1
|
Lépori CMO, Luna MA, Challier C, Beassoni PR, Correa NM, Falcone RD. Exploring the Properties of Unilamellar Vesicle Bilayers Formed by Ionic Liquid Surfactants for Future Applications in Nanomedicine. J Phys Chem B 2024; 128:6940-6950. [PMID: 38956449 DOI: 10.1021/acs.jpcb.4c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Two ionic liquids (ILs) with amphiphilic properties composed of 1-butyl-3-methylimidazolium dioctylsulfosuccinate (bmim-AOT) and 1-hexyl-3-methylimidazolium dioctylsulfosuccinate (hmim-AOT) form unilamellar vesicles spontaneously simply by dissolving the IL-like surfactant in water. These novel vesicles were characterized using two different and highly sensitive fluorescent probes: 6-propionyl-2-(dimethylaminonaphthalene) (PRODAN) and trans-4-[4-(dimethylamino)-styryl]-1-methylpyridinium iodide (HC). These fluorescent probes provide information about the physicochemical properties of the bilayer, such as micropolarity, microviscosity, and electron-donor capacity. In addition, the biocompatibility of these vesicles with the blood medium was evaluated, and their toxicity was determined using Dictyostelium discoideum amoebas. First, using PRODAN and HC, it was found that the bilayer composition and the chemical structure of the ions at the interface produced differences between both amphiphiles, making the vesicles different. Thus, the bilayer of hmim-AOT vesicles is less polar, more rigid, and has a lower electron-donor capacity than those made by bmim-AOT. Finally, the results obtained from the hemolysis studies and the growth behavior of unicellular amoebas, particularly utilizing the D. discoideum assay, showed that both vesicular systems do not produce toxic effects up to a concentration of 0.02 mg/mL. This elegant assay, devoid of animal usage, highlights the potential of these newly organized systems for the delivery of drugs and bioactive molecules of different polarities.
Collapse
Affiliation(s)
- Cristian M O Lépori
- Departamento de Química, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
| | - M Alejandra Luna
- Departamento de Química, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC., Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
| | - Cecilia Challier
- Departamento de Química, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
| | - Paola R Beassoni
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
- Instituto de Biotecnología Ambiental y de la Salud (INBIAS), CONICET-UNRC, X5804BYA Río Cuarto, Argentina
| | - N Mariano Correa
- Departamento de Química, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC., Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
| | - R Dario Falcone
- Departamento de Química, Universidad Nacional de Río Cuarto (UNRC), Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC., Agencia Postal # 3, X5804BYA Río Cuarto, Argentina
| |
Collapse
|
2
|
DeMiguel-Jiménez L, Etxebarria N, Lekube X, Izagirre U, Marigómez I. Influence of dispersant application on the toxicity to sea urchin embryos of crude and bunker oils representative of prospective oil spill threats in Arctic and Sub-Arctic seas. MARINE POLLUTION BULLETIN 2021; 172:112922. [PMID: 34523425 DOI: 10.1016/j.marpolbul.2021.112922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
This study deals with the toxicity assessment of crude and bunker oils representative of prospective oil spill threats in Arctic and Sub-Arctic seas (NNA: Naphthenic North-Atlantic crude oil; MGO: Marine Gas Oil; IFO: Intermediate Fuel Oil 180), alone or in combination with a third-generation dispersant (Finasol OSR52®). Early life stages of sea urchin, Paracentrotus lividus, were selected for toxicity testing of oil low-energy water accommodated fractions. A multi-index approach, including larval size increase and malformation, and developmental disruption as endpoints, was sensitive to discriminate from slight to severe toxicity caused by the tested aqueous fractions. IFO (heavy bunker oil) was more toxic than NNA (light crude oil), with MGO (light bunker oil) in between. The dispersant was toxic and further on it enhanced oil toxicity. Toxic units revealed that identified PAHs were not the main cause for toxicity, most likely exerted by individual or combined toxic action of non-measured compounds.
