1
|
Panigrahi B, Doig LE, Ezugba I, Davila-Arenas CE, Liber K. Water quality assessment of a novel pilot-scale pit lake in the alberta oil sands region. ENVIRONMENTAL RESEARCH 2025; 272:121142. [PMID: 39956420 DOI: 10.1016/j.envres.2025.121142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/08/2025] [Accepted: 02/14/2025] [Indexed: 02/18/2025]
Abstract
The Alberta oil sands (AOS), Canada, represent a vital energy resource; however, the extraction of oil from these deposits poses significant environmental challenges. In particular, the eventual reclamation of significant volumes of waste materials is required. As a potential solution to incorporate and remediate AOS mine wastes in-situ, a pilot-scale pit lake, Lake Miwasin (LM), was constructed in 2017-18. It used a combination of coagulated and flocculated fluid fine tailings (bottom substrate) capped with a blend of oil-sands process affected water and runoff water from the surrounding catchment. The objective of the study described here is to assess the resultant surface water quality of this artificial lake and its regional comparability with natural systems. Furthermore, we explored the physicochemical characteristics, the mechanisms regulating lake water chemistry, and calculated various water quality indices for both LM and surrounding natural water bodies. Based on water quality indices, our study results showed that the overall water quality of LM's surface water was not yet similar to surrounding water bodies in the AOS region. Surface water from LM is slightly alkaline with elevated total dissolved solids (TDS) and differs chemically from surrounding water bodies. Predominant ions in LM are Na+, K+ (pore water from tailings), whereas surrounding water bodies exhibit Ca2+, CO3-, and HCO3- (gypsum, dolomite, and calcite dissolution). Therefore, water chemistry of LM is more typical of a Na-Cl water type, while surrounding bodies show a Ca-HCO3 water type. Evaluations based on different water quality indices highlighted the importance of monitoring specific variables in LM such as conductivity, TDS, alkalinity, and NH3. The analysis and assessment of LM surface water is imperative for gaining insight into the potential character and trajectories of water quality in future pit lakes and informing design considerations and application of this novel reclamation approach in the AOS region.
Collapse
Affiliation(s)
- Banamali Panigrahi
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
| | - Lorne E Doig
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Immanuela Ezugba
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | | | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada; School of Environment and Sustainability, 117 Science Place, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada.
| |
Collapse
|
2
|
Cheng F, Pang J, Berggren S, Tanvar H, Mishra B, Arlos MJ. Treating Waste with Waste: Activated Bauxite Residue (ABR) as a Potential Wastewater Treatment. ACS OMEGA 2024; 9:45251-45262. [PMID: 39554455 PMCID: PMC11561612 DOI: 10.1021/acsomega.4c06699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024]
Abstract
Bauxite residue (or red mud) is a highly alkaline waste generated during the extraction of alumina. As a result of the substantial accumulation of bauxite residue in tailings facilities, there is a growing interest in exploring the potential for reusing this material for other purposes. The main objective of this study is to evaluate the use of activated bauxite residue (ABR) for remediating oil sands process-affected water (OSPW) and as a supplement to municipal wastewater treatment through bench-scale, proof-of-concept studies. The ABR is produced through a reduction roasting process that alters the physicochemical properties of bauxite residue, resulting in the generation of potentially effective adsorbent media. The treatment performance via chemical and biological activity removals (cytotoxicity, estrogenicity, and mutagenicity) was also assessed. For OSPW, ABR treatment resulted in the effective removal of recalcitrant acid-extractable organics (AEOs), with kinetics following the pseudo-second-order and comparable adsorption capacity to other waste materials (e.g., petroleum coke). ABR also effectively reduced the estrogenicity and mutagenicity of OSPW, albeit cytotoxicity increased at higher dosages, possibly due to some components leaching out of the material (e.g., metals). For municipal wastewater, ABR treatment reduced fecal coliform concentrations (>99%), total phosphorus (up to 98%), total ammonia-nitrogen (63%), estrogenicity (nondetectable), and mutagenicity (nondetectable), especially in the primary effluent. The ultimate end use of ABR is for the recovery of valuable metals (especially iron) and as a construction material, but additional work is needed to optimize the dosage (currently in the g/L range) and maximize the use of ABR as an adsorbent prior to its subsequent uses.
Collapse
Affiliation(s)
- Fei Cheng
- Department
of Civil and Environmental Engineering, University of Alberta, 9211-116 St. NW, Edmonton, Alberta T6G 1H9, Canada
| | - Jingya Pang
- Department
of Civil and Environmental Engineering, University of Alberta, 9211-116 St. NW, Edmonton, Alberta T6G 1H9, Canada
| | - Scott Berggren
- GRÖN
Holding Corporation, 40 King St. West, Suite 5800, Toronto, Ontario M5H 3S1, Canada
| | - Himanshu Tanvar
- Material
Science and Engineering, Worcester Polytechnic
Institute, Worcester, Massachusetts 01609, United States
| | - Brajendra Mishra
- Material
Science and Engineering, Worcester Polytechnic
Institute, Worcester, Massachusetts 01609, United States
| | - Maricor J. Arlos
- Department
of Civil and Environmental Engineering, University of Alberta, 9211-116 St. NW, Edmonton, Alberta T6G 1H9, Canada
- Department
of Civil and Environmental Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
3
|
Panigrahi B, Doig LE, Davila-Arenas CE, Ezugba I, Liber K. Spatio-temporal analysis of water chemistry and ecotoxicological risk characterisation for a constructed pilot-scale pit lake in the Athabasca oil sands region, Canada. CHEMOSPHERE 2024; 368:143679. [PMID: 39515541 DOI: 10.1016/j.chemosphere.2024.143679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Substantial quantities of fine tailings and oil sands process affected water (OSPW) require reclamation in the Athabasca oil sands (AOS) region, Canada. Towards this end, Lake Miwasin was created as a pilot-scale pit lake containing treated fluid tailings (bottom sediment) capped with a blend of OSPW and surface water. This is a recent approach to waste reclamation and long-term monitoring is ongoing to determine the trajectory of water quality in this test lake. The current study characterized spatial and temporal changes in surface water chemistry using a wireless sensor network (WSN), particularly to identify contaminant release from the consolidating tailings and potential periods of sediment resuspension. The WSN technology was deployed during the open water season from September 2020 to October 2022 to remotely measure water quality parameters at different depths of the water column. Field measurements and manual water sampling were conducted periodically to validate sensor measurements and to analyse additional variables requiring more complex analysis. During the study, increased electrical conductivity (EC) near the sediment-water interface during water column stratification indicated expression of pore water with elevated salt content, as the bottom tailings progressively consolidated. A decreasing trend in EC towards the end of the monitoring season suggested water input from the surrounding catchment and possibly a decline in porewater expression. A Tier 1 screening-level risk assessment using hazard quotients (HQs) was conducted for individual metals using Canadian water quality benchmarks and published toxicity data. Total osmolarity was used to identify risks associated with major ions. Cumulative HQs for trace elements were >1 but decreased over time. The risk due to major ions was <1 for all years and seasons except 2019 and winter 2020. Modelling results indicated that the predicted 90th percentile HQs for Se and As were 1.6 and 0.44, respectively, suggesting that Se represents a potential ecotoxicological risk and should be further investigated. Overall, water quality monitoring and modelling insights gained from this study have the potential to inform AOS pit lake design and prediction of reclamation trajectories.
Collapse
Affiliation(s)
- Banamali Panigrahi
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
| | - Lorne E Doig
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | | | - Immanuela Ezugba
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada; School of Environment and Sustainability, 117 Science Place, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada.
| |
Collapse
|
4
|
Martin JT, Leshuk TMC, Armstrong K, Chai T, Young ZW, Paradis T, Bekele A, White T, Gu F. Photocatalytic treatment of diverse contaminants of potential concern in oil sands process-affected water. CHEMOSPHERE 2024; 365:143344. [PMID: 39278328 DOI: 10.1016/j.chemosphere.2024.143344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Oil sands process-affected water (OSPW), generated by surface mining in Canada's oil sands, require treatment of environmentally persistent dissolved organic compounds before release to the watershed. Conventional chemical and mechanical treatments have not proved suitable for treating the large quantities of stored OSPW, and the biological recalcitrance of some dissolved organics may not be adequately addressed by conventional passive treatment systems. Previous work has evaluated photocatalytic treatment as a passive advanced oxidation process (P-AOP) for OSPW remediation. This work expands upon this prior research to further characterize the effects of water chemistry on the treatment rate and detoxification threshold. Under artificial sunlight, buoyant photocatalysts (BPCs) detoxified all OSPW samples within 1 week of treatment time with simultaneous treatment of polycyclic aromatic hydrocarbons, naphthenic acid fraction components (NAFCs), and un-ionized ammonia. Overall, these results further demonstrate passive photocatalysis as an effective method for treatment of OSPW contaminants of potential concern (COPCs).
Collapse
Affiliation(s)
| | - Timothy M C Leshuk
- H2nanO Inc., Kitchener, Ontario, N2R 1E8, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | | | - Tia Chai
- H2nanO Inc., Kitchener, Ontario, N2R 1E8, Canada
| | | | - Theo Paradis
- Canadian Natural Resources Ltd., Calgary, Alberta, T2P 4J8, Canada
| | - Asfaw Bekele
- Imperial Oil Resources Limited, Calgary, Alberta, T2C 4P3, Canada
| | - Todd White
- Teck Resources Ltd., Vancouver, British Columbia, V6C 0B3, Canada
| | - Frank Gu
- H2nanO Inc., Kitchener, Ontario, N2R 1E8, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.
| |
Collapse
|
5
|
Leshuk TC, Young ZW, Wilson B, Chen ZQ, Smith DA, Lazaris G, Gopanchuk M, McLay S, Seelemann CA, Paradis T, Bekele A, Guest R, Massara H, White T, Zubot W, Letinski DJ, Redman AD, Allen DG, Gu F. A Light Touch: Solar Photocatalysis Detoxifies Oil Sands Process-Affected Waters Prior to Significant Treatment of Naphthenic Acids. ACS ES&T WATER 2024; 4:1483-1497. [PMID: 38633367 PMCID: PMC11019557 DOI: 10.1021/acsestwater.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 04/19/2024]
Abstract
Environmental reclamation of Canada's oil sands tailings ponds is among the single largest water treatment challenges globally. The toxicity of oil sands process-affected water (OSPW) has been associated with its dissolved organics, a complex mixture of naphthenic acid fraction components (NAFCs). Here, we evaluated solar treatment with buoyant photocatalysts (BPCs) as a passive advanced oxidation process (P-AOP) for OSPW remediation. Photocatalysis fully degraded naphthenic acids (NAs) and acid extractable organics (AEO) in 3 different OSPW samples. However, classical NAs and AEO, traditionally considered among the principal toxicants in OSPW, were not correlated with OSPW toxicity herein. Instead, nontarget petroleomic analysis revealed that low-polarity organosulfur compounds, composing <10% of the total AEO, apparently accounted for the majority of waters' toxicity to fish, as described by a model of tissue partitioning. These findings have implications for OSPW release, for which a less extensive but more selective treatment may be required than previously expected.
