1
|
Ma X, Guo R, Song H, Wang J, Yang Z, Liang G, Peng C. Anaerobic and aerobic sequential process, a promising strategy for breaking the stagnate of biological reductive dechlorination-TCE bioremediation in the field application. CHEMOSPHERE 2025; 372:144106. [PMID: 39800327 DOI: 10.1016/j.chemosphere.2025.144106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Trichloroethylene (TCE) is a common chlorinated hydrocarbon contaminant in soil and groundwater, and reductive dechlorination is a biological remediation. However, the TCE reductive dechlorination often stagnates in the stage of cis-1,2-dichloroethylene (cDCE) and chloroethylene (VC). Anaerobic/aerobic sequential degradation provides a new approach for the complete detoxification of TCE, while there has been no systematic summary of bacteria, enzymes, and pathways in the synergistic process. Herein, the objectives of this review are (1) to discuss the reasons why it is difficult to completely reduce dechlorination; (2) to analyze the advantages and pathways of TCE complete detoxification through anaerobic/aerobic sequential degradation process; (3) to summarize the major bacteria and catalytic enzymes of the cDCE and VC oxidation process. This review will highlight the anaerobic/aerobic process in TCE biodegradation and increase understanding of the complete detoxification of chlorinated hydrocarbons.
Collapse
Affiliation(s)
- Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Runnan Guo
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Haokun Song
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiao Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Zixuan Yang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Gaolei Liang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
2
|
Krett G, Romsics C, Jurecska L, Bódai V, Erdélyi B, Márialigeti K, Nagymáté Z. Field test of a bioaugmentation agent for the bioremediation of chlorinated ethene contaminated sites. Biol Futur 2024; 75:289-299. [PMID: 39078604 DOI: 10.1007/s42977-024-00230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024]
Abstract
Chlorinated ethenes are toxic compounds that were widely used in the past, and their improper handling and storage caused notable pollutions worldwide. In situ bioremediation by reductive dechlorination of bacteria is a cost-effective and ecologically friendly way to eliminate these pollutions. During the present study, the efficiency of a previously developed bioaugmentation agent combined with biostimulation was tested under field conditions in contaminated soil. Furthermore, the preservation of dechlorinating ability was also investigated in a long-term experiment. Initially, aerobic conditions were present in the groundwater with possible presence of anaerobic micro-niches providing habitat for Brocadia related anammox bacteria. "Candidatus Omnitrophus" was also identified as a dominant member of community then. Significant changes were detected after the biostimulation, anaerobic conditions established and most of the dominant OTUs were related to fermentative taxa (e.g. Clostridium, Trichococcus and Macillibacteroides). Dominant presence of vinyl-chloride coupled with the lack of vinyl-chloride reductase gene was observed. The most notable change after the bioaugmentation was the significant decrease in the pollutant quantities and the parallel increase in the vcrA gene copy numbers. Similar to post-biostimulation state, fermentative bacteria dominated the community. Bacterial community composition transformed considerably with time after the treatment, dominance of fermentative-mainly Firmicutes related-taxa decreased and chemolithotrophic bacteria became abundant, but the dechlorinating potential of the community remained and could be induced by the reappearance of the pollutants even after 4 years.
Collapse
Affiliation(s)
- Gergely Krett
- Department of Microbiology, Eötvös Loránd University, Pázmány P. Sétány 1/C, 1117, Budapest, Hungary.
| | - Csaba Romsics
- Department of Microbiology, Eötvös Loránd University, Pázmány P. Sétány 1/C, 1117, Budapest, Hungary
| | - Laura Jurecska
- Department of Microbiology, Eötvös Loránd University, Pázmány P. Sétány 1/C, 1117, Budapest, Hungary
| | | | | | - Károly Márialigeti
- Department of Microbiology, Eötvös Loránd University, Pázmány P. Sétány 1/C, 1117, Budapest, Hungary
| | - Zsuzsanna Nagymáté
- Department of Microbiology, Eötvös Loránd University, Pázmány P. Sétány 1/C, 1117, Budapest, Hungary
- Fermentia Ltd, Berlini Utca 47, 1045, Budapest, Hungary
| |
Collapse
|
3
|
Kim J, Kaown D, Lee KK. Coupling of radon and microbial analysis for dense non-aqueous-phase liquid tracing and health risk assessment in groundwater under seasonal variations. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134939. [PMID: 38889466 DOI: 10.1016/j.jhazmat.2024.134939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Dense non-aqueous-phase liquids (DNAPLs) represent one of the most hazardous contaminants of groundwater, posing health risks to humans. Radon is generally used to trace DNAPLs; however, external factors, such as rainfall or stream water, can influence its efficacy. To overcome these limitations, this study pioneered the integration of radon and microbial community structures to explore DNAPL tracing and natural attenuation in the context of seasonal variations for human health risk assessments. The results showed that a radon tracer can estimate DNAPL saturation in the source zone, especially during the dry season when radon deficiency predominates. However, samples exhibited mixing effects during the wet season because of local precipitation. Moreover, bioremediation and low health risks were observed in the plume boundary zone, indicating that microbial dechlorination was a predominant factor determining these risks. The abnormal patterns of radon observed during the wet season can be elucidated by examining microbiological communities. Consequently, a combined approach employing radon and microbial analysis is advocated for the boundary zone, albeit with a less intensive management strategy, compared with that for the source zone. This novel coupling method offers a theoretical and practical foundation for managing DNAPL-contaminated groundwater.
