1
|
Zhang W, Yin L, Wang H, Long C, Liu J, Deng P, Yue Y, Li J, He M, Lu Y, Luo Y, Chen S, Tao J, Tian L, Xie J, Chen M, Yu Z, Zhou Z, Gao P, Pi H. Multiomics analysis elucidated the role of inflammatory response and bile acid metabolism disturbance in electric shock-induced liver injury in mice. Chin J Traumatol 2025:S1008-1275(24)00182-2. [PMID: 39827045 DOI: 10.1016/j.cjtee.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 01/22/2025] Open
Abstract
PURPOSE Organ damage caused by electric shock has attracted great attention. Some animal investigations and clinical cases have suggested that electric shock can induce liver injury. This study aimed to investigate the potential mechanism of liver injury induced by electric shock. METHODS Healthy male C57BL/6J mice aged 6-8 weeks were romandly divided into two groups: control group and electric shock group. Mice in the electric shock group were shocked on the top of the skull with an electric baton (20 kV) for 5 sec, while mice in the control group were exposed to only the acoustic and light stimulation produced by the electric baton. The effect of electric shock on liver function was evaluated by histological and biochemical analysis, and a metabolomics and transcriptomics study was performed to investigate how electric shock might induce liver damage. All data of this study were analyzed using a two-tailed unpaired Student's t-test in SPSS 22.0 Statistical Package. RESULTS The electric shock group had significantly higher serum aspartate aminotransferase and alanine aminotransferase levels than the control group (p < 0.001), and the shock notably caused cytoplasmic swelling and vacuolization, mild inflammatory cell (mainly macrophages and monocytes) infiltration and acute focal necrosis in hepatocytes (p < 0.001). A total of 47 differential metabolites and 249 differentially expressed genes (DEGs) were detected using metabolomic and transcriptomic analyses. These differential metabolites were significantly enriched in primary bile acid biosynthesis (p < 0.05). Gene ontology functional analysis of the DEGs revealed that electric shock disturbed a key biological process involved in the inflammatory response in the mouse liver, and a significant number of DEGs were enriched in Kyoto Encyclopedia of Genes and Genomes-identified pathways related to inflammation, such as the interleukin-17, tumor necrosis factor and mitogen-activated protein kinase signalling pathway. Transcriptomic and metabolomic analyses revealed that bile acid metabolism disturbance including up-regulation of the taurochenodesoxycholic acid, chenodeoxycholic acid and taurocholic acid, and down-regulation of chenodeoxycholic acid clycine conjugate may contribute to the electric shock-induced inflammatory response. CONCLUSION Electric shock can induce liver inflammatory injury through the interleukin-17, tumor necrosis factor, and mitogen-activated protein kinase signaling pathway, and the bile acid metabolism disturbance including up-regulation of the taurochenodesoxycholic acid, chenodeoxycholic acid and taurocholic acid, and down-regulation of chenodeoxycholic acid clycine conjugate may contribute to inflammatory liver injury following electric shock.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Luncai Yin
- Department of Oncology, Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Hui Wang
- Nuclear Medicine Department, General Hospital of Tibet Military Area Command, Lhasa, 850007, Xizang, China
| | - Ce Long
- General Hospital of Xizang Military Area Command, Lhasa, 850007, Xizang, China
| | - Jin Liu
- Cardiovascular Department, General Hospital of Xizang Military Area Command, Lhasa, 850007, Xizang, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Yang Yue
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Jingdian Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Mindi He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Yonghui Lu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Siyu Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Jiawen Tao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Peng Gao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
2
|
Jin X, Chen D, Li X, Zeng X, Xu L, Hu B, Xu G. Advances in forensic diagnosis of electric shock death in the absence of typical electrical marks. Int J Legal Med 2021; 135:2469-2478. [PMID: 34313847 DOI: 10.1007/s00414-021-02658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Electrical injury is a relatively uncommon but potentially devastating form of multi-system injury with high morbidity and mortality. In common electric injury cases, it is usually difficult to find characteristic changes of electric injury in major organs by using routine histopathological test methods unless there are landmark traces of electric injury, known as electric marks. How to determine electric shock death, especially in the absence of typical electrical marks on the body surface in some cases (which account for about two-thirds of electric injury cases), remains a challenging problem in forensic practice. Our summary shows that many current related studies have focused their efforts to find characteristic histopathological changes in major organs of the body caused by electric injury. Based on the results obtained through comparison of the literature, we find that it may be more urgent and important to find the optimal autopsy or sampling sites in cases with no typical electric marks, knowing that these sites may often reflect the most significant histopathological changes of electric injury, for instance anatomy and sampling of the anterior wrist and the medial malleolus in cases involving the hand-to-foot electric circuit pathway. In this article, we make a summary of advances in identification methods of electric injury, hoping that it could provide some new insights for further research in this field.