Collapse
Affiliation(s)
- Timothy
M. C. Leshuk
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Zachary W. Young
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Brad Wilson
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Stantec, Waterloo, Ontario, Canada N2L 0A4
| | - Zi Qi Chen
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Danielle A. Smith
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- P&P
Optica, Waterloo, Ontario, Canada N2 V 2C3
| | - Greg Lazaris
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Department
of Mining and Materials Engineering, McGill
University, Montreal, Quebec, Canada H3A 0C5
| | - Mary Gopanchuk
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Sean McLay
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Corin A. Seelemann
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Composite Biomaterials Systems Lab, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Theo Paradis
- Canadian
Natural Resources Ltd., Calgary, Alberta, Canada T2P 4J8
| | - Asfaw Bekele
- Imperial
Oil Ltd., Calgary, Alberta, Canada T2C 5N1
- ExxonMobil
Biomedical Sciences, Inc., Annandale, New Jersey 08801, United States
| | - Rodney Guest
- Suncor Energy Inc., Calgary, Alberta, Canada T2P 3E3
| | - Hafez Massara
- Suncor Energy Inc., Calgary, Alberta, Canada T2P 3E3
- Trans-Northern Pipelines Inc., Richmond Hill, Ontario, Canada L4B 3P6
| | - Todd White
- Teck Resources Ltd., Vancouver, British Columbia, Canada V6C 0B3
| | - Warren Zubot
- Syncrude Canada Ltd., Fort McMurray, Alberta, Canada T9H 0B6
| | - Daniel J. Letinski
- ExxonMobil
Biomedical Sciences, Inc., Annandale, New Jersey 08801, United States
| | - Aaron D. Redman
- ExxonMobil
Biomedical Sciences, Inc., Annandale, New Jersey 08801, United States
| | - D. Grant Allen
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5
| | - Frank Gu
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
6
|
Yang F, Mamun AA, Cheng I, Qiu X, Zhang L. Contributions of the oil sands sources to the ambient concentrations and deposition of particulate elements in the Canadian Athabasca oil sands region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165519. [PMID: 37451466 DOI: 10.1016/j.scitotenv.2023.165519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
In this study, model sensitivity tests were conducted to investigate the relative contributions between emission sources of oil sands (OS) activities and other sources to the ambient concentrations and deposition of 29 particulate elements in the Athabasca oil sands region (AOSR) of Canada. Element emission sources from a recently developed emission database were grouped into three source sectors for elements in PM2.5 (OS-Industrial, OS-Dust, and Non-OS) and two source sectors for elements in PM2.5-10 (OS-All and Non-OS). The OS-Dust and OS-Industrial sectors (combined as one sector for PM2.5-10; OS-All) included element sources linked to dust and other industrial activities from the OS activities, respectively, whereas the Non-OS sector included remaining sources in the region, unrelated to the OS activities. The OS-Industrial, OS-Dust, and Non-OS emissions (tonnes/year) of all elements in PM2.5 were 326, 1430, and 562, respectively. The OS-All and Non-OS emissions (tonnes/year) of all elements in PM2.5-10 were 5890 and 2900, respectively. The element concentrations were simulated by the CALPUFF dispersion model. The sum of the domain averaged annual mean concentrations of all elements in PM2.5 and PM2.5-10 from all sources were 57.3 ng/m3 and 30.4 ng/m3, respectively. Except for Co (PM2.5 and PM2.5-10), Sb (PM2.5-10), and Sn (PM2.5-10), major proportions (≥ 59 %) of the ambient concentrations of the individual elements were linked to the OS source sector. Overall, the OS sector was responsible for 78 % and 68 % of the sum of the mean ambient concentrations of all elements in PM2.5 and PM2.5-10, respectively, which are close to the corresponding emission contributions (76 % and 67 %, respectively). Likewise, the bulk proportion (∼74 %) of the sum of the total atmospheric deposition of all elements was also associated with the OS sources. Carcinogenic and non-carcinogenic risks associated with inhalation exposure to airborne elements were below the recommended threshold risk levels.
Collapse
Affiliation(s)
- Fuquan Yang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada; SLR Consulting (Canada) Ltd, 100 Stone Road West, Suite 201, Guelph, Ontario N1G 5L3, Canada
| | - Abdulla Al Mamun
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Irene Cheng
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Xin Qiu
- SLR Consulting (Canada) Ltd, 100 Stone Road West, Suite 201, Guelph, Ontario N1G 5L3, Canada
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada.
| |
Collapse
|
7
|
Medeiros DCCDS, Chelme-Ayala P, Gamal El-Din M. Sorption and desorption of naphthenic acids on reclamation materials: Mechanisms and selectivity of naphthenic acids from oil sands process water. CHEMOSPHERE 2023; 326:138462. [PMID: 36963589 DOI: 10.1016/j.chemosphere.2023.138462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the application of materials peat-mineral mix (PT) and Pleistocene fluvial sands from different location (PF-1 and PF-2) obtained from surface mining of oil sands as sorbents of naphthenic acids (NAs) from oil sands process water (OSPW). To understand the sorption properties and mechanisms of NAs in the materials, sorption and desorption studies were performed using decanoic acid (DA) and 5-phenylvaleric acid (PVA). Additionally, the removal efficiency was evaluated using real OSPW to understand the effect of NA structure on sorption. Equilibrium of DA and PVA was reached at 2 days for PT, and 3 and 6 days for PF materials, respectively. Langmuir isotherm best fitted the equilibrium data. Maximum sorption capacities for DA and PVA were, respectively, 16.8 × 103 and 104 mg/kg for PT, 142.9 and 81.3 mg/kg for PF-1, and 600 and 476.2 mg/kg for PF-2. Hydrophobic interactions, hydrogen bonding, and π-π interaction were the main sorption mechanisms. Desorption of model compounds from post-sorption materials was not observed for 14 days. The removal of NAs from real OSPW ranged from 20 to 54%. PT is the most promising sorbent of NAs from OSPW because it partially removed NAs with a wide range of molecular weights and structures at very low dosage. Sorption of NAs was affected by the total organic carbon of the materials, emphasizing the hydrophobic interaction as an important sorption mechanism. The results suggest that some mobility of NAs is expected to take place if the reclamation materials come in contact with OSPW, which might occur in an oil sands reclamation landscape.
Collapse
Affiliation(s)
| | - Pamela Chelme-Ayala
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
8
|
Hussain NAS, Stafford JL. Abiotic and biotic constituents of oil sands process-affected waters. J Environ Sci (China) 2023; 127:169-186. [PMID: 36522051 DOI: 10.1016/j.jes.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/17/2023]
Abstract
The oil sands in Northern Alberta are the largest oil sands in the world, providing an important economic resource for the Canadian energy industry. The extraction of petroleum in the oil sands begins with the addition of hot water to the bituminous sediment, generating oil sands process-affected water (OSPW), which is acutely toxic to organisms. Trillions of litres of OSPW are stored on oil sands mining leased sites in man-made reservoirs called tailings ponds. As the volume of OSPW increases, concerns arise regarding the reclamation and eventual release of this water back into the environment. OSPW is composed of a complex and heterogeneous mix of components that vary based on factors such as company extraction techniques, age of the water, location, and bitumen ore quality. Therefore, the effective remediation of OSPW requires the consideration of abiotic and biotic constituents within it to understand short and long term effects of treatments used. This review summarizes selected chemicals and organisms in these waters and their interactions to provide a holistic perspective on the physiochemical and microbial dynamics underpinning OSPW .
Collapse
Affiliation(s)
- Nora A S Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada.
| |
Collapse
|
9
|
Kay ML, Jasiak I, Klemt WH, Wiklund JA, Faber JA, MacDonald LA, Telford JVK, Savage CAM, Cooke CA, Wolfe BB, Hall RI. Paleolimnological evaluation of metal(loid) enrichment from oil sands and gold mining operations in northwestern Canada. ENVIRONMENTAL RESEARCH 2023; 216:114439. [PMID: 36174760 DOI: 10.1016/j.envres.2022.114439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/22/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Abundant reserves of metals and oil have spurred large-scale mining developments across northwestern Canada during the past 80 years. Historically, the associated emissions footprint of hazardous metal(loid)s has been difficult to identify, in part, because monitoring records are too short and sparse to have characterized their natural concentrations before mining began. Stratigraphic analysis of lake sediment cores has been employed where concerns of pollution exist to determine pre-disturbance metal(loid) concentrations and quantify the degree of enrichment since mining began. Here, we synthesize the current state of knowledge via systematic re-analysis of temporal variation in sediment metal(loid) concentrations from 51 lakes across four key regions spanning 670 km from bitumen mining in the Alberta Oil Sands Region (AOSR) to gold mining (Giant and Con mines) at Yellowknife in central Northwest Territories. Our compilation includes upland and floodplain lakes at varying distances from the mines to evaluate dispersal of pollution-indicator metal(loid)s from bitumen (vanadium and nickel) and gold mining (arsenic and antimony) via atmospheric and fluvial pathways. Results demonstrate 'severe' enrichment of vanadium and nickel at near-field sites (≤20 km) within the AOSR and 'severe' (near-field; ≤ 40 km) to 'considerable' (far-field; 40-80 km) enrichment of arsenic and antimony due to gold mining at Yellowknife via atmospheric pathways, but no evidence of enrichment of vanadium or nickel via atmospheric or fluvial pathways at the Peace-Athabasca Delta and Slave River Delta. Findings can be used by decision makers to evaluate risks associated with contaminant dispersal by the large-scale mining activities. In addition, we reflect upon methodological approaches to be considered when evaluating paleolimnological data for evidence of anthropogenic contributions to metal(loid) deposition and advocate for proactive inclusion of paleolimnology in the early design stage of environmental contaminant monitoring programs.
Collapse
Affiliation(s)
- Mitchell L Kay
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Izabela Jasiak
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Wynona H Klemt
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Johan A Wiklund
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Jelle A Faber
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Lauren A MacDonald
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - James V K Telford
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada; Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada; Ministry of Forests, Lands, Natural Resource Operations & Rural Development Victoria, British Columbia, V8W 9M1, Canada
| | - Cory A M Savage
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Colin A Cooke
- Alberta Environment and Parks, Government of Alberta, Edmonton, Alberta, T5J 5C6, Canada; Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Brent B Wolfe
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Roland I Hall
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
10
|
Arciszewski TJ. A re-analysis and review of elemental and polycyclic aromatic compound deposition in snow and lake sediments from Canada's Oil Sands Region integrating industrial performance and climatic variables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153254. [PMID: 35065131 DOI: 10.1016/j.scitotenv.2022.153254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Much of the research from Canada's oil sands region (OSR) shows contaminants of concern (CoCs) throughout the ambient environment surrounding the industrial facilities. While there are some well-established sources of the CoCs, there is also spatial and temporal variability suggesting activity intensity, changes in technology, types and amounts of fuels combusted at the facilities, and climate may affect the results of deposition studies. This study re-analysed published data on the deposition of elements and polycyclic aromatic compounds (PACs) in snow and the sediments of some lakes by incorporating production data from facilities and climate. Using the Elastic Net (EN) regularized regression, variables describing potential associations between facility-specific activity and climate on the deposition of CoCs were identified. Among the selected variables, the combustion of delayed petroleum coke at the Suncor Basemine was associated with the deposition of CoCs, including elements in snow and in some lakes. Similarly, combustion of petroleum coke at Syncrude Mildred Lake was also identified in some models. In both cases, the effects of petroluem coke combustion are likely associated with the emission and deposition of fly ash. The mass of stored petroleum coke was not selected in snow CoC models, but the speed of the wind was a common driver for PACs. However, the mass of stockpiled petcoke was more closely associated with both elements and PACs in lake sediments. While the potential influence of other variables on the occurrence of CoCs in the OSR was also identified, including the production of crude bitumen and synthetic crude, the use of process and natural gases, temperature, and precipitation, these analyses support much of the earlier work and provides additional nuance. While more work is required, these results suggest facility-specific production and climatic data can be coupled with existing approaches to improve the identification of sources of CoCs in Canada's OSR and practices associated with their release.
Collapse
Affiliation(s)
- T J Arciszewski
- Resource Stewardship Division, Alberta Environment and Parks, Calgary, Alberta, Canada.
| |
Collapse
|
11
|
Arslan M, Müller JA, Gamal El-Din M. Aerobic naphthenic acid-degrading bacteria in petroleum-coke improve oil sands process water remediation in biofilters: DNA-stable isotope probing reveals methylotrophy in Schmutzdecke. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:151961. [PMID: 34843771 DOI: 10.1016/j.scitotenv.2021.151961] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
There is an increasing interest in treatment of oil sands process water (OSPW) via biofiltration with petroleum coke (PC) as a substratum. In fixed bed biofilters (FBBs) with PC, the dominance of anaerobic digestion of dissolved organics results in poor removal of naphthenic acids (NAs) along with a high degree of methanogenesis. In this study, the operation of FBBs was modified to improve OSPW remediation by supporting the filtering bed with aerobic naphthenic acid-degrading bacteria treating aerated OSPW (FBBbioaugmentation). The results were compared with a biofilter operated under controlled conditions (FBBcontrol). To this end, a consortium of three aerobic NAs-degrading bacterial strains was immobilized on PC as a top layer (10 cm). These bacteria were pre-screened for growth on 15 different NAs surrogates as a sole carbon source, and for the presence of catabolic genes coding alkane hydroxylase (CYP153) and alkane monooxygenase (alkB) enzymes. The results illustrated that biofiltration in FBBbioaugmentation removed 32% of classical NAs in 15 days; while in the FBBcontrol, degradation was limited to 19%. The degradation of fluorophore (aromatic) compounds was also improved from 16% to 39% for single ring (OI), 22% to 29% for double ring (OII), and 15% to 23% for three rings (OIII) compounds. DNA-Stable Isotope Probing revealed that potential hydrocarbons degraders such as Pseudomonas (inoculated), Pseudoxanthomonas (indigenous) were present up to 9.0% in the 13C-labelled DNA fraction. Furthermore, a high abundance of methylotrophs was observed in the Schmutzdecke, with Methylobacillus comprising more than two-third of the total community. This study shows that bioaugmentation rapidly improved OSPW remediation. Aeration mostly contributed to methane consumption in the top layer, thus minimizing its release into the environment.