Collapse
Affiliation(s)
- Laura DeMiguel-Jiménez
- BCTA Research Group. Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; BCTA Research Group. Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Nestor Etxebarria
- IBeA Research Group, Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; BCTA Research Group. Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Xabier Lekube
- BCTA Research Group. Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; BCTA Research Group. Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Urtzi Izagirre
- BCTA Research Group. Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; BCTA Research Group. Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Ionan Marigómez
- BCTA Research Group. Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; BCTA Research Group. Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia-Bizkaia, Basque Country, Spain.
| |
Collapse
|
3
|
Rodríguez-Ruiz A, Dondero F, Viarengo A, Marigómez I. Toxicity assessment of diesel- and metal-contaminated soils through elutriate and solid phase assays with the slime mold Dictyostelium discoideum. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1413-1421. [PMID: 26450765 DOI: 10.1002/etc.3276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/09/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
A suite of organisms from different taxonomical and ecological positions is needed to assess environmentally relevant soil toxicity. A new bioassay based on Dictyostelium is presented that is aimed at integrating slime molds into such a testing framework. Toxicity tests on elutriates and the solid phase developmental cycle assay were successfully applied to a soil spiked with a mixture of Zn, Cd, and diesel fuel freshly prepared (recently contaminated) and after 2 yr of aging. The elutriates of both soils provoked toxic effects, but toxicity was markedly lower in the aged soil. In the D. discoideum developmental cycle assay, both soils affected amoeba viability and aggregation, with fewer multicellular units, smaller fruiting bodies and, overall, inhibition of fruiting body formation. This assay is quick and requires small amounts of test soil, which might facilitate its incorporation into a multispecies multiple-endpoint toxicity bioassay battery suitable for environmental risk assessment in soils. Environ Toxicol Chem 2016;35:1413-1421. © 2015 SETAC.
Collapse
Affiliation(s)
- Amaia Rodríguez-Ruiz
- Zoology & Animal Cell Biology Department, University of the Basque Country (UPV/EHU), Leioa-Bizkaia, Basque Country, Spain
| | - Francesco Dondero
- Department of Science and Technological Innovation (DISIT), University of Piemonte Orientale, Alessandria, Italy
| | - Aldo Viarengo
- Department of Science and Technological Innovation (DISIT), University of Piemonte Orientale, Alessandria, Italy
| | - Ionan Marigómez
- Zoology & Animal Cell Biology Department, University of the Basque Country (UPV/EHU), Leioa-Bizkaia, Basque Country, Spain
- Plentzia Marine Station, University of the Basque Country (PiE-UPV/EHU), Plentzia-Bizkaia, Basque Country, Spain
| |
Collapse
|
4
|
Harlow PH, Perry SJ, Widdison S, Daniels S, Bondo E, Lamberth C, Currie RA, Flemming AJ. The nematode Caenorhabditis elegans as a tool to predict chemical activity on mammalian development and identify mechanisms influencing toxicological outcome. Sci Rep 2016; 6:22965. [PMID: 26987796 PMCID: PMC4796825 DOI: 10.1038/srep22965] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/19/2016] [Indexed: 01/08/2023] Open
Abstract
To determine whether a C. elegans bioassay could predict mammalian developmental activity, we selected diverse compounds known and known not to elicit such activity and measured their effect on C. elegans egg viability. 89% of compounds that reduced C. elegans egg viability also had mammalian developmental activity. Conversely only 25% of compounds found not to reduce egg viability in C. elegans were also inactive in mammals. We conclude that the C. elegans egg viability assay is an accurate positive predictor, but an inaccurate negative predictor, of mammalian developmental activity. We then evaluated C. elegans as a tool to identify mechanisms affecting toxicological outcomes among related compounds. The difference in developmental activity of structurally related fungicides in C. elegans correlated with their rate of metabolism. Knockdown of the cytochrome P450s cyp-35A3 and cyp-35A4 increased the toxicity to C. elegans of the least developmentally active compounds to the level of the most developmentally active. This indicated that these P450s were involved in the greater rate of metabolism of the less toxic of these compounds. We conclude that C. elegans based approaches can predict mammalian developmental activity and can yield plausible hypotheses for factors affecting the biological potency of compounds in mammals.
