević
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (D.M.); (M.I.); (Z.N.); (S.V.)
| | - Mila Grahovac
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (D.B.); (M.G.)
| |
Collapse
|
21
|
Nagdalian A, Blinov A, Gvozdenko A, Golik A, Rekhman Z, Rzhepakovsky I, Kolesnikov R, Avanesyan S, Blinova A, Pirogov M, Leontev P, Askerova A, Tsykin E, Shariati MA. Effect of MnO 2 Nanoparticles Stabilized with Cocamidopropyl Betaine on Germination and Development of Pea ( Pisum sativum L.) Seedlings. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:959. [PMID: 38869584 PMCID: PMC11174102 DOI: 10.3390/nano14110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
This study aimed to synthesize, characterize, and evaluate the effect of cocamidopropyl betaine-stabilized MnO2 nanoparticles (NPs) on the germination and development of pea seedlings. The synthesized NPs manifested as aggregates ranging from 50-600 nm, comprising spherical particles sized between 19 to 50 nm. These particles exhibited partial crystallization, indicated by peaks at 2θ = 25.37, 37.62, 41.18, 49.41, 61.45, and 65.79°, characteristic of MnO2 with a tetragonal crystal lattice with a I4/m spatial group. Quantum chemical modelling showed that the stabilization process of MnO2 NPs with cocamidopropyl betaine is energetically advantageous (∆E > 1299.000 kcal/mol) and chemically stable, as confirmed by the positive chemical hardness values (0.023 ≤ η ≤ 0.053 eV). It was revealed that the interaction between the MnO2 molecule and cocamidopropyl betaine, facilitated by a secondary amino group (NH), is the most probable scenario. This ascertain is supported by the values of the difference in total energy (∆E = 1299.519 kcal/mol) and chemical hardness (η = 0.053 eV). These findings were further confirmed using FTIR spectroscopy. The effect of MnO2 NPs at various concentrations on the germination of pea seeds was found to be nonlinear and ambiguous. The investigation revealed that MnO2 NPs at a concentration of 0.1 mg/L resulted in the highest germination energy (91.25%), germinability (95.60%), and lengths of roots and seedlings among all experimental samples. However, an increase in the concentration of preparation led to a slight growth suppression (1-10 mg/L) and the pronounced inhibition of seedling and root development (100 mg/L). The analysis of antioxidant indicators and phytochemicals in pea seedlings indicated that only 100 mg/L MnO2 NPs have a negative effect on the content of soluble sugars, chlorophyll a/b, carotenoids, and phenols. Conversely, lower concentrations showed a stimulating effect on photosynthesis indicators. Nevertheless, MnO2 NPs at all concentrations generally decreased the antioxidant potential of pea seedlings, except for the ABTS parameter. Pea seedlings showed a notable capacity to absorb Mn, reaching levels of 586.5 μg/L at 10 mg/L and 892.6 μg/L at 100 mg/L MnO2 NPs, surpassing the toxic level for peas according to scientific literature. However, the most important result was the observed growth-stimulating activity at 0.1 mg/L MnO2 NPs stabilized with cocamidopropyl betaine, suggesting a promising avenue for further research.
Collapse
Affiliation(s)
- Andrey Nagdalian
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, 355017 Stavropol, Russia; (A.A.)
| | - Andrey Blinov
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.G.); (A.G.); (Z.R.); (A.B.); (M.P.); (P.L.)
| | - Alexey Gvozdenko
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.G.); (A.G.); (Z.R.); (A.B.); (M.P.); (P.L.)
| | - Alexey Golik
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.G.); (A.G.); (Z.R.); (A.B.); (M.P.); (P.L.)
| | - Zafar Rekhman
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.G.); (A.G.); (Z.R.); (A.B.); (M.P.); (P.L.)
| | - Igor Rzhepakovsky
- Interdepartmental Scientific and Educational Laboratory of Experimental Immunomorphology, Immunopathology and Immunobiotechnology, Faculty of Medicine and Biology, North Caucasus Federal University, 355017 Stavropol, Russia; (I.R.); (S.A.)
| | - Roman Kolesnikov
- Scientific Department, Saints Petersburg State Agrarian University, 190005 Pushkin, Russia;
| | - Svetlana Avanesyan
- Interdepartmental Scientific and Educational Laboratory of Experimental Immunomorphology, Immunopathology and Immunobiotechnology, Faculty of Medicine and Biology, North Caucasus Federal University, 355017 Stavropol, Russia; (I.R.); (S.A.)
| | - Anastasiya Blinova
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.G.); (A.G.); (Z.R.); (A.B.); (M.P.); (P.L.)
| | - Maxim Pirogov
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.G.); (A.G.); (Z.R.); (A.B.); (M.P.); (P.L.)
| | - Pavel Leontev
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.G.); (A.G.); (Z.R.); (A.B.); (M.P.); (P.L.)
| | - Alina Askerova
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, 355017 Stavropol, Russia; (A.A.)
| | - Evgeniy Tsykin
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, 355017 Stavropol, Russia; (A.A.)
| | - Mohammad Ali Shariati
- Semey Branch of Kazakh Research Institute of Processing and Food Industry, Almaty 050060, Kazakhstan
| |
Collapse
|
22
|
Obeagu EI, Obeagu GU, Ukibe NR, Oyebadejo SA. Anemia, iron, and HIV: decoding the interconnected pathways: A review. Medicine (Baltimore) 2024; 103:e36937. [PMID: 38215133 PMCID: PMC10783375 DOI: 10.1097/md.0000000000036937] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024] Open
Abstract
This review delves into the intricate relationship between anemia, iron metabolism, and human immunodeficiency virus (HIV), aiming to unravel the interconnected pathways that contribute to the complex interplay between these 3 entities. A systematic exploration of relevant literature was conducted, encompassing studies examining the association between anemia, iron status, and HIV infection. Both clinical and preclinical investigations were analyzed to elucidate the underlying mechanisms linking these components. Chronic inflammation, a hallmark of HIV infection, disrupts iron homeostasis, impacting erythropoiesis and contributing to anemia. Direct viral effects on bone marrow function further compound red blood cell deficiencies. Antiretroviral therapy, while essential for managing HIV, introduces potential complications, including medication-induced anemia. Dysregulation of iron levels in different tissues adds complexity to the intricate network of interactions. Effective management of anemia in HIV necessitates a multifaceted approach. Optimization of antiretroviral therapy, treatment of opportunistic infections, and targeted nutritional interventions, including iron supplementation, are integral components. However, challenges persist in understanding the specific molecular mechanisms governing these interconnected pathways. Decoding the interconnected pathways of anemia, iron metabolism, and HIV is imperative for enhancing the holistic care of individuals with HIV/AIDS. A nuanced understanding of these relationships will inform the development of more precise interventions, optimizing the management of anemia in this population. Future research endeavors should focus on elucidating the intricate molecular mechanisms, paving the way for innovative therapeutic strategies in the context of HIV-associated anemia.
Collapse
Affiliation(s)
| | | | - Nkiruka Rose Ukibe
- Department of Medical Laboratory Science, Nnamdi Azikiwe University, Nnewi, Anambra State, Nigeria
| | - Samson Adewale Oyebadejo
- Department of Biomedical Laboratory Sciences, Faculty of Fundamental Applied Sciences, Institut d’ Enseignement Superiuor de Ruhengeri (INES-RUHENGERI), Musanze District, Northern Region, Rwanda
| |
Collapse
|