Collapse
Affiliation(s)
- Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jochen A Müller
- Institute for Biological Interfaces (IBG 5), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
12
|
Abdolahnezhad M, Lindsay MBJ. Geochemical conditions influence vanadium, nickel, and molybdenum release from oil sands fluid petroleum coke. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 245:103955. [PMID: 35030380 DOI: 10.1016/j.jconhyd.2022.103955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/17/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Petroleum coke is a potential source of vanadium (V), nickel (Ni), and molybdenum (Mo) to water resources in Athabasca Oil Sands Region (AOSR) of northern Alberta, Canada. Large stockpiles of this bitumen upgrading byproduct will be incorporated into mine closure landscapes and understanding the processes and conditions controlling the release and transport of these transition metals is critical for effective reclamation. We performed a series of laboratory column experiments to quantify V, Ni, and Mo release from fluid petroleum coke receiving meteoric water (MW), oil sands process-affected water (OSPW), and acid rock drainage (ARD) influents. We found that influent water chemistry strongly influences metal release, with variations among metals largely attributed to pH-dependent aqueous speciation and surface reactions. Cumulative V, Ni, and Mo mass release was greatest for columns receiving the low-pH ARD influent. Additionally, cumulative V and Mo mass release were greater in columns receiving OSPW compared to MW influent, whereas cumulative Ni mass release was greater in columns receiving MW compared to OSPW influent. Nevertheless, only a small proportion of total V, Ni, and Mo was released during the experiments, with the majority occurring during the first 10 pore volumes (PVs). This study offers insight into geochemical controls on V, Ni, and Mo release from fluid petroleum coke that supports ongoing development of oil sands mine reclamation strategies for landscapes that contain petroleum coke.
Collapse
Affiliation(s)
- Mojtaba Abdolahnezhad
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada.
| | - Matthew B J Lindsay
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada.
| |
Collapse
|
13
|
Impacts of bioreactor operating parameters on removal efficiency, biodegradation rate, molecular distribution, and toxicity of commercial naphthenic acids. Bioprocess Biosyst Eng 2021; 45:391-407. [PMID: 34854976 DOI: 10.1007/s00449-021-02669-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
Effects of naphthenic acids (NAs) concentration (50-200 mg NA L-1; 35-140 mg TOC L-1) and loading rate (1.4-1249 mg NA L-1 h-1; 1-874 mg TOC L-1 h-1) on removal efficiency, removal rate, and molecular distribution of NAs, and effluent toxicity were evaluated for biodegradation of commercial NAs mixture in circulating packed bed bioreactors (CPBBs). Increase of NAs concentration and loading rate (shorter residence times) increased the removal rate, while removal efficiency initially declined and then stabilized. The maximum biodegradation rates for 50, 100, 150, and 200 mg NA L-1 were 128.0, 321.7, 430.2, and 630.0 mg TOC L-1 h-1 at loading rates of 218.5, 455.6, 673.5 and 874.0 mg TOC L-1 h-1, respectively, with removal efficiencies of 58.6, 70.6, 63.9 and 72.1%. Analysis of influent and treated effluents with gas chromatography-mass spectrometry showed that molecular weight and cyclicity (C and Z numbers) affected the biodegradation, with low molecular weight acyclic NAs (C = 6-12) were the most amenable to biodegradation and those with intermediate and high molecular weights (C = 13-22) and moderate cyclicity (Z = - 4, - 6) were the most recalcitrant. In the biofilm, Proteobacteria and Actinobacteria were the most abundant phyla, and Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria were the dominant classes. Toxicity analyses with Artemia salina and Vibrio fischeri (Microtox) showed that high influent concentrations and loading rates (short residence times) led to higher NAs residual concentration and effluent toxicity. To design and operate large-scale CPBBs, intermediate loading rates and residence times that result in high removal efficiency, reasonable removal rates, and low toxicity are recommended.
Collapse
|
14
|
Mamun AA, Celo V, Dabek-Zlotorzynska E, Charland JP, Cheng I, Zhang L. Characterization and source apportionment of airborne particulate elements in the Athabasca oil sands region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147748. [PMID: 34134367 DOI: 10.1016/j.scitotenv.2021.147748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/01/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
The oil sands industries in Alberta, Canada are potential sources of particulate-bound elements in the region. This study explored the ambient concentrations and size distributions, and conducted source apportionment of 48 particulate elements, based on samples collected in 2016-2017 at four air monitoring sites in the Athabasca oil sands region: Fort McKay (AMS1), Buffalo Viewpoint (AMS4), Wapasu Creek (AMS17), and Stoney Mountain (AMS18). Element concentrations in fine and coarse particulate matter (PM2.5 and PM2.5-10 respectively) at the four sites were generally lower than their typical concentrations at other urban and industrial sites in North America. Among all elements, S was the most abundant in PM2.5 with mean concentrations ranging from 189 ng/m3 (AMS18) to 284 ng/m3 (AMS1). Of the trace, toxic elements in PM2.5, Zn was the most abundant with mean concentrations ranging from 3.43 ng/m3 (AMS18) to 5.37 ng/m3 (AMS4). Positive Matrix Factorization (PMF) modeling of the element concentrations in PM2.5 was used for source apportionment for Zone1 (including AMS 1, 4, and 17, situated closer to industrial activities) and for Zone2 (including AMS18, a background site). The sources of elements for Zone1, included crustal dust, bitumen processing, haul road dust, and biomass burning that explained ~33%, ~43%, ~15%, and ~9% of the total resolved elemental mass, respectively. The sources of elements for Zone2, included Pb-rich source, biomass burning, fugitive oil sands, crustal dust, and bitumen processing explaining ~8%, ~7%, ~3%, ~22%, and ~60% of the total resolved elemental mass, respectively. Elemental mass concentrations of the bitumen processing source factor at Zone2 was two-thirds of that in Zone1. Overall, mass proportions of the bitumen processing source factor at all four sites were significant, suggesting that the oil sands industries played a key role in ambient element concentration levels in the region.
Collapse
Affiliation(s)
- Abdulla Al Mamun
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Valbona Celo
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario K1V 1C7, Canada.
| | - Ewa Dabek-Zlotorzynska
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario K1V 1C7, Canada
| | - Jean-Pierre Charland
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario K1V 1C7, Canada
| | - Irene Cheng
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada.
| |
Collapse
|
15
|
Pinzón-Espinosa A, Collins TJ, Kanda R. Detoxification of oil refining effluents by oxidation of naphthenic acids using TAML catalysts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147148. [PMID: 33905929 DOI: 10.1016/j.scitotenv.2021.147148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
The environmental problem stemming from toxic and recalcitrant naphthenic acids (NAs) present in effluents from the oil industry is well characterized. However, despite the numerous technologies evaluated for their destruction, their up-scaling potential remains low due to high implementation and running costs. Catalysts can help cutting costs by achieving more efficient reactions with shorter operating times and lower reagent requirements. Therefore, we have performed a laboratory investigation to assess iron-TAML (tetra-amido macrocyclic ligand) activators to catalyze the oxidation of NAs by activating hydrogen peroxide - considered environmentally friendly because it releases only water as by-product - under ultra-dilute conditions. We tested Fe-TAML/H2O2 systems on (i) model NAs and (ii) a complex mixture of NAs in oil refining wastewater (RWW) obtained from a refining site in Colombia. Given the need for cost-effective solutions, this preliminary study explores sub-stoichiometric H2O2 concentrations for NA mineralization in batch mode and, remarkably, delivers substantial removal of the starting NAs. Additionally, a 72-h semi-batch process in which Fe-TAML activators and hydrogen peroxide were added every 8 h achieved 90-95% removal when applied to model NAs (50 mg L-1) and a 4-fold reduction in toxicity towards Aliivibrio fischeri when applied to RWW. Chemical characterization of treated RWW showed that Fe-TAML/H2O2 treatment (i) reduced the concentration of the highly toxic O2 NAs, (ii) decreased cyclized constituents in the mixture, and (iii) preferentially degraded higher molecular weight species that are typically resistant to biodegradation. The experimental findings, together with the recent development of new TAML catalysts that are far more effective than the TAML catalysts deployed herein, constitute a foundation for cost-effective treatment of NA-contaminated wastewater.
Collapse
Affiliation(s)
- Angela Pinzón-Espinosa
- Institute of Environment, Health and Societies, Brunel University London, Halsbury Building, Kingston Lane, Uxbridge, Middlesex UB8 3PH, United Kingdom.
| | - Terrence J Collins
- Institute for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Rakesh Kanda
- Institute of Environment, Health and Societies, Brunel University London, Halsbury Building, Kingston Lane, Uxbridge, Middlesex UB8 3PH, United Kingdom
| |
Collapse
|
16
|
Arslan M, Gamal El-Din M. Bacterial diversity in petroleum coke based biofilters treating oil sands process water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146742. [PMID: 33839672 DOI: 10.1016/j.scitotenv.2021.146742] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Adopting nature-based solutions for the bioremediation of oil sands process water (OSPW) is of significant interest, which requires a thorough understanding of how bacterial communities behave within treatment systems operated under natural conditions. This study investigates the OSPW remediation potential of delayed petroleum-coke (PC), which is a byproduct of bitumen upgrading process and is readily available at oil refining sites, in fixed-bed biofilters particularly for the degradation of naphthenic acids (NAs) and aromatics. The biofilters were operated continuously and total and active bacterial communities were studied by DNA and RNA-based amplicon sequencing in a metataxonomic fashion to extrapolate the underlying degradation mechanisms. The results of total community structure indicated a high abundance of aerobic bacteria at all depths of the biofilter, e.g., Porphyrobacter, Legionella, Pseudomonas, Planctomyces. However, redox conditions within the biofilters were anoxic (-153 to -182 mV) that selected anaerobic bacteria to actively participate in the remediation of OSPW, i.e., Ruminicoccus, Eubacterium, Faecalibacterium, Dorea. After 15 days of operation, the removal of classical NAs was recorded up to 20% whereas oxidized NAs species were poorly removed, i.e., O3-NAs: 4.8%, O4-NAs: 1.2%, O5-NAs: 1.7%, and O6-NAs: 0.5%. Accordingly, monoaromatics, diaromatics, and triaromatics were removed up to 16%, 22%, and 15%, respectively. The physiology of the identified genera suggested that the degradation in the PC-based biofilters was most likely proceeded in a scheme similar to beta-oxidation during anaerobic digestion process. The presence of hydrogenotrophic methanogens namely Methanobrevibacter and Methanomassiliicoccus and quantification of mcrA gene (2.4 × 102 to 8.7 × 102 copies/mg of PC) revealed that methane production was likely occurring in a syntrophic mechanism during the OSPW remediation. A slight reduction in toxicity was also observed. This study suggests that PC-based biofilters may offer some advantages in the remediation of OSPW; however, the production of methane could be of future concerns if operated at field-scale.
Collapse
Affiliation(s)
- Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
17
|
Zhang M, Li W, Jin Z. Structural properties of deprotonated naphthenic acids immersed in water in pristine and hydroxylated carbon nanopores from molecular perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125660. [PMID: 33773253 DOI: 10.1016/j.jhazmat.2021.125660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
We use molecular dynamic simulations to study the structural properties of deprotonated cyclohexanoic acid (DCHA) and heptanoic acid (DHA) immersed in water in pristine and hydroxylated carbon nanopores (PACNs and HACNs) in relation to NA removal by activated carbons (ACs). In PACNs, both NAs can aggregate on the pore surface by depleting water molecules, while water molecules accumulate in the area where there is no NA aggregation. The hydrophobic tails of NAs are generally in the interface water region (IWR), while the hydrophilic head groups prefer to be hydrated by water and form pairing with Na+ ions outside the IWR. The linear carbon tails of DHA tend to be parallel to the pore surface, while a slightly inclined configuration of the carbon ring in DCHA is observed. In HACNs, water forms a predominant interface layer by forming hydrogen bonding with -OH groups, while the hydrophobic tails of NAs are driven away from the surface. Both NAs have a more perpendicular orientation close to the pore surface with their hydrophilic head groups forming hydrogen bonding with -OH groups. The strong water film greatly reduces hydrophobic interactions as well as decreases the available adsorption sites for NAs.