Collapse
Affiliation(s)
- Philippa H Harlow
- Syngenta Ltd., Jealott's Hill Research Station, Bracknell, Berkshire, RG42 6EY, UK
| | - Simon J Perry
- Syngenta Ltd., Jealott's Hill Research Station, Bracknell, Berkshire, RG42 6EY, UK
| | - Stephanie Widdison
- General Bioinformatics, Jealott's Hill Research Station, Bracknell, Berkshire, RG42 6EY, UK
| | - Shannon Daniels
- Syngenta, 3054 East Cornwallis Road, Research Triangle Park, NC 27709-2257, USA
| | - Eddie Bondo
- Syngenta, 3054 East Cornwallis Road, Research Triangle Park, NC 27709-2257, USA
| | - Clemens Lamberth
- Syngenta Crop Protection AG, Chemical Research, Schaffhauserstrasse 101, 4332 Stein, Switzerland
| | - Richard A Currie
- Syngenta Ltd., Jealott's Hill Research Station, Bracknell, Berkshire, RG42 6EY, UK
| | - Anthony J Flemming
- Syngenta Ltd., Jealott's Hill Research Station, Bracknell, Berkshire, RG42 6EY, UK
| |
Collapse
|
5
|
Rodriguez-Ruiz A, Etxebarria J, Boatti L, Marigómez I. Scenario-targeted toxicity assessment through multiple endpoint bioassays in a soil posing unacceptable environmental risk according to regulatory screening values. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13344-61. [PMID: 25940475 DOI: 10.1007/s11356-015-4564-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
Lanestosa is a chronically polluted site (derelict mine) where the soil (Lanestosa (LA) soil) exceeds screening values (SVs) of regulatory policies in force (Basque Country; Europe) for Zn, Pb and Cd. A scenario-targeted toxicity assessment was carried out on the basis of a multi-endpoint bioassay approach. Acute and chronic toxicity bioassays were conducted with selected test species (Vibrio fischeri, Dictyostelium discoideum, Lactuca sativa, Raphanus sativus and Eisenia fetida) in combination with chemical analysis of soils and elutriates and with bioaccumulation studies in earthworms. Besides, the toxicity profile was compared with that of the mine runoff (RO) soil and of a fresh artificially polluted soil (LAAPS) resembling LA soil pollutant profile. Extractability studies in LA soil revealed that Pb, Zn and Cd were highly available for exchange and/or release into the environment. Indeed, Pb and Zn were accumulated in earthworms and LA soil resulted to be toxic. Soil respiration, V. fischeri, vegetative and developmental cycles of D. discoideum and survival and juvenile production of E. fetida were severely affected. These results confirmed that LA soil had unacceptable environmental risk and demanded intervention. In contrast, although Pb and Zn concentrations in RO soil revealed also unacceptable risk, both metal extractability and toxicity were much lower than in LA soil. Thus, within the polluted site, the need for intervention varied between areas that posed dissimilar risk. Besides, since LAAPS, with a high exchangeable metal fraction, was the most toxic, ageing under in situ natural conditions seemingly contributed to attenuate LA soil risk. As a whole, combining multi-endpoint bioassays with scenario-targeted analysis (including leaching and ageing) provides reliable risk assessment in soils posing unacceptable environmental risk according to SVs, which is useful to optimise the required intervention measures.
