1
|
Kumar RR, Soni VK, Jain MK. Evaluation of spatial and temporal heterogeneity of black carbon aerosol mass concentration over India using three year measurements from IMD BC observation network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138060. [PMID: 32217394 DOI: 10.1016/j.scitotenv.2020.138060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 05/17/2023]
Abstract
Extensive measurements of equivalent black carbon (EBC) aerosol mass concentration at fifteen stations of India Meteorological Department (IMD) BC observation network during the period 2016-2018 are used to study the spatial and temporal heterogeneity over India. The sampling sites represent different geographical region of India. Spatial distribution shows higher values of EBC over stations of north India and IGP. Highest annual mean EBC mass concentration during study period was reported at two mega cities New Delhi (13,575 ± 8401 ng/m3) followed by Kolkata (12,082 ± 6850 ng/m3) whereas lowest mean concentration was at Ranichauri (1737 ± 884 ng/m3) followed by Bhuj (2021 ± 1471 ng/m3). Stations located in coastal region of south India reported low concentration of EBC. In order to find out the quantitative contribution of biomass burning (EBCBB) and fossil fuel (EBCFF) in total mass concentration of EBC, source apportionment study has been carried out using Aethalometer model. The EBCFF is the dominant contributor to EBC mass concentration at all the sites in every season, while the highest seasonal biomass burning mass contribution (37%) was observed in the winter at a background site Ranichauri. Maximum concentration of EBCBB was observed at Srinagar (2671 ng/m3) where as EBCFF was maximum in Delhi (11,074 ng/m3). Seasonal and diurnal variation studies have also been carried out for all the stations. The EBC mass concentrations exhibited strong seasonality, with the highest values occurring in postmonsoon/winter and the lowest in monsoon season. The higher EBC concentration in postmonsoon/winter seasons was attributed to the increased use of fuel in seasonal emission sources, domestic heating and stagnant meteorological conditions, whereas the low levels in monsoon season were related to the precipitation scavenging. Maximum concentration of EBC (22,409 ± 10,510 ng/m3) was observed in winter season over Kolkata. Our study finds high spatial heterogeneity in EBC concentrations across the study area.
Collapse
Affiliation(s)
- Ravi Ranjan Kumar
- India Meteorological Department, New Delhi, India; Indian Institute of Technology (Indian School of Mines), Dhanbad, India.
| | | | - Manish Kumar Jain
- Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| |
Collapse
|
2
|
Carbonaceous Aerosols Collected at the Observatory of Monte Curcio in the Southern Mediterranean Basin. ATMOSPHERE 2019. [DOI: 10.3390/atmos10100592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work provides the first continuous measurements of carbonaceous aerosol at the Global Atmosphere Watch (GAW) Monte Curcio regional station, within the southern Mediterranean basin. We specifically analyzed elemental carbon (EC) and organic carbon (OC) concentrations in particulate matter (PM) samples, collected from April to December during the two years of 2016 and 2017. The purpose of the study is to understand the behavior of both PM and carbonaceous species, in their fine and coarse size fraction, along with their seasonal variability. Based on 18 months of observations, we obtained a dataset that resulted in a vast range of variability. We found the maximum values in summer, mainly related to the enhanced formation of secondary pollutants owing to intense solar radiation, also due to the high frequency of wildfires in the surrounding areas, as well as to the reduced precipitation and aerosol-wet removal. We otherwise observed the lowest levels during fall, coinciding with well-ventilated conditions, low photochemical activity, higher precipitation amounts, and less frequency of Saharan dust episodes. We employed the HYSPLIT model to identify long-range transport from Saharan desert. We found that the Saharan dust events caused higher concentrations of PM and OC in the coarser size fraction whereas the wildfire events likely influenced the highest PM, OC, and EC concentrations we recorded for the finer fraction.