Collapse
Affiliation(s)
- Mingshan Zhang
- School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Wenhui Li
- School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Zhehui Jin
- School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
18
|
Klemt WH, Brua RB, Culp JM, Hicks K, Wolfe BB, Hall RI. Evaluating Lower Athabasca River Sediment Metal Concentrations from Alberta Oil Sands Monitoring Programs Using Predevelopment Baselines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8817-8828. [PMID: 34105946 DOI: 10.1021/acs.est.1c01761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Since 1997, sediment metal concentrations have been monitored in the Alberta Oil Sands Region (AOSR) of the Lower Athabasca River by the Regional Aquatics Monitoring Program (RAMP; 1997-2002), the Joint Oil Sands Monitoring Program (JOSM; 2012-2014), and the Oil Sands Monitoring Program (OSM; 2015-present). However, it has remained difficult to differentiate industrial sources from natural sources and quantify the extent of pollution due to inadequate knowledge of predevelopment reference conditions. Here, baselines were constructed using predevelopment (i.e., pre-1967) sediment concentrations of US EPA priority pollutants (Be, Cr, Cu, Ni, Pb) and V, an element elevated in bitumen and associated waste materials, normalized to Al concentration in cores from floodplain and upland lakes within the AOSR to characterize the natural range of variability. The Lower Athabasca River sediment metal monitoring data were examined in the context of the predevelopment baselines. Most metals are below the threshold for minimal enrichment (<1.5x baseline) except for chromium (up to 4.8x) in some RAMP samples. The predevelopment baselines for sediment metal concentrations will be of particular importance as the oil sands industry potentially shifts from a no-release policy to the treatment and release of oil sands process waters directly to the Lower Athabasca River.
Collapse
Affiliation(s)
- Wynona H Klemt
- Department of Biology, University of Waterloo, Waterloo, Ontario Canada N2L 3G1
| | - Robert B Brua
- Environment and Climate Change Canada, National Hydrology Research Centre, Saskatoon, Saskatchewan Canada S7N 3H5
| | - Joseph M Culp
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Ontario Canada N2L 3C5
- Environment and Climate Change Canada, Canadian Centre for Inland Waters, Burlington, Ontario Canada L7R 4A6
| | - Keegan Hicks
- Alberta Environment and Parks, Resource Stewardship Division, 4938 89 Street, Edmonton, Alberta Canada T6E 5K1
| | - Brent B Wolfe
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Ontario Canada N2L 3C5
| | - Roland I Hall
- Department of Biology, University of Waterloo, Waterloo, Ontario Canada N2L 3G1
| |
Collapse
|
19
|
Zubot W, An Z, Benally C, Gamal El-Din M. Treatment of oil sands process water using petroleum coke: Field pilot. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112407. [PMID: 33799065 DOI: 10.1016/j.jenvman.2021.112407] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
This is the first large-scale field pilot study that examined the feasibility and effectiveness of petroleum coke (PC), produced by a Fluid Coking Process, as an adsorbent for oil sands process water (OSPW) treatment. The pilot program consisted of an inline series of two reactors (pipeline reactor 1, and batch reactor 2) and lasted for approximately 4 months. The quality of treated OSPW as a function of residence time in the PC deposit under natural climatic conditions was assessed by looking at changes in organic compounds (acid extractable fraction (AEF), dissolved organic carbon (DOC), etc.), vanadium, and other trace element concentrations, major ions, conductivity, total suspended solids (TSS), pH and toxicity. The results indicated that the AEF adsorption by PC followed pseudo-second order kinetics and the overall combined removal efficiency of AEF was greater than 80%. Reactor 1 showed higher AEF removal than Reactor 2. DOC decreased about 50% after 4 weeks of retention in the PC deposit. An increase of vanadium concentration after PC contact indicated that vanadium leaching occurred. However, with increased residence time in the PC deposit, vanadium concentration decreased in the cells and tanks by 42% and 98%, respectively. Filtration through the PC deposit reduced the TSS in OSPW to less than laboratory detectable limits. Unlike untreated OSPW, treated OSPW did not show an acute toxic response based on whole effluent toxicity testing using trout, zooplankton, and bacteria. This study demonstrated that PC adsorption is a potentially commercially viable technology for highly efficient treatment of OSPW.
Collapse
Affiliation(s)
- Warren Zubot
- Syncrude Canada Ltd., Research and Development, Edmonton, Alberta, T6N 1H4, Canada
| | - Zhexuan An
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Chelsea Benally
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
20
|
Song J, Messele SA, Meng L, Huang Z, Gamal El-Din M. Adsorption of metals from oil sands process water (OSPW) under natural pH by sludge-based Biochar/Chitosan composite. WATER RESEARCH 2021; 194:116930. [PMID: 33631699 DOI: 10.1016/j.watres.2021.116930] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Some metals in oil sands process water (OSPW) are potential threats to human health and the environment. Hence, the removal of excess metals from OSPW is of great significance. In this study, anaerobic sludge waste from a wastewater treatment plant, was reused to prepare sludge-based biochar. A Biochar/Chitosan (Biochar/CS) adsorbent with excellent removal efficiency for metals (Cr, Cu, Se and Pb) in real OSPW was prepared through a facile hydrothermal method. The structural properties of the synthesized Biochar/CS composite were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) method. This study reports for the first time the removal of metals from OSPW under natural pH using Biochar/CS adsorbent. The composite exhibited a higher removal efficiency towards Cr (83.9%), Cu (97.5%), Se (87.9%) and Pb (94.3%) when the initial concentrations of Cr, Cu, Se and Pb were 0.02914, 0.06185, 0.00800 and 0.00516 mg/L, respectively, at a dosage of 0.5 g/L, compared with biochar or chitosan alone. The possible adsorption mechanism was proposed, and the enhanced removal ability was due to the improved specific surface area and pore volume, which increased by about 20 and 14 times as compared with chitosan. Functional groups in the composite, such as -NH2, -OH and some oxygen containing groups, were also responsible for the enhanced removal ability, which also might be the reason for the better performance of the composite than biochar alone due to the lack of functional groups on the biochar. Moreover, the adsorption process was best modelled by the Freundlich model, pseudo second order and intraparticle diffusion kinetic models. The results indicated that chemical adsorption might play the dominant role in the removal process. Overall, the Biochar/CS composite would be a promising and effective adsorbent for metals removal, owing to its advantages of being cost-effective and environmentally friendly.
Collapse
Affiliation(s)
- Junying Song
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China; Department of Civil & Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, Alberta, Canada
| | - Selamawit Ashagre Messele
- Department of Civil & Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, Alberta, Canada
| | - Lingjun Meng
- Department of Civil & Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, Alberta, Canada
| | - Zhanbin Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Mohamed Gamal El-Din
- Department of Civil & Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, Alberta, Canada.
| |
Collapse
|
21
|
Gillio Meina E, Niyogi S, Liber K. Investigating the mechanism of vanadium toxicity in freshwater organisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105648. [PMID: 33130451 DOI: 10.1016/j.aquatox.2020.105648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Vanadium (V) could present a risk for aquatic organisms from the Alberta oil sands region, if present in high concentrations. An industry pilot project has used petroleum coke (PC) as a sorbent to remove organic toxicants from oil sands process-affected water (OSPW), but it also caused V to leach from PC into the OSPW, reaching concentrations of up to 7 mg V/L (a level known to be toxic to aquatic organisms). Vanadium is a transition metal with several oxidation states, which could potentially elicit its toxicity through either ion imbalance or oxidative stress. This study investigated the effect of V on Daphnia magna and Oncorhynchus mykiss. Daphinds and O. mykiss were exposed to concentrations of V up to their respective calculated median lethal concentration (LC50): 3 mg V/L for D. magna and 7 mg V/L for O. mykiss. For both organisms, the influence of V on sodium flux and whole body sodium was evaluated. Its effect on whole body calcium and the oxidative stress responses in O. mykiss at the gill and liver levels was also studied. Results suggested that 3.1 mg V/L for D. magna and 6.8 mg V/L for O. mykiss caused an overall increase in sodium influx in both the daphnids and rainbow trout. However, concentrations of V ranging between 0.2 and 4 mg V/L for D. magna and 1.8 and 6 mg V/L for O. mykiss reduced whole body sodium in both organisms and whole body calcium in O. mykiss. Concentrations above 3.6 mg V/L caused significant lipid peroxidation in the gills and liver of rainbow trout, while 1.9 mg V/L produced a substantial decrease in the fish gill GSH:GSSG ratio, but no change in the ratio between these thiols in the liver. Concentrations of 6.62 mg V/L sharply increased catalase activity in the liver but not in the gills. Neither liver nor gill superoxide dismutase was altered by V. Overall, results suggest that both ion imbalance and oxidative stress are part of the mechanism of toxicity of V in D. magna and O. mykiss and that further research is warranted to fully elucidate the mechanism(s) of V toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Esteban Gillio Meina
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Som Niyogi
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada; Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
| |
Collapse
|
22
|
Rashed Y, Messele SA, Zeng H, Gamal El-Din M. Mesoporous carbon xerogel material for the adsorption of model naphthenic acids: structure effect and kinetics modelling. ENVIRONMENTAL TECHNOLOGY 2020; 41:3534-3543. [PMID: 31046640 DOI: 10.1080/09593330.2019.1615130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
The study examined the preparation, characterization and the use of carbon xerogel (CX) material for the adsorption of three model naphthenic acids (NAs); such as, heptanoic acid (HPA), 5-cyclohexanepentanoic acid (CHPA), and 5-phenylvaleric acid (PVA). CX was synthesized by sol-gel method from resorcinol and formaldehyde. The characterization results showed that CX was a mesoporous material with large surface area (573 m2/g) and high pore volume (1.55 cm3/g), which was mainly composed of carbon (93.20%) and oxygen (6.71%). Adsorption studies revealed that PVA, the NA having an aromatic ring was adsorbed more easily by CX (87 mg/g) due to π-π interactions, followed by HPA (65 mg/g) and CHPA (61 mg/g). In addition, by studying the effect of solution pH, the result confirmed that repulsion greatly hindered the adsorption of HPA onto CX at pHs above that of the pHPZC and at lower pHs attractive electrostatic forces promoted adsorption. Adsorption kinetics fitted the pseudo-first-order model, which suggested that physisorption was most likely the means of adsorption. For the intraparticle diffusion model, the rate of film diffusion was higher than the rate of pore diffusion for each model compound regardless of their structure. Accordingly, this confirmed that pore diffusion was the rate-limiting step, although film diffusion still maintained a significant role in the rate of diffusion. In general, CX exhibited excellent adsorption performance due to its highly mesoporous character so it could be used as a passive treatment method in tailing ponds for removal of organic matters.
Collapse
Affiliation(s)
- Yara Rashed
- Department of Civil & Environmental Engineering, University of Alberta, Edmonton, Canada
| | | | - Hongbo Zeng
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Canada
| | - Mohamed Gamal El-Din
- Department of Civil & Environmental Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
23
|
Developments in Molecular Level Characterization of Naphthenic Acid Fraction Compounds Degradation in a Constructed Wetland Treatment System. ENVIRONMENTS 2020. [DOI: 10.3390/environments7100089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The reclamation of oil sands process-affected water (OSPW) is a matter of environmental importance because of the aquatic toxicity to biota. This study describes refinements in advanced analytical methods to assess the performance of biological treatment systems for OSPW, such as constructed wetland treatment systems (CWTSs). Assessment of treatment efficiency by measurement of the degradation of naphthenic acid fraction compounds (NAFCs) in OSPW is challenging in CWTS due to potentially interfering constituents such as humic acids, organic acids, salts, and hydrocarbons. Here we have applied a previous weak anion exchange (WAX) solid-phase extraction (SPE) method and high-resolution Orbitrap-mass spectrometry (MS) to remove major interferences from the NAFC analysis. The refinements in data processing employing principal component analysis (PCA) indicates that the relative abundance of NAFCs decreased with time in the treated OSPW relative to the untreated OSPW. The most saturated NAFCs with higher carbon numbers were relatively more degraded as compared to unsaturated NAFCs. The use of Kendrick plots and van Krevelen plots for assessment of the performance of the CWTS is shown to be well-suited to detailed monitoring of the complex composition of NAFCs as a function of degradation. The developments and application of analytical methods such as the WAX SPE method and high-resolution Orbitrap-MS are demonstrated as tools enabling the advancement of CWTS design and optimization, enabling passive or semi-passive water treatment systems to be a viable opportunity for OSPW treatment.