Collapse
Affiliation(s)
- Xin Jin
- Forensic and Pathology Laboratory, Judicial Expertise Center, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China
| | - Deqing Chen
- Forensic and Pathology Laboratory, Judicial Expertise Center, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China
| | - Xuebo Li
- Key Laboratory of Evidence Identification in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan, 250014, SD, China
| | - Xiansi Zeng
- Forensic and Pathology Laboratory, Judicial Expertise Center, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China
| | - Long Xu
- Forensic and Pathology Laboratory, Judicial Expertise Center, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China
| | - Bo Hu
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, 314001, ZJ, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Judicial Expertise Center, Jiaxing University Medical College, Jiaxing, 314001, ZJ, China.
| |
Collapse
|
3
|
Prediction of Crack Resistance of LFSMA-13 with and without Anti-Rut Agent Using Parameters of FTIR Spectrum under Different Aging Degrees. MATERIALS 2021; 14:ma14123209. [PMID: 34200845 PMCID: PMC8230506 DOI: 10.3390/ma14123209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 11/23/2022]
Abstract
This paper aims to better analyze the crack resistance of lignin fiber reinforced SMA-13 (LFSMA-13) asphalt mixtures, with and without polymer anti-rut agent (ARA), under different aging degrees. IDEAL-CT test and Fourier transform infrared (FTIR) spectroscopy were utilized to analyze the relationships between the crack resistance of LFSMA-13, with and without ARA, and the parameters of the FTIR spectrum of the asphalt extracted from the test samples. A convenient testing method to predict the anti-crack ability of the mixtures in a road was also derived in this study. The test samples were prepared using the specifications listed by AASHTO. The fracture formation work (Winitial) and cracking index (CTIndex) in the IDEAL-CT test were adopted to reflect the cracking ability of the asphalt mixtures in both the crack formation stage and the crack propagation stage. The peak areas of the FTIR spectrum were utilized to reveal the chemical properties of the asphalt material inside the SMA-13 asphalt mixtures, with and without ARA under different aging degrees. Grey correlation analysis was adopted to choose the most suitable FTIR spectrum parameters to derive the prediction models of Winitial and CTIndex under different aging degrees. After conducting a series of tests, the results showed that the aging process could well affect the crack resistance of the test samples and the peak areas of the asphalt extracted from the mixtures. The FTIR parameters selected from the grey correlation analysis could be used to well predict the anti-crack ability of the asphalt mixtures.
Collapse
|
4
|
El-Naggar NEA, Hamouda RA, Rabei NH, Mousa IE, Abdel-Hamid MS. Phycoremediation of lithium ions from aqueous solutions using free and immobilized freshwater green alga Oocystis solitaria: mathematical modeling for bioprocess optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19335-19351. [PMID: 31073833 DOI: 10.1007/s11356-019-05214-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Lithium is registered as a serious pollutant that causes environmental damage to an irrigation water supply. Freshwater green alga (Oocystis solitaria) was studied for its potential to remove lithium ions from aqueous solutions. The Plackett-Burman design was applied for initial screening of six factors for their significances for the removal of lithium from aqueous solutions using Oocystis solitaria cells. Among the variables screened, pH, lithium concentration, and temperature were the most significant factors affecting lithium removal. Hence, the levels of these significant variables were further investigated for their interaction effects on lithium removal using the Box-Behnken statistical design. The optimum conditions for maximum lithium removal from aqueous solutions by Oocystis solitaria were the initial lithium concentration of 200 mg/L, contact time of 60 min, temperature of 30 °C, pH 5, and biomass of Oocystis solitaria cells of 1 g/L with agitation condition. Under the optimized conditions, the percentage of maximum lithium removal was 99.95% which is larger than the percentage of lithium removal recorded before applying the Plackett-Burman design (40.07%) by 2.49 times. The different properties of Oocystis solitaria, as an adsorbent, were explored with SEM and via FTIR analysis. The spectrum of FTIR analysis for samples of Oocystis solitaria cells before lithium biosorption showed different absorption peaks at 3394 cm-1, 2068 cm-1, 1638 cm-1, 1398 cm-1, 1071 cm-1, and 649 cm-1 which has been shifted to 3446 cm-1, 2924 cm-1, 1638 cm-1, 1384 cm-1, 1032 cm-1, and 613 cm-1, respectively, after lithium biosorption by the alga. The treatment of aqueous solution containing lithium with Oocystis solitaria cells immobilized in alginate beads removed 98.71% of lithium at an initial concentration of 200 mg/L after 5 h. Therefore, Oocystis solitaria may be considered as an alternative for sorption and removal of lithium ions from wastewaters.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Ragaa A Hamouda
- Department of Biology, Faculty of Sciences and Arts - Khulais, University of Jeddah, Jeddah, Saudi Arabia
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Menoufyia Governorate, 22857, Egypt
| | - Nashwa H Rabei
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Menoufyia Governorate, 22857, Egypt
| | - Ibrahim E Mousa
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Menoufyia Governorate, 22857, Egypt
| | - Marwa Salah Abdel-Hamid
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Menoufyia Governorate, 22857, Egypt
| |
Collapse
|
5
|