Collapse
|
3
|
Soler R, Nicolás JF, Caballero S, Yubero E, Crespo J. Depletion of tropospheric ozone associated with mineral dust outbreaks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19376-19386. [PMID: 27376369 DOI: 10.1007/s11356-016-7134-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
From May to September 2012, ozone reductions associated with 15 Saharan dust outbreaks which occurred between May to September 2012 have been evaluated. The campaign was performed at a mountain station located near the eastern coast of the Iberian Peninsula. The study has two main goals: firstly, to analyze the decreasing gradient of ozone concentration during the course of the Saharan episodes. These gradients vary from 0.2 to 0.6 ppb h(-1) with an average value of 0.39 ppb h(-1). The negative correlation between ozone and coarse particles occurs almost simultaneously. Moreover, although the concentration of coarse particles remained high throughout the episode, the time series shows the saturation of the ozone loss. The highest ozone depletion has been obtained during the last hours of the day, from 18:00 to 23:00 UTC. Outbreaks registered during this campaign have been more intense in this time slot. The second objective is to establish from which coarse particle concentration a significant ozone depletion can be observed and to quantify this reduction. In this regard, it has been confirmed that when the hourly particle concentration recorded during the Saharan dust outbreaks is above the hourly particle median values (N > N-median), the ozone concentration reduction obtained is statistically significant. An average ozone reduction of 5.5 % during Saharan events has been recorded. In certain cases, this percentage can reach values of higher than 15 %.
Collapse
Affiliation(s)
- Ruben Soler
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain.
| | - J F Nicolás
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - S Caballero
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - E Yubero
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - J Crespo
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| |
Collapse
|
4
|
Nicolás JF, Crespo J, Yubero E, Soler R, Carratalá A, Mantilla E. Impacts on particles and ozone by transport processes recorded at urban and high-altitude monitoring stations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 466-467:439-446. [PMID: 23933449 DOI: 10.1016/j.scitotenv.2013.07.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/28/2013] [Accepted: 07/17/2013] [Indexed: 06/02/2023]
Abstract
In order to evaluate the influence of particle transport episodes on particle number concentration temporal trends at both urban and high-altitude (Aitana peak-1558 m a.s.l.) stations, a simultaneous sampling campaign from October 2011 to September 2012 was performed. The monitoring stations are located in southeastern Spain, close to the Mediterranean coast. The annual average value of particle concentration obtained in the larger accumulation mode (size range 0.25-1 μm) at the mountain site, 55.0 ± 3.0 cm(-3), was practically half that of the value obtained at the urban station (112.0 ± 4.0 cm(-3)). The largest difference between both stations was recorded during December 2011 and January 2012, when particles at the mountain station registered the lowest values. It was observed that during urban stagnant episodes, particle transport from urban sites to the mountain station could take place under specific atmospheric conditions. During these transports, the major particle transfer is produced in the 0.5-2 μm size range. The minimum difference between stations was recorded in summer, particularly in July 2012, which is most likely due to several particle transport events that affected only the mountain station. The particle concentration in the coarse mode was very similar at both monitoring sites, with the biggest difference being recorded during the summer months, 0.4 ± 0.1cm(-3) at the urban site and 0.9 ± 0.1cm(-3) at the Aitana peak in August 2012. Saharan dust outbreaks were the main factor responsible for these values during summer time. The regional station was affected more by these outbreaks, recording values of >4.0 cm(-3), than the urban site. This long-range particle transport from the Sahara desert also had an effect upon O3 levels measured at the mountain station. During periods affected by Saharan dust outbreaks, ozone levels underwent a significant decrease (3-17%) with respect to its mean value.
Collapse
Affiliation(s)
- J F Nicolás
- Laboratory of Atmospheric Pollution (LCA), Miguel Hernández University, Av. de la Universidad s/n, Edif. Alcudia, 03202 Elche, Spain.