Collapse
|
24
|
Meshref MNA, Ibrahim MD, Huang R, Yang L, How ZT, Klamerth N, Chelme-Ayala P, Hughes SA, Brown C, Mahaffey A, Gamal El-Din M. Fourier transform infrared spectroscopy as a surrogate tool for the quantification of naphthenic acids in oil sands process water and groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139191. [PMID: 32460069 DOI: 10.1016/j.scitotenv.2020.139191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Naphthenic acid fraction compounds (NAFCs), defined herein as the polar organic compounds extracted from the acidified oil sands process water (OSPW) samples using dichloromethane, are becoming the research hotspot due to their presence in large amount in OSPW and along with other potentially NA-contaminated water streams from the mining site. Fourier transform infrared spectroscopy (FTIR) method is commonly used to quantify NAFCs and assumes that the total NA concentration is measured as the sum of the responses for all carboxylic acid functional groups. In this study, the NAFCs in various OSPW and groundwater (GW) samples from an active oil sands mining site were analyzed using FTIR. All water samples were pretreated using either solid-phase extraction (SPE) or liquid-liquid extraction (LLE) methods before analysis. The results showed that SPE produced higher recoveries of NAFCs than LLE for most water samples under current experimental conditions. For the quantification of NAFCs, commercial Fluka NA mixture and a pre-calibrated OSPW extract were employed as the calibration standards. The NAFCs calibrated with Fluka NA mixture and OSPW extract had clear linear relationships. The concentrations of NAFCs obtained using OSPW extract standard curve were 2.5 times the NAFC concentrations obtained using the Fluka NA mixture standard curve. Additionally, good linear correlations were observed between the total NAs and O2-O6 NA species determined by ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-TOFMS) and the NAFCs measured by FTIR. According to these correlations, the NA compositions in NAFCs were developed, and the relative abundances of O2-O6 NA species in NAFCs were similar for SPE and LLE pretreated samples. The findings of this study demonstrated that FTIR could be used as a promising tool to monitor total NA species and to estimate the NA profile in different environmental water samples.
Collapse
Affiliation(s)
- Mohamed N A Meshref
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Mohamed D Ibrahim
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Rongfu Huang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Lingling Yang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Zuo Tong How
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Nikolaus Klamerth
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Pamela Chelme-Ayala
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Sarah A Hughes
- Shell Health - Americas, Shell Oil Company, 150 North Dairy Ashford Road, Houston, TX 77079, USA.
| | - Christine Brown
- Canadian Natural, Technology and Development, 324-8th Ave SW, Calgary, AB T2P 2Z2, Canada
| | - Ashley Mahaffey
- Coral Waters Consulting Inc., Shell Technology Centre Calgary, 3655 36 St NW, Calgary, AB T2L 1Y8, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
25
|
Gillio Meina E, Niyogi S, Liber K. Multiple Linear Regression Modeling Predicts the Effects of Surface Water Chemistry on Acute Vanadium Toxicity to Model Freshwater Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1737-1745. [PMID: 32526064 DOI: 10.1002/etc.4798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/02/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Multiple linear regression (MLR) modeling has been successfully used to predict how water chemistry variables influence the toxicity of cationic metals to aquatic organisms, but no MLR model exists for vanadium (V). Recent research has indicated that an increase in pH (from 6 to 9), or high concentrations of sodium (473 mg Na+ /L), increase V toxicity to Daphnia pulex. In contrast, increases in alkalinity (>100 mg as CaCO3 ) and sulfate (>100 mg SO42- /L) reduce V toxicity. How these variables influence V toxicity to Oncorhynchus mykiss (rainbow trout) was still unknown. Our results show that increasing pH from 6.2 to 8.9 tended to decrease the 96-h median lethal concentration (LC50) for V toxicity to O. mykiss by 9.6 mg V/L. An alkalinity increase from 71 to 330 mg/L as CaCO3 tended to increase the 96-h LC50 by 3.3 mg V/L, whereas when SO42- rose from 150 to 250 mg/L, the LC50 significantly increased by 0.3 mg V/L followed by a significant decrease of 1 mg V/L when SO42- was >250 mg/L. Sodium (between 100 and 336 mg/L) showed no effect on V toxicity to O. mykiss. The toxicity patterns for O. mykiss were similar to those observed for D. pulex, except for that of SO42- , potentially indicating different mechanisms of V uptake or regulation in the 2 species. The LC50s and associated water chemistry were combined to develop an MLR model for O. mykiss and D. pulex. Alkalinity and pH modified V toxicity to both species, whereas SO42- influenced V toxicity to D. pulex. Overall, MLR models should be considered for creating new local benchmarks or water quality guidelines for V. Environ Toxicol Chem 2020;39:1737-1745. © 2020 SETAC.
Collapse
Affiliation(s)
| | - Som Niyogi
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
26
|
Fang Z, Huang R, Chelme-Ayala P, Shi Q, Xu C, Gamal El-Din M. Comparison of UV/Persulfate and UV/H 2O 2 for the removal of naphthenic acids and acute toxicity towards Vibrio fischeri from petroleum production process water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133686. [PMID: 31400695 DOI: 10.1016/j.scitotenv.2019.133686] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
The ultraviolet light-activated persulfate process (UV/Persulfate) has received much attention in recent years as a novel advanced oxidation method for the treatment of municipal and industrial wastewater. This work investigated the UV/Persulfate and UV/H2O2 processes for the treatment of real oil sands process water (OSPW) at ambient pH condition using a medium pressure mercury lamp (emission between 200 and 530 nm). The degradation performances towards fluorophore organic compounds and naphthenic acids (NAs) in OSPW were evaluated using synchronous fluorescence spectrometry and ultra performance liquid chromatography time-of-flight mass spectrometry, respectively. Compared to the UV/H2O2 process, the UV/Persulfate process exhibited higher efficiency to remove both NAs and fluorophore organic compounds. Under 40 min of UV exposure and incident irradiance of 3.50 mW cm-2, fluorophore organic compounds were greatly degraded by UV/Persulfate (2 mM) and two- and three-ring fused organics were completely removed. 59.4%, 83.8% and 92.2% of O2-NAs in OSPW were removed with persulfate dosages of 0.5, 2, and 4 mM, respectively. The removal efficiency decreased along with the number of oxygen atoms in NAs (83.8%, 49.3%, and 46.8% for O2-, O3-, and O4-NAs, respectively) with 2 mM of persulfate, because of the formation of oxidized NAs in the same process. The structure-reactivity of O2-NA compounds fitted pseudo-first order kinetics in UV/Persulfate process with the rate constants ranging from 0.0156 min-1 to 0.1511 min-1. NAs with higher carbon numbers and double bond equivalence were more reactive in the UV/Persulfate oxidation process. The acute toxicity of OSPW to Vibrio fischeri was significantly reduced after the UV/Persulfate and UV/H2O2 treatments. Overall results demonstrated that the UV/Persulfate oxidation can be an effective alternative for future reclamation of OSPW.
Collapse
Affiliation(s)
- Zhi Fang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Rongfu Huang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Pamela Chelme-Ayala
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
27
|
Fennell J, Arciszewski TJ. Current knowledge of seepage from oil sands tailings ponds and its environmental influence in northeastern Alberta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:968-985. [PMID: 31200313 DOI: 10.1016/j.scitotenv.2019.05.407] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/26/2019] [Accepted: 05/26/2019] [Indexed: 05/05/2023]
Abstract
Seepage of oil sand process-affected waters (OSPW) from tailings ponds into surface waters is a common concern in the minable oil sands region of northeast Alberta. Research on seepage has been extensive, but few comprehensive treatments evaluating all aspects relevant to the phenomenon are available. In this work, the current information relevant for understanding the state of seepage from tailings ponds was reviewed. The information suggests the infiltration of OSPW into groundwater occurs near some ponds. OSPW may also be present in sediments beneath the Athabasca River adjacent to one pond, but there are no clear observations of OSPW in the river water. Similarly, most water samples from tributaries also show no evidence of OSPW, but these observations are limited by the lack of systematic, systemic, and repeated surveys, missing baseline data, standard analytical approaches, and reference materials. Waters naturally influenced by bitumen, discharge of saline groundwaters, and dilution also potentially affect the consolidation of information and certainty of any conclusions. Despite these challenges, some data suggest OSPW may be present in two tributaries of the Athabasca River adjacent to tailings ponds: McLean Creek and Lower Beaver River. Irrespective of the possible source(s), constituents of OSPW often affect organisms exposed in laboratories, but research in all but one study suggests the concentrations of organics in the surface water bodies assessed are below the standard toxicological effect thresholds for these compounds. In contrast, many samples of groundwater, irrespective of source, likely affect biota. Biomonitoring of surface waters suggests generic responses to stressors, but the influence of natural phenomena and occasionally nutrient enrichment are often suggested by data. In summary, valuable research has been done on seepage. The data suggest infiltration into groundwater is common, seepage into surface waters is not, and anthropogenic biological impacts are not likely.
Collapse
Affiliation(s)
- Jon Fennell
- Integrated Sustainability, Calgary, AB, Canada
| | | |
Collapse
|
28
|
Ripmeester MJ, Duford DA. Method for routine "naphthenic acids fraction compounds" determination in oil sands process-affected water by liquid-liquid extraction in dichloromethane and Fourier-Transform Infrared Spectroscopy. CHEMOSPHERE 2019; 233:687-696. [PMID: 31195273 DOI: 10.1016/j.chemosphere.2019.05.222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Formerly classified as naphthenic acids, "naphthenic acids fraction compounds" (NAFC) have become the subject of increasing research, in particular in view of their ubiquitous presence in the Canadian oil sands of Northern Alberta and oil sands process-affected waters (OSPW). NAFC, defined herein as the polar acid-extractable organics fraction of OSPW extractable in dichloromethane, are released into OSPW during the aqueous extraction of oil sands. A method for determining total NAFC concentration based on acidification, liquid-liquid extraction, and Fourier-Transform Infrared Spectroscopy (FT-IR) was developed by Jivraj et al. in 1995. It has become widely used in the oil sands industry for routine monitoring of NAFC. Since then, multiple variations of the method are practiced by different laboratories using different calibration materials and different extraction solvents, differences which were found to affect the results by as much as 38 and 64 percent respectively. The goal of this study was to establish a robust method for routinely quantifying NAFC that does not require complex and expensive laboratory equipment such as mass spectrometers. Described improvements include a semi-automated rolling extraction and the use of a vacuum evaporator unit to reduce the method's environmental impact. The improved FT-IR method avoids emulsions, is precise, provides good agreement with gravimetric determinations of NAFC, increases sample throughput, is inexpensive compared to MS methods, and offers a typical reporting limit of 0.1 mg kg-1. The residue recovered by this method with minimal losses can be further analyzed by MS techniques to characterize and identify individual NAFC components if desired.
Collapse
Affiliation(s)
- Matthew J Ripmeester
- Syncrude Canada Ltd., Research & Development Centre, Analytical Research, 9421 17 Ave NW, Edmonton, Alberta, T6N 1H4, Canada
| | - David A Duford
- Syncrude Canada Ltd., Research & Development Centre, Analytical Research, 9421 17 Ave NW, Edmonton, Alberta, T6N 1H4, Canada.
| |
Collapse
|
29
|
Gillio Meina E, Raes K, Liber K. Models for the acute and chronic aqueous toxicity of vanadium to Daphnia pulex under a range of surface water chemistry conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:301-309. [PMID: 31075562 DOI: 10.1016/j.ecoenv.2019.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/07/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Alberta's oil sands petroleum coke (PC) generation has in recent years surpassed 10 million tonnes. Petroleum coke has been proposed as an industrial-scale sorbent to reduce concentrations of organic chemicals in oil sands process-affected water (OSPW). However, PC contains up to 1000 mg of vanadium (V) per kg of PC, and during the treatment it leaches from coke reaching levels of up to 7 mg/L in "treated" OSPW. Little information is available on how common water quality variables affect the toxicity of V to aquatic organisms. Here descriptive relationships are presented to describe how site-specific surface water characteristics representative of the Alberta oil sands region influence the toxicity of V to Daphnia pulex. Results revealed that when D. pulex was exposed to an increase in pH, a threshold relationship was found where acute V toxicity increased from a lethal median concentration (LC50) of 1.7 to 1.2 mg V/L between pH 6 and 7 and then levelled off at around 1 mg V/L. When alkalinity (from 75 to 541 mg/L as CaCO3) and sulphate (from 54 to 394 mg/L) increased, the acute toxicity of V decreased slightly with LC50s changing from 0.6 to 1.6, and from 0.9 to 1.4, respectively. When the length of V exposure was extended (from 2 to 21 d), only an increase of sulphate from 135 to 480 mg/L caused a slight increase in V toxicity from a LC50 of 0.6 to 0.4 mg V/L, the opposite trend seen in the acute exposures. In addition, the influence of two OSPW representative mixtures of increasing sodium and sulphate, and increasing alkalinity and sulphate on V acute toxicity to D. pulex were evaluated; only the mixture of increasing sodium (from 18 to 536 mg/L) and sulphate (from 55 to 242 mg/L) caused a slight decrease in V acute toxicity (LC50 1.0-2.1 mg V/L). Evidence is presented that variations in surface water chemistry can affect V toxicity to daphnids, although only to a small degree (i.e. within a maximum factor of 2 in all cases evaluated here). These relationships should be considered when creating new water quality guidelines or local benchmarks for V.