Collapse
Affiliation(s)
- A Rodriguez-Ruiz
- Ekoiz-Berrilur Consortium, CBET Res. Grp, Zoology & Animal Cell Biology Department, Science & Technology Faculty, University of the Basque Country (UPV/EHU), Sarriena, 48940, Leioa, Bizkaia, Basque Country (Spain)
| | | | | | | |
Collapse
|
6
|
Rodriguez-Ruiz A, Asensio V, Zaldibar B, Soto M, Marigómez I. Toxicity assessment through multiple endpoint bioassays in soils posing environmental risk according to regulatory screening values. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:9689-708. [PMID: 24819436 DOI: 10.1007/s11356-014-2915-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
Toxicity profiles of two soils (a brownfield in Legazpi and an abandoned iron mine in Zugaztieta; Basque Country) contaminated with several metals (As, Zn, Pb and Cu in Legazpi; Zn, Pb, Cd and Cu in Zugaztieta) and petroleum hydrocarbons (in Legazpi) were determined using a multi-endpoint bioassay approach. Investigated soils exceeded screening values (SVs) of regulatory policies in force (Basque Country; Europe). Acute and chronic toxicity bioassays were conducted with a selected set of test species (Vibrio fischeri, Dictyostelium discoideum, Lactuca sativa, Raphanus sativus and Eisenia fetida) in combination with chemical analysis of soils and elutriates, as well as with bioaccumulation studies in earthworms. The sensitivity of the test species and the toxicity endpoints varied depending on the soil. It was concluded that whilst Zugaztieta soil showed very little or no toxicity, Legazpi soil was toxic according to almost all the toxicity tests (solid phase Microtox, D. discoideum inhibition of fruiting body formation and developmental cycle solid phase assays, lettuce seed germination and root elongation test, earthworm acute toxicity and reproduction tests, D. discoideum cell viability and replication elutriate assays). Thus, albeit both soils had similar SVs, their ecotoxicological risk, and therefore the need for intervening, was different for each soil as unveiled after toxicity profiling based on multiple endpoint bioassays. Such a toxicity profiling approach is suitable to be applied for scenario-targeted soil risk assessment in those cases where applicable national/regional soil legislation based on SVs demands further toxicity assessment.
Collapse
Affiliation(s)
- A Rodriguez-Ruiz
- Ekoiz-Berrilur Consortium, CBET Res. Grp. Zoology and Animal Cell Biology Department, Science and Technology Faculty, University of the Basque Country (UPV/EHU), Sarriena, 48940, Leioa-Bizkaia, Basque Country, Spain
| | | | | | | | | |
Collapse
|
7
|
Bozzaro S, Buracco S, Peracino B. Iron metabolism and resistance to infection by invasive bacteria in the social amoeba Dictyostelium discoideum. Front Cell Infect Microbiol 2013; 3:50. [PMID: 24066281 PMCID: PMC3777012 DOI: 10.3389/fcimb.2013.00050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/22/2013] [Indexed: 12/20/2022] Open
Abstract
Dictyostelium cells are forest soil amoebae, which feed on bacteria and proliferate as solitary cells until bacteria are consumed. Starvation triggers a change in life style, forcing cells to gather into aggregates to form multicellular organisms capable of cell differentiation and morphogenesis. As a soil amoeba and a phagocyte that grazes on bacteria as the obligate source of food, Dictyostelium could be a natural host of pathogenic bacteria. Indeed, many pathogens that occasionally infect humans are hosted for most of their time in protozoa or free-living amoebae, where evolution of their virulence traits occurs. Due to these features and its amenability to genetic manipulation, Dictyostelium has become a valuable model organism for studying strategies of both the host to resist infection and the pathogen to escape the defense mechanisms. Similarly to higher eukaryotes, iron homeostasis is crucial for Dictyostelium resistance to invasive bacteria. Iron is essential for Dictyostelium, as both iron deficiency or overload inhibit cell growth. The Dictyostelium genome shares with mammals many genes regulating iron homeostasis. Iron transporters of the Nramp (Slc11A) family are represented with two genes, encoding Nramp1 and Nramp2. Like the mammalian ortholog, Nramp1 is recruited to phagosomes and macropinosomes, whereas Nramp2 is a membrane protein of the contractile vacuole network, which regulates osmolarity. Nramp1 and Nramp2 localization in distinct compartments suggests that both proteins synergistically regulate iron homeostasis. Rather than by absorption via membrane transporters, iron is likely gained by degradation of ingested bacteria and efflux via Nramp1 from phagosomes to the cytosol. Nramp gene disruption increases Dictyostelium sensitivity to infection, enhancing intracellular growth of Legionella or Mycobacteria. Generation of mutants in other "iron genes" will help identify genes essential for iron homeostasis and resistance to pathogens.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy.
| | | | | |
Collapse
|