Lee BJ, Zhou Y, Lee JS, Shin BK, Seo JA, Lee D, Kim YS, Choi HK. Discrimination and prediction of the origin of Chinese and Korean soybeans using Fourier transform infrared spectrometry (FT-IR) with multivariate statistical analysis. PLoS One 2018; 13:e0196315. [PMID: 29689113 PMCID: PMC5916519 DOI: 10.1371/journal.pone.0196315] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/10/2018] [Indexed: 12/18/2022] Open
Abstract
The ability to determine the origin of soybeans is an important issue following the inclusion of this information in the labeling of agricultural food products becoming mandatory in South Korea in 2017. This study was carried out to construct a prediction model for discriminating Chinese and Korean soybeans using Fourier-transform infrared (FT-IR) spectroscopy and multivariate statistical analysis. The optimal prediction models for discriminating soybean samples were obtained by selecting appropriate scaling methods, normalization methods, variable influence on projection (VIP) cutoff values, and wave-number regions. The factors for constructing the optimal partial-least-squares regression (PLSR) prediction model were using second derivatives, vector normalization, unit variance scaling, and the 4000-400 cm-1 region (excluding water vapor and carbon dioxide). The PLSR model for discriminating Chinese and Korean soybean samples had the best predictability when a VIP cutoff value was not applied. When Chinese soybean samples were identified, a PLSR model that has the lowest root-mean-square error of the prediction value was obtained using a VIP cutoff value of 1.5. The optimal PLSR prediction model for discriminating Korean soybean samples was also obtained using a VIP cutoff value of 1.5. This is the first study that has combined FT-IR spectroscopy with normalization methods, VIP cutoff values, and selected wave-number regions for discriminating Chinese and Korean soybeans.
Collapse
Affiliation(s)
- Byeong-Ju Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Yaoyao Zhou
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jae Soung Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Byeung Kon Shin
- National Agricultural Products Quality Management Service, Gimcheon, Republic of Korea
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Doyup Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea
| | - Young-Suk Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Wang Z, Tuo Y, Li B, Deng K, Han S, Luo Y, Sun Q, Li Z, Chen Y, Wang Z, Huang P. Preliminary study on fatal hyperthermia in rat liver tissue by Fourier transform infrared microspectroscopy. AUST J FORENSIC SCI 2017. [DOI: 10.1080/00450618.2016.1156157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Zhijun Wang
- Department of Forensic Pathology, Institute of Forensic Science, Ministry of Justice, Shanghai, China
- Department of Forensic Pathology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Ya Tuo
- Department of Biochemistry and Physiology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Bing Li
- Department of Forensic Pathology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Kaifei Deng
- Department of Forensic Pathology, Institute of Forensic Science, Ministry of Justice, Shanghai, China
| | - Shunqi Han
- Department of Forensic Pathology, Institute of Forensic Science, Ministry of Justice, Shanghai, China
| | - Yiwen Luo
- Department of Forensic Pathology, Institute of Forensic Science, Ministry of Justice, Shanghai, China
| | - Qiran Sun
- Department of Forensic Pathology, Institute of Forensic Science, Ministry of Justice, Shanghai, China
| | - Zhengdong Li
- Department of Forensic Pathology, Institute of Forensic Science, Ministry of Justice, Shanghai, China
| | - Yijiu Chen
- Department of Forensic Pathology, Institute of Forensic Science, Ministry of Justice, Shanghai, China
| | - Zhenyuan Wang
- Department of Forensic Pathology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Ping Huang
- Department of Forensic Pathology, Institute of Forensic Science, Ministry of Justice, Shanghai, China
| |
Collapse
|
7
|
Zhang J, Lin W, Lin H, Wang Z, Dong H. Identification of Skin Electrical Injury Using Infrared Imaging: A Possible Complementary Tool for Histological Examination. PLoS One 2017; 12:e0170844. [PMID: 28118398 PMCID: PMC5261568 DOI: 10.1371/journal.pone.0170844] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/11/2017] [Indexed: 12/17/2022] Open
Abstract
In forensic practice, determination of electrocution as a cause of death usually depends on the conventional histological examination of electrical mark in the body skin, but the limitation of this method includes subjective bias by different forensic pathologists, especially for identifying suspicious electrical mark. The aim of our work is to introduce Fourier transform infrared (FTIR) spectroscopy in combination with chemometrics as a complementary tool for providing an relatively objective diagnosis. The results of principle component analysis (PCA) showed that there were significant differences of protein structural profile between electrical mark and normal skin in terms of α-helix, antiparallel β-sheet and β-sheet content. Then a partial least square (PLS) model was established based on this spectral dataset and used to discriminate electrical mark from normal skin areas in independent tissue sections as revealed by color-coded digital maps, making the visualization of electrical injury more intuitively. Our pilot study demonstrates the potential of FTIR spectroscopy as a complementary tool for diagnosis of electrical mark.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Forensic Pathology, College of Forensic Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Wei Lin
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hancheng Lin
- Department of Forensic Pathology, College of Forensic Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Zhenyuan Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- * E-mail: (ZW); (HD)
| | - Hongmei Dong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- * E-mail: (ZW); (HD)
| |
Collapse
|