Collapse
Affiliation(s)
- Esteban Gillio Meina
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Katherine Raes
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
| |
Collapse
|
30
|
Kwak JH, Islam MS, Wang S, Messele SA, Naeth MA, El-Din MG, Chang SX. Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. CHEMOSPHERE 2019; 231:393-404. [PMID: 31146131 DOI: 10.1016/j.chemosphere.2019.05.128] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 05/22/2023]
Abstract
Biochar is a promising material for facilitating the reclamation of oil sands process water (OSPW); however, how biochar properties can be optimized for metal removal from OSPW is not well studied. This study was conducted to determine relationships among feedstock type, pyrolysis condition, biochar property, and lead(II) adsorption capacity to demonstrate the potential use of biochar for metal removal from a synthetic OSPW. Sawdust, canola and wheat straw, and manure pellet were pyrolyzed at 300, 500, and 700 °C, with or without steam activation. Increasing pyrolysis temperature increased, with a few exceptions, biochar pH, surface area, and carbon content, but decreased hydrogen and oxygen contents and surface functional groups. Steam activation increased surface area but did not affect other properties. For non-steam-activated biochars, canola and wheat straw biochars produced at 700 °C had the highest lead(II) adsorption capacity (Qmax_Pb), at 108 and 109 mg g-1, respectively. Increasing the pyrolysis temperature increased Qmax_Pb due to increased biochar pH, ash content, and surface area by increasing precipitation, ion exchange, and inner-sphere complexation of lead(II). Steam activation increased lead(II) adsorption capacity for most biochars mainly due to the increased surface area, with the highest Qmax_Pb at 195 mg g-1 for canola straw biochar pyrolyzed at 700 °C with steam activation. The adsorption with time followed a pseudo-second order kinetic model. The results of this study will help select most effective biochars that can be produced from locally available agricultural or forestry byproducts that are optimized for metal removal from synthetic OSPW.
Collapse
Affiliation(s)
- Jin-Hyeob Kwak
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Md Shahinoor Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 10000, Bangladesh; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Siyuan Wang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada; Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Selamawit Ashagre Messele
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - M Anne Naeth
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada.
| |
Collapse
|
31
|
Tanna RN, Redman AD, Frank RA, Arciszewski TJ, Zubot WA, Wrona FJ, Brogly JA, Munkittrick KR. Overview of Existing Science to Inform Oil Sands Process Water Release: A Technical Workshop Summary. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2019; 15:519-527. [PMID: 30908840 DOI: 10.1002/ieam.4149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/04/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
The extraction of oil sands from mining operations in the Athabasca Oil Sands Region uses an alkaline hot water extraction process. The oil sands process water (OSPW) is recycled to facilitate material transport (e.g., ore and tailings), process cooling, and is also reused in the extraction process. The industry has expanded since commercial mining began in 1967 and companies have been accumulating increasing inventories of OSPW. Short- and long-term sustainable water management practices require the ability to return treated water to the environment. The safe release of OSPW needs to be based on sound science and engineering practices to ensure downstream protection of ecological and human health. A significant body of research has contributed to the understanding of the chemistry and toxicity of OSPW. A multistakeholder science workshop was held in September 2017 to summarize the state of science on the toxicity and chemistry of OSPW. The goal of the workshop was to review completed research in the areas of toxicology, chemical analysis, and monitoring to support the release of treated oil sands water. A key outcome from the workshop was identifying research needs to inform future water management practices required to support OSPW return. Another key outcome of the workshop was the recognition that methods are sufficiently developed to characterize chemical and toxicological characteristics of OSPW to address and close knowledge gaps. Industry, government, and local indigenous stakeholders have proceeded to utilize these insights in reviewing policy and regulations. Integr Environ Assess Manag 2019;15:519-527. © 2019 SETAC.
Collapse
Affiliation(s)
| | - Aaron D Redman
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | - Richard A Frank
- Water Science and Technology Directorate, Environment Canada, Burlington, Ontario
| | - Tim J Arciszewski
- Alberta Environment and Parks, Environmental Monitoring and Science Division, Calgary, Alberta, Canada
| | - Warren A Zubot
- Syncrude Canada Ltd, Edmonton Research Centre, Edmonton, Alberta
| | - Frederick J Wrona
- Environmental Monitoring and Science Division, Alberta Environment and Parks, Government of Alberta, Edmonton, Alberta, Canada
| | - John A Brogly
- Canada's Oil Sands Innovation Alliance, Calgary, Alberta
| | - Kelly R Munkittrick
- Cold Regions and Water Initiatives, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
32
|
Abdalrhman AS, Zhang Y, Gamal El-Din M. Electro-oxidation by graphite anode for naphthenic acids degradation, biodegradability enhancement and toxicity reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:270-279. [PMID: 30928756 DOI: 10.1016/j.scitotenv.2019.03.262] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/06/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
Electro-oxidation (EO) by using graphite anode and at relatively low current densities was successfully applied for the degradation of commercial naphthenic acids (NAs) mixture in water samples. At current densities of 0.5, 2.5, and 5 mA/cm2, acid extractable fraction (AEF) was removed by 42.2%, 57.0% and 67.9%, respectively, while classical NAs were degraded by 76.9%, 77.6% and 82.4%, respectively. EO reactivity towards NAs increased with increasing the carbon number (n) and was higher for cyclic NAs compared to the acyclic component. Oxidized NAs containing O3 and O4 were also degraded effectively during EO. The biodegradability of organics in the NA mixture was clearly improved by 1.7, 2.5 and 2.7 folds when the samples were pre-treated with EO at current densities of 0.5, 2.5, and 5 mA/cm2, respectively. The aromatic fraction in the commercial NA mixture consisted mainly of single-ring aromatics and was degraded effectively by EO. Biodegradation alone was able to reduce the toxicity of the commercial NA mixture towards Vibrio fischeri; however, the combination of EO with biodegradation resulted in a complete removal of the toxicity, showing a synergistic effect of combining these two processes. Coupling EO with aerobic biodegradation can result in an effective and energy-efficient treatment option for NA-bearing waters such as oil sands process water (OSPW) and refinery effluents.
Collapse
Affiliation(s)
| | - Yanyan Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
33
|
Benally C, Messele SA, Gamal El-Din M. Adsorption of organic matter in oil sands process water (OSPW) by carbon xerogel. WATER RESEARCH 2019; 154:402-411. [PMID: 30822600 DOI: 10.1016/j.watres.2019.01.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/08/2019] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
This study illustrated the preparation, characterization and the use of carbon xerogel materials for the adsorption of acid-extractable fractions (AEF) and naphthenic acids (NAs) from oil sands process water (OSPW). Adsorption results demonstrated that the mesoporous carbonaceous material can successfully be used to adsorb persistent and toxic organic contaminants from OSPW. Carbon xerogel (CX) made at pH 5.5 showed high surface area (573 m2/g) and removed a larger amount of AEF than CX made at pH 6.9 (391 m2/g). The adsorption equilibrium was reached by 24 h for both AEF and classical NAs. 74.6% of AEF and 88.8% of classical NAs were removed by CX5.5 during 24-h adsorption. With respect to classical NAs, a larger the carbon number resulted in higher NA removal. Carbon number had more influence on NA removal when compared with hydrogen deficiency resulting from rings or unsaturated bonding formation (-Z number). The equilibrium adsorption capacity was found to be 15 mg AEF/g and 7.8 mg NAs/g for CX5.5. Adsorption of AEF and classical NAs onto CX5.5 followed pseudo-second order kinetics. With respect to diffusion of AEF and NAs, there were three distinct diffusion regions: bulk, film and pore. Pore diffusion had the lowest rate constant in all cases analyzed and was thus the rate limiting step. The results of this study showed that a mesoporous carbonaceous material such as CX may have the potential to be utilized in a fixed bed adsorption/filtration systems for continuous treatment of OSPW or as a semi-passive treatment method in pit lakes for the removal of organic constituents from OSPW.
Collapse
Affiliation(s)
- Chelsea Benally
- Department of Civil and Environmental Engineering, University of Alberta, T6G 1H9, Canada
| | | | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, T6G 1H9, Canada.
| |
Collapse
|
34
|
Biagi KM, Oswald CJ, Nicholls EM, Carey SK. Increases in salinity following a shift in hydrologic regime in a constructed wetland watershed in a post-mining oil sands landscape. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1445-1457. [PMID: 30759583 DOI: 10.1016/j.scitotenv.2018.10.341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 06/09/2023]
Abstract
Bitumen extraction via surface mining in the Athabasca Oil Sands Region results in permanent alteration of boreal forests and wetlands. As part of their legal requirements, oil companies must reclaim disturbed landscapes into functioning ecosystems. Despite considerable work establishing upland forests, only two pilot wetland-peatland systems integrated within a watershed have been constructed to date. Peatland reclamation is challenging as it requires complete reconstruction with few guidelines or previous work in this region. Furthermore, the variable sub-humid climate and salinity of tailings materials present additional challenges. In 2012, Syncrude Canada Ltd. constructed a 52-ha pilot upland-wetland system, the Sandhill Fen Watershed, which was designed with a pump and underdrain system to provide freshwater and enhance drainage to limit salinization from underlying soft tailings materials that have elevated electrical conductivity (EC) and Na+. The objective of this research is to evaluate the hydrochemical response of a constructed wetland to variations in hydrology and water management with respect to water sources, flow pathways and major chemical transformations in the three years following commissioning. Results suggest that active water management practices in 2013 kept EC relatively low, with most wetland sites <1000 μS/cm with Na+ concentrations <250 mg/L. With limited management in 2014 and 2015, the EC increased in the wetland to >1000 μS/cm in 2014 and >2000 μS/cm in 2015. The most notable change was the emergence of several Na+ enriched zones in the margins. Here, Na+ concentrations were two to three times higher than other sites. Stable isotopes of water support that the Na+ enriched areas arise from underlying process-affected water in the tailings, providing evidence of its upward transport and seepage under a natural hydrologic regime. In future years, salinity is expected to evolve in its flow pathways and diffusion, yet the timeline and extent of these changes are uncertain.
Collapse
Affiliation(s)
- K M Biagi
- School of Geography and Earth Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | - C J Oswald
- Department of Geography & Environmental Studies, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - E M Nicholls
- School of Geography and Earth Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - S K Carey
- School of Geography and Earth Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
35
|
Robertson JM, Nesbitt JA, Lindsay MBJ. Aqueous- and solid-phase molybdenum geochemistry of oil sands fluid petroleum coke deposits, Alberta, Canada. CHEMOSPHERE 2019; 217:715-723. [PMID: 30448751 DOI: 10.1016/j.chemosphere.2018.11.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/06/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
Fluid petroleum coke generated at oil sands operations in the Athabasca Oil Sands Region of northern Alberta, Canada, contains elevated concentrations of molybdenum (Mo) and other metals including nickel (Ni) and vanadium (V). Solid-phase Mo concentrations in fluid petroleum coke are typically 10 to 100 times lower than V and Ni, yet dissolved Mo concentrations in associated pore waters are often comparable with these metals. We collected pore water and solids from fluid petroleum coke deposits in the AOSR to examine geochemical controls on Mo mobility. Dissolved Mo concentrations increased with depth below the water table, reaching maxima of 1.4-2.2 mg L-1, within a mixing zone between slightly acidic and oxic meteoric water and mildly alkaline and anoxic oil sands process-affected water (OSPW). Dissolved Mo concentrations decreased slightly with depth below the mixing zone. X-ray absorption spectroscopy revealed that Mo(VI) and Mo(IV) species were present in coke solids. The Mo(VI) occurred as tetrahedrally coordinated MoO42- adsorbed via inner- and outer-sphere complexation, and was coordinated in an environment similar to Fe-(hydr)oxide surface complexes. The OSPW likely promoted desorption of outer-sphere Mo(VI) complexes, resulting in higher dissolved Mo concentrations in the mixing zone. The principal Mo(IV) species was MoS2, which originated as a catalyst added upstream of the fluid coking process. Although MoS2 is likely stable under anoxic conditions below the mixing zone, oxidative weathering in the presence of meteoric water may promote long-term Mo release.
Collapse
Affiliation(s)
- Jared M Robertson
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Jake A Nesbitt
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Matthew B J Lindsay
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| |
Collapse
|
36
|
Niasar HS, Das S, Xu CC, Ray MB. Continuous column adsorption of naphthenic acids from synthetic and real oil sands process-affected water (OSPW) using carbon-based adsorbents. CHEMOSPHERE 2019; 214:511-518. [PMID: 30286420 DOI: 10.1016/j.chemosphere.2018.09.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
In this study, activated petroleum coke (APC) and commercial activated carbon (CAC) were used in a continuous adsorption column for removal of model naphthenic acids and organics from real oil sands process-affected water (OSPW). Diphenylacetic acid and 2-naphthoic acid, two model naphthenic acid (NA) compounds, were removed completely by the APC in a continuous column operation. Due to the complex nature of organics in OSPW, total organic carbon (TOC) was measured to determine the effectiveness of OSPW treatment by APC. The removal of TOC from OSPW at its natural pH 8 by APC was only 25%, whereas acidification at pH 4 followed by APC adsorption removed 96% of the initial TOC. When compared to a commercial activated carbon, the APC showed an average of 20% higher organics removal. The experimental breakthrough curves were better fitted by Thomas model in comparison to Adams-Bohart and Yoon-Nelson models. The regeneration of APC was conducted using methanol with 0.01 wt% NaOH (pH = 11.7) and a total of four cycles of adsorption and regeneration were conducted with marginal loss of adsorption sites.