| | | | | | | | | | | |
Collapse
|
5
|
Neophytou AM, Yiallouros P, Coull BA, Kleanthous S, Pavlou P, Pashiardis S, Dockery DW, Koutrakis P, Laden F. Particulate matter concentrations during desert dust outbreaks and daily mortality in Nicosia, Cyprus. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2013; 23:275-80. [PMID: 23423218 DOI: 10.1038/jes.2013.10] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/16/2013] [Indexed: 05/26/2023]
Abstract
Ambient particulate matter (PM) has been shown to have short- and long-term effects on cardiorespiratory mortality and morbidity. Most of the risk is associated with fine PM (PM(2.5)); however, recent evidence suggests that desert dust outbreaks are major contributors to coarse PM (PM(10-2.5)) and may be associated with adverse health effects. The objective of this study was to investigate the risk of total, cardiovascular and respiratory mortality associated with PM concentrations during desert dust outbreaks. We used a time-series design to investigate the effects of PM(10) on total non-trauma, cardiovascular and respiratory daily mortality in Cyprus, between 1 January 2004 and 31 December 2007. Separate PM(10) effects for non-dust and dust days were fit in generalized additive Poisson models. We found a 2.43% (95% CI: 0.53, 4.37) increase in daily cardiovascular mortality associated with each 10-μg/m(3) increase in PM(10) concentrations on dust days. Associations for total (0.13% increase, 95% CI: -1.03, 1.30) and respiratory mortality (0.79% decrease, 95% CI: -4.69, 3.28) on dust days and all PM(10) and mortality associations on non-dust days were not significant. Although further study of the exact nature of effects across different affected regions during these events is needed, this study suggests adverse cardiovascular effects associated with desert dust events.
Collapse
Affiliation(s)
- Andreas M Neophytou
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Brecciaroli G, Cocco S, Agnelli A, Courchesne F, Corti G. From rainfall to throughfall in a maritime vineyard. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 438:174-188. [PMID: 22995706 DOI: 10.1016/j.scitotenv.2012.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/08/2012] [Accepted: 08/09/2012] [Indexed: 06/01/2023]
Abstract
This study deals with the characteristics of throughfall produced by vine (Vitis vinifera L.) in one of the most common pedoclimatic conditions for grape production: a soil derived from marine sediments under a temperate Mediterranean climate, and located rather close to the seacoast. To distinguish the contribution of the plant from that of the atmospheric deposition, the throughfall was collected for more than one year under real and artificial (plastic) vines; for the same period, also the bulk precipitation was collected. The solution collected were analysed for pH, electrical conductivity, and concentration of cations and anions. For each event, the ionic fluxes of bulk precipitation and throughfall were calculated. Results indicated that the chemical composition of the bulk precipitation was strongly influenced by the proximity of the seashore and, to a lesser extent, by local anthropic activities and windblown material coming from distant areas. The chemical composition of the throughfall was affected by the same factors of bulk precipitation, but also by solubilisation of dry deposition trapped by the canopies, agronomic practices, plant, and living-on-the-leaves microorganisms. The comparison of the characteristics of the throughfall of the real with the artificial vines revealed that the vines are a source of Mg and K. During winter season, the reduction of Ca, NH(4) and PO(4) from bulk precipitation to throughfall was ascribed to the formation of biogenic minerals on the plant surface. The presence of these minerals was proved by X-ray diffraction on the powders collected during the winter season on the surface of cordons and fruiting canes. We conclude that an approach to the estimation of the nutritional potentiality of the soil that includes the contribution of the throughfall is functional to the management of the agro-ecosystem.
Collapse
Affiliation(s)
- G Brecciaroli
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | |
Collapse
|
7
|
|
8
|
Cristofanelli P, Bonasoni P. Background ozone in the southern Europe and Mediterranean area: influence of the transport processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:1399-1406. [PMID: 18977575 DOI: 10.1016/j.envpol.2008.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 09/06/2008] [Indexed: 05/27/2023]
Abstract
The troposphere is subject to continuous inputs, production and removal processes of ozone and its precursors from natural processes and human activities acting together within a very complex system. In order to assess the behaviour of background ozone in the Mediterranean area, a description of trends, seasonal and diurnal behaviours of free tropospheric ozone is provided. In the Mediterranean area and southern Europe the background tropospheric ozone concentration appears significantly affected by three main air mass transport processes: (i) transport of polluted air masses on regional and long-range scales, (ii) downward transport of stratospheric air masses, and (iii) transport of mineral dust from the Sahara desert. In this review of the literature of the last two decades, we present an overview of these phenomena, mainly monitored at high baseline mountain stations representative of background atmospheric conditions.
Collapse
Affiliation(s)
- Paolo Cristofanelli
- Institute of Atmospheric Sciences and Climate-National Research Council (ISAC-CNR), via Gobetti 101, 40129 Bologna, Italy
| | | |
Collapse
|