Collapse
Affiliation(s)
- Hojatallah Seyedy Niasar
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Sreejon Das
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Chunbao Charles Xu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Madhumita B Ray
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| |
Collapse
|
37
|
Nesbitt JA, Robertson JM, Swerhone LA, Lindsay MBJ. Nickel geochemistry of oil sands fluid petroleum coke deposits, Alberta, Canada. Facets (Ott) 2018. [DOI: 10.1139/facets-2017-0115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nickel (Ni) leaching from oil sands petroleum coke can have toxicological effects on aquatic organisms. However, geochemical controls on Ni release, transport, and attenuation within coke deposits remains limited. We examined the geochemistry of fluid coke and associated pore waters from two deposits at an oil sands mine near Fort McMurray, Alberta, Canada. Synchrotron-based micro-X-ray fluorescence (μXRF) and micro-X-ray absorption near edge structure (μXANES) spectroscopy show that Ni(II)-porphyrin complexes dominate, but inorganic phases including Ni(II)-sulfide and Ni(II)-oxide comprise a minor component of fluid coke. Sequential chemical extractions suggested that sorption–desorption reactions may influence Ni mobility within fluid coke deposits. Although only a small proportion of total Ni (<4%) is susceptible to leaching under environmentally relevant concentrations, dissolved Ni concentrations ( n = 65) range from 2 to 120 μg·L−1 (median 7.8 μg·L−1) within the two deposits and generally decrease with depth below the water table. Pore water Ni concentrations are negatively correlated with pH, but not with dissolved sulfate, bicarbonate, or chloride. Overall, our findings suggest that pore water pH and sorption–desorption reactions are principal controls on dissolved Ni concentrations within oil sands fluid petroleum coke deposits.
Collapse
Affiliation(s)
- Jake A. Nesbitt
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Jared M. Robertson
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Lawrence A. Swerhone
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Matthew B. J. Lindsay
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
38
|
Lyons DD, Philibert DA, Zablocki T, Qin R, Huang R, Gamal El-Din M, Tierney KB. Assessment of raw and ozonated oil sands process-affected water exposure in developing zebrafish: Associating morphological changes with gene expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:959-968. [PMID: 30029330 DOI: 10.1016/j.envpol.2018.02.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/17/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
With the ever-increasing amounts of oil sands process-affected water (OSPW) accumulating from Canada's oil sands operations, its eventual release must be considered. As OSPW has been found to be both acutely and chronically toxic to aquatic organisms, remediation processes must be developed to lower its toxicity. Ozone treatment is currently being studied as a tool to facilitate the removal of organic constituents associated with toxicity. Biomarkers (e.g. gene expression) are commonly used when studying the effects of environmental contaminants, however, they are not always indicative of adverse effects at the whole organism level. In this study, we assessed the effects of OSPW exposure on developing zebrafish by linking gene expression to relevant cellular and whole organism level endpoints. We also investigated whether or not ozone treatment decreased biomarkers and any associated toxicity observed from OSPW exposure. The concentrations of classical naphthenic acids in the raw and ozonated OSPW used in this study were 16.9 mg/L and 0.6 mg/L, respectively. Ozone treatment reduced the total amount of naphthenic acids (NAs) in the OSPW sample by 92%. We found that exposure to both raw and ozonated OSPW had no effect on the survival of zebrafish embryos. The expression levels of biotransformation genes CYP1A and CYP1B were induced by raw OSPW exposure, with CYP1B being more highly expressed than CYP1A. In contrast, ozonated OSPW exposure did not increase the expression of CYP1A and only slightly induced CYP1B. A decrease in cardiac development and function genes (NKX2.5 and APT2a2a) was not associates with large changes in heart rate, arrhythmia or heart size. We did not find any indications of craniofacial abnormalities or of increased occurrence of apoptotic cells. Overall, our study found that OSPW was not overtly toxic to zebrafish embryos.
Collapse
Affiliation(s)
- Danielle D Lyons
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.
| | - Danielle A Philibert
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Taylor Zablocki
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Rui Qin
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Rongfu Huang
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Keith B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; School of Public Health, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
39
|
Islam MS, McPhedran KN, Messele SA, Liu Y, Gamal El-Din M. Isotherm and kinetic studies on adsorption of oil sands process-affected water organic compounds using granular activated carbon. CHEMOSPHERE 2018; 202:716-725. [PMID: 29604558 DOI: 10.1016/j.chemosphere.2018.03.149] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
The production of oil from oil sands in northern Alberta has led to the generation of large volumes of oil sands process-affected water (OSPW) that was reported to be toxic to aquatic and other living organisms. The toxicity of OSPW has been attributed to the complex nature of OSPW matrix including the inorganic and organic compounds primarily naphthenic acids (NAs: CnH2n+ZOx). In the present study, granular activated carbon (GAC) adsorption was investigated for its potential use to treat raw and ozonated OSPW. The results indicated that NA species removal increased with carbon number (n) for a fixed Z number; however, the NA species removal decreased with Z number for a fixed carbon number. The maximum adsorption capacities obtained from Langmuir adsorption isotherm based on acid-extractable fraction (AEF) and NAs were 98.5 mg and 60.9 mg AEF/g GAC and 60 mg and 37 mg NA/g GAC for raw and ozonated OSPW, respectively. It was found that the Freundlich isotherm model best fits the AEF and NA equilibrium data (r2 ≥ 0.88). The adsorption kinetics showed that the pseudo-second order and intraparticle diffusion models were both appropriate in modeling the adsorption kinetics of AEF and NAs to GAC (r2 ≥ 0.97). Although pore diffusion was the rate limiting step, film diffusion was still significant for assessing the rate of diffusion of NAs. This study could be helpful to model, design and optimize the adsorption treatment technologies of OSPW and to assess the performance of other adsorbents.
Collapse
Affiliation(s)
- Md Shahinoor Islam
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Kerry N McPhedran
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Selamawit A Messele
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
40
|
The effect of carboxyl multiwalled carbon nanotubes content on the structure and performance of polysulfone membranes for oil sands process-affected water treatment. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.01.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Niasar HS, Li H, Das S, Kasanneni TVR, Ray MB, Xu CC. Preparation of activated petroleum coke for removal of naphthenic acids model compounds: Box-Behnken design optimization of KOH activation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 211:63-72. [PMID: 29408084 DOI: 10.1016/j.jenvman.2018.01.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 06/07/2023]
Abstract
This study employed Box-Behnken design and response surface methodology to optimize activation parameters for the production of activated petroleum coke (APC) adsorbent from petroleum coke (PC) to achieve highest adsorption capacity for three model naphthenic acids. Activated petroleum coke (APC) adsorbent with a BET surface area of 1726 m2/g and total pore volume of 0.85 cc/g was produced at the optimum activation conditions (KOH/coke mass ratio) of 3.0, activation temperature 790 °C, and activation time 3.47 h). Effects of the activation parameters on the adsorption pefromances (adsortion capaciy and kinetics) were investigated. With the APC obtained at the optimum activation condition, the maximum adsorption capacity of 451, 362, and 320 (mg/g) was achieved for 2-naphthoic acid, diphenylacetic acid and cyclohexanepentanoic acid (CP), respectively. Although, generally APC adsorbents with a higher specific surface area and pore volume provide better adsorption capacity, the textural properties (surface areas and pore volume) are not the only parameters determining the APC adsorbents' adsorption capacity. Other parameters such as surface functionalities play effective roles on the adsorption capacity of the produced APC adsorbents for NAs. The KOH activation process, in particular the acid washing step, distinctly reduced the sulfur and metals contents in the raw PC, decreasing the leaching potential of metals from APC adsorbents during adsorption.
Collapse
Affiliation(s)
- Hojatallah Seyedy Niasar
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Hanning Li
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Sreejon Das
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| | | | - Madhumita B Ray
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada.
| | - Chunbao Charles Xu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada.
| |
Collapse
|
42
|
Li C, Fu L, Stafford J, Belosevic M, Gamal El-Din M. The toxicity of oil sands process-affected water (OSPW): A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:1785-1802. [PMID: 28618666 DOI: 10.1016/j.scitotenv.2017.06.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
Large volumes of oil sands process-affected water (OSPW) are produced by the surface-mining oil sands industry in Alberta. Both laboratory and field studies have demonstrated that the exposure to OSPW leads to many physiological changes in a variety of organisms. Adverse effects include compromised immunological function, developmental delays, impaired reproduction, disrupted endocrine system, and higher prevalence of tissue-specific pathological manifestations. The composition of OSPW varies with several factors such as ore sources, mining process, and tailings management practices. Differences in water characteristics have confounded interpretation or comparison of OSPW toxicity across studies. Research on individual fractions extracted from OSPW has helped identify some target pollutants. Naphthenic acids (NAs) are considered as the major toxic components in OSPW, exhibiting toxic effects through multiple modes of action including narcosis and endocrine disruption. Other pollutants, like polycyclic aromatic hydrocarbons (PAHs), metals, and ions may also contribute to the overall OSPW toxicity. Studies have been conducted on OSPW as a whole complex effluent mixture, with consideration of the presence of unidentified components, and the interactions (potential synergistic or antagonistic reactions) among chemicals. This review summarizes the toxicological data derived from in vitro and in vivo exposure studies using different OSPW types, and different taxa of organisms. In general, toxicity of OSPW was found to be dependent on the OSPW type and concentration, duration of exposures (acute versus sub chronic), and organism studied.
Collapse
Affiliation(s)
- Chao Li
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada
| | - Li Fu
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - James Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada.
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada.
| |
Collapse
|
43
|
Reichert M, Blunt B, Gabruch T, Zerulla T, Ralph A, Gamal El-Din M, Sutherland BR, Tierney KB. Sensory and Behavioral Responses of a Model Fish to Oil Sands Process-Affected Water with and without Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7128-7137. [PMID: 28525709 DOI: 10.1021/acs.est.7b01650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
If oil sands process-affected water (OSPW) is to be returned to the environment, a desire is that it not adversely affect aquatic life. We investigated whether a relevant model fish (rainbow trout, Oncorhynchus mykiss) could detect OSPW using its olfactory sense (smell) and whether exposure to it would result in behavioral changes. We also investigated whether ozonation of OSPW, which lowers the concentration of organic compounds attributed with toxicity (naphthenic acids), would ameliorate any observed adverse effects. We found that OSPW, regardless of ozonation, evoked olfactory tissue responses similar to those expected of natural odorants, suggesting that fish could smell OSPW. In 30 min OSPW exposures, olfactory responses to a food odorant and a pheromone were reduced to a similar degree by OSPW, again regardless of ozonation. However, olfactory responses returned within minutes of exposure cessation. In contrast, in longer (7 d) exposures, olfactory responses remained impaired, but not in fish that had received ozone-treated OSPW. In the behavioral assay, fish avoided an introduced plume of OSPW, and this response was not affected by ozonation. Taken together, our data suggest that fish smell OSPW, that they may use this sense to mount an avoidance response, and that, if they cannot avoid it, their sensory responses may be impaired, unless the OSPW has received some remediation.
Collapse
Affiliation(s)
- Megan Reichert
- Department of Biological Sciences, University of Alberta T6G 2E9, Edmonton, Alberta, Canada
| | - Brian Blunt
- Department of Biological Sciences, University of Alberta T6G 2E9, Edmonton, Alberta, Canada
| | - Tia Gabruch
- Department of Biological Sciences, University of Alberta T6G 2E9, Edmonton, Alberta, Canada
| | - Tanja Zerulla
- Department of Biological Sciences, University of Alberta T6G 2E9, Edmonton, Alberta, Canada
| | - Allison Ralph
- Department of Biological Sciences, University of Alberta T6G 2E9, Edmonton, Alberta, Canada
| | - Mohamed Gamal El-Din
- Department of Civil & Environmental Engineering, University of Alberta T6G 1H9, Edmonton, Alberta, Canada
| | - Bruce R Sutherland
- Department of Physics and of Earth & Atmospheric Sciences, University of Alberta T6G 2E1, Edmonton, Alberta, Canada
| | - Keith B Tierney
- Department of Biological Sciences, University of Alberta T6G 2E9, Edmonton, Alberta, Canada
- School of Public Health, University of Alberta T6G 1C9, Edmonton, Alberta, Canada
| |
Collapse
|
44
|
McQueen AD, Kinley CM, Hendrikse M, Gaspari DP, Calomeni AJ, Iwinski KJ, Castle JW, Haakensen MC, Peru KM, Headley JV, Rodgers JH. A risk-based approach for identifying constituents of concern in oil sands process-affected water from the Athabasca Oil Sands region. CHEMOSPHERE 2017; 173:340-350. [PMID: 28126568 DOI: 10.1016/j.chemosphere.2017.01.072] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 05/05/2023]
Abstract
Mining leases in the Athabasca Oil Sands (AOS) region produce large volumes of oil sands process-affected water (OSPW) containing constituents that limit beneficial uses and discharge into receiving systems. The aim of this research is to identify constituents of concern (COCs) in OSPW sourced from an active settling basin with the goal of providing a sound rational for developing mitigation strategies for using constructed treatment wetlands for COCs contained in OSPW. COCs were identified through several lines of evidence: 1) chemical and physical characterization of OSPW and comparisons with numeric water quality guidelines and toxicity endpoints, 2) measuring toxicity of OSPW using a taxonomic range of sentinel organisms (i.e. fish, aquatic invertebrates, and a macrophyte), 3) conducting process-based manipulations (PBMs) of OSPW to alter toxicity and inform treatment processes, and 4) discerning potential treatment pathways to mitigate ecological risks of OSPW based on identification of COCs, toxicological analyses, and PBM results. COCs identified in OSPW included organics (naphthenic acids [NAs], oil and grease [O/G]), metals/metalloids, and suspended solids. In terms of species sensitivities to undiluted OSPW, fish ≥ aquatic invertebrates > macrophytes. Bench-scale manipulations of the organic fractions of OSPW via PBMs (i.e. H2O2+UV254 and granular activated charcoal treatments) eliminated toxicity to Ceriodaphnia dubia (7-8 d), in terms of mortality and reproduction. Results from this study provide critical information to inform mitigation strategies using passive or semi-passive treatment processes (e.g., constructed treatment wetlands) to mitigate ecological risks of OSPW to aquatic organisms.
Collapse
Affiliation(s)
- Andrew D McQueen
- Department of Forestry and Environmental Conservation, 261 Lehotsky Hall, Clemson University, Clemson, SC 29634, USA.
| | - Ciera M Kinley
- Department of Forestry and Environmental Conservation, 261 Lehotsky Hall, Clemson University, Clemson, SC 29634, USA
| | - Maas Hendrikse
- Department of Forestry and Environmental Conservation, 261 Lehotsky Hall, Clemson University, Clemson, SC 29634, USA
| | - Daniel P Gaspari
- Department of Environmental Engineering & Earth Sciences, 445 Brackett Hall, Clemson University, Clemson, SC 29634, USA
| | - Alyssa J Calomeni
- Department of Forestry and Environmental Conservation, 261 Lehotsky Hall, Clemson University, Clemson, SC 29634, USA
| | - Kyla J Iwinski
- Department of Forestry and Environmental Conservation, 261 Lehotsky Hall, Clemson University, Clemson, SC 29634, USA
| | - James W Castle
- Department of Environmental Engineering & Earth Sciences, 445 Brackett Hall, Clemson University, Clemson, SC 29634, USA
| | - Monique C Haakensen
- Contango Strategies Limited, LFK Biotechnology Complex, 15-410 Downey Road, Saskatoon, SK S7N 4N1, Canada
| | - Kerry M Peru
- Water Science and Technology Directorate, Environment and Climate Change Canada, 11 Innovation Blvd, Saskatoon, SK S7N 3H5, Canada
| | - John V Headley
- Water Science and Technology Directorate, Environment and Climate Change Canada, 11 Innovation Blvd, Saskatoon, SK S7N 3H5, Canada
| | - John H Rodgers
- Department of Forestry and Environmental Conservation, 261 Lehotsky Hall, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
45
|
Nesbitt JA, Lindsay MBJ. Vanadium Geochemistry of Oil Sands Fluid Petroleum Coke. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3102-3109. [PMID: 28181800 DOI: 10.1021/acs.est.6b05682] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Vanadium has previously been linked to elevated toxicity of leachates derived from oil sands petroleum coke. However, geochemical controls on V mobility within coke deposits remain poorly constrained. Detailed examinations of porewater and solid-phase V geochemistry were therefore performed on oil sands fluid petroleum coke deposits in Alberta, Canada. Sample collection focused on both active and reclaimed deposits, which contained more than 3 × 107 m3 of fluid petroleum coke. Dissolved V concentrations were highest (up to 3.0 mg L-1) immediately below the water table but decreased rapidly with increasing depth. This trend corresponded to a transition from mildly acidic (pH 6-7) and oxic conditions to mildly alkaline (pH 7-8.5) and anoxic conditions. Scanning electron microscopy (SEM), electron microprobe analysis (EMPA), and micro-X-ray fluorescence (μXRF) mapping revealed coke particles exhibited an internal structure characterized by successive concentric layers. The outer margins of these layers were characterized by elevated V, Fe, Si, and Al concentrations, indicating the presence of inorganic phases. Micro-X-ray absorption near-edge structure (μXANES) spectroscopy revealed that V speciation was dominated by V(IV) porphyrins except at outer margins of layers, where octahedrally coordinated V(III) was a major component. Minor to trace V(V) was also detected within fluid petroleum coke particles.
Collapse
Affiliation(s)
- Jake A Nesbitt
- Department of Geological Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Matthew B J Lindsay
- Department of Geological Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E2, Canada
| |
Collapse
|
46
|
Schiffer S, Liber K. Toxicity of aqueous vanadium to zooplankton and phytoplankton species of relevance to the athabasca oil sands region. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:1-11. [PMID: 27871041 DOI: 10.1016/j.ecoenv.2016.10.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Vanadium (V) is an abundant trace metal present in bitumen from the Athabasca Oil Sands (AOS) region in Alberta, Canada. The upgrading of bitumen can result in the production of large volumes of a carbonaceous material referred to as petroleum coke that contains V at elevated levels compared to the native bitumen. Previous studies have shown that coke has the capacity to leach ecotoxicologically relevant levels of V into water it contacts, yet limited data are available on the toxicity of aqueous V to planktonic organisms. Therefore, this study set out to evaluate the acute and chronic toxicity of V (as vanadate oxyanions) to freshwater zooplankton and phytoplankton species that are either commonly-used laboratory species, or species more regionally-representative of northern Alberta. Four cladoceran (2-d and 21-d tests) and two algal (3-d tests) species were exposed to V to obtain both acute and chronic toxicity estimates. Acute V toxicity (LC50s) ranged from 0.60mgV/L for Ceriodaphnia quadrangula to 2.17mgV/L for Daphnia pulex. Chronic toxicity estimates (EC50s) for cladoceran survival and reproduction were nearly identical within species and ranged from a low of 0.13 to a high of 0.46mgV/L for Daphnia dentifera and D. pulex, respectively. The lack of sublethal V toxicity in daphnia suggests a direct mechanism of toxicity through ion imbalance. Growth inhibition (EC50) of green algae occurred at concentrations of 3.24 and 4.12mgV/L for Pseudokirchneriella subcapitata and Scenedesmus quadricauda, respectively. Overall, cladocerans were more sensitive to V than green algae, with survival of the field-collected D. dentifera being approximately 2.5 to 3.5 times more sensitive to acute and chronic V exposure than the standard test species D. pulex. However, there were no significant differences in V toxicity between the field-collected cladocerans Simocephalus serrulatus and C. quadrangula, compared to the respective standard species D. pulex and Ceriodaphnia dubia. Similarly, there were no significant differences in sensitivity to V in the two algal species evaluated. Based on V concentrations reported in laboratory-generated coke leachates, zooplankton survival could be adversely impacted under conditions of chronic leachate exposure if V concentrations in the environment exceed 0.1mg/L. Furthermore, toxicity thresholds from commonly-used planktonic test species would likely have sufficed for derivation of a V water quality guideline (WQG) for protection of local aquatic communities near oil sands operations, but the new data presented here on V toxicity to more regionally-representative species will strengthen the database for WQG derivation.
Collapse
Affiliation(s)
- Stephanie Schiffer
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada S7N 5B3
| | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada S7N 5B3; Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, China.
| |
Collapse
|
47
|
Manasrah AD, El-Qanni A, Badran I, Carbognani Ortega L, Perez-Zurita MJ, Nassar NN. Experimental and theoretical studies on oxy-cracking of Quinolin-65 as a model molecule for residual feedstocks. REACT CHEM ENG 2017. [DOI: 10.1039/c7re00048k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxy-cracking is a combination of oxidation and cracking reactions for converting heavy hydrocarbons into commodity products with minimal emission of CO2.
Collapse
Affiliation(s)
- Abdallah D. Manasrah
- Department of Chemical and Petroleum Engineering
- University of Calgary
- Calgary
- T2N 1N4 Canada
| | - Amjad El-Qanni
- Department of Chemical and Petroleum Engineering
- University of Calgary
- Calgary
- T2N 1N4 Canada
- Department of Chemical Engineering
| | - Ismail Badran
- Department of Chemical and Petroleum Engineering
- University of Calgary
- Calgary
- T2N 1N4 Canada
- Department of Chemistry
| | | | | | - Nashaat N. Nassar
- Department of Chemical and Petroleum Engineering
- University of Calgary
- Calgary
- T2N 1N4 Canada
| |
Collapse
|
48
|
Wan D, Li W, Wang G, Lu L, Wei X. Degradation of p-Nitrophenol using magnetic Fe 0/Fe 3O 4/Coke composite as a heterogeneous Fenton-like catalyst. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1326-1334. [PMID: 27519319 DOI: 10.1016/j.scitotenv.2016.08.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/02/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
A Coke supported Fe3O4 and Fe0 composite (Fe0/Fe3O4/Coke) was prepared for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the Fenton degradation of p-Nitrophenol (p-NP). A four factor Box-Behnken design (BBD) coupled with response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely Fe0/Fe3O4/Coke dosage, reaction temperature, initial pH and H2O2 concentration, on the removal efficiency of p-NP. A significant quadratic model (p-value<0.0001, R2=0.9952) was derived using analysis of variance (ANOVA). Optimum conditions were determined to be 1.3g/L catalyst, 32°C, pH3.1 and 11.3mM H2O2. 100% of p-NP (100mg/L) conversion and 81% of COD removal were achieved after 120min of reaction time, respectively, under the optimum conditions, which agreed well with the modeling prediction. The recyclability of Fe0/Fe3O4/Coke was also investigated after three successive runs, in which p-NP degradation performances showed a slight difference with the first oxidation cycle with an acceptable iron leaching. Moreover, according to the main intermediate products identified by gas chromatography-mass spectrometry (GC-MS), a possible pathway of p-NP degradation was proposed based on hydrogen radicals ([H]) or hydroxyl radicals (•OH) mechanism.
Collapse
Affiliation(s)
- Dong Wan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wenbing Li
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Guanghua Wang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lulu Lu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaobi Wei
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
49
|
Dong F, Nemati M. Anoxic biodegradation of a surrogate naphthenic acid coupled to reduction of nitrite. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Islam MS, Zhang Y, McPhedran KN, Liu Y, Gamal El-Din M. Mechanistic investigation of industrial wastewater naphthenic acids removal using granular activated carbon (GAC) biofilm based processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:238-246. [PMID: 26410699 DOI: 10.1016/j.scitotenv.2015.09.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 06/05/2023]
Abstract
Naphthenic acids (NAs) found in oil sands process-affected waters (OSPW) have known environmental toxicity and are resistant to conventional wastewater treatments. The granular activated carbon (GAC) biofilm treatment process has been shown to effectively treat OSPW NAs via combined adsorption/biodegradation processes despite the lack of research investigating their individual contributions. Presently, the NAs removals due to the individual processes of adsorption and biodegradation in OSPW bioreactors were determined using sodium azide to inhibit biodegradation. For raw OSPW, after 28 days biodegradation and adsorption contributed 14% and 63% of NA removal, respectively. For ozonated OSPW, biodegradation removed 18% of NAs while adsorption reduced NAs by 73%. Microbial community 454-pyrosequencing of bioreactor matrices indicated the importance of biodegradation given the diverse carbon degrading families including Acidobacteriaceae, Ectothiorhodospiraceae, and Comamonadaceae. Overall, results highlight the ability to determine specific processes of NAs removals in the combined treatment process in the presence of diverse bacteria metabolic groups found in GAC bioreactors.
Collapse
Affiliation(s)
- Md Shahinoor Islam
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada; Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Yanyan Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Kerry N McPhedran
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada; Department of Civil and Geological Engineering, College of Engineering, University of Saskatchewan, Saskatoon S7N 5A9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada.
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada.
| |
Collapse
|