Collapse
Affiliation(s)
- Jaeyeon Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, the Republic of Korea
| | - Dugin Kaown
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, the Republic of Korea
| | - Kang-Kun Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, the Republic of Korea.
| |
Collapse
|
4
|
Ren C, Carrillo ND, Cryns VL, Anderson RA, Chen M. Environmental pollutants and phosphoinositide signaling in autoimmunity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133080. [PMID: 38091799 PMCID: PMC10923067 DOI: 10.1016/j.jhazmat.2023.133080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 02/08/2024]
Abstract
Environmental pollution stands as one of the most critical challenges affecting human health, with an estimated mortality rate linked to pollution-induced non-communicable diseases projected to range from 20% to 25%. These pollutants not only disrupt immune responses but can also trigger immunotoxicity. Phosphoinositide signaling, a pivotal regulator of immune responses, plays a central role in the development of autoimmune diseases and exhibits high sensitivity to environmental stressors. Among these stressors, environmental pollutants have become increasingly prevalent in our society, contributing to the initiation and exacerbation of autoimmune conditions. In this review, we summarize the intricate interplay between phosphoinositide signaling and autoimmune diseases within the context of environmental pollutants and contaminants. We provide an up-to-date overview of stress-induced phosphoinositide signaling, discuss 14 selected examples categorized into three groups of environmental pollutants and their connections to immune diseases, and shed light on the associated phosphoinositide signaling pathways. Through these discussions, this review advances our understanding of how phosphoinositide signaling influences the coordinated immune response to environmental stressors at a biological level. Furthermore, it offers valuable insights into potential research directions and therapeutic targets aimed at mitigating the impact of environmental pollutants on the pathogenesis of autoimmune diseases. SYNOPSIS: Phosphoinositide signaling at the intersection of environmental pollutants and autoimmunity provides novel insights for managing autoimmune diseases aggravated by pollutants.
Collapse
Affiliation(s)
- Chang Ren
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Noah D Carrillo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Vincent L Cryns
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mo Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
5
|
Zhang X, Long T, Deng S, Chen Q, Chen S, Luo M, Yu R, Zhu X. Machine Learning Modeling Based on Microbial Community for Prediction of Natural Attenuation in Groundwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21212-21223. [PMID: 38064381 DOI: 10.1021/acs.est.3c05667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Natural attenuation is widely adopted as a remediation strategy, and the attenuation potential is crucial to evaluate whether remediation goals can be achieved within the specified time. In this work, long-term monitoring of indigenous microbial communities as well as benzene, toluene, ethylbenzene, and xylene (BTEX) and chlorinated aliphatic hydrocarbons (CAHs) in groundwater was conducted at a historic pesticide manufacturing site. A machine learning approach for natural attenuation prediction was developed with random forest classification (RFC) followed by either random forest regression (RFR) or artificial neural networks (ANNs), utilizing microbiological information and contaminant attenuation rates for model training and cross-validation. Results showed that the RFC could accurately predict the feasibility of natural attenuation for both BTEX and CAHs, and it could successfully identify the key genera. The RFR model was sufficient for the BTEX natural attenuation rate prediction but unreliable for CAHs. The ANN model showed better performance in the prediction of the attenuation rates for both BTEX and CAHs. Based on the assessments, a composite modeling method of RFC and ANN was proposed, which could reduce the mean absolute percentage errors. This study reveals that the combined machine learning approach under the synergistic use of field microbial data has promising potential for predicting natural attenuation.
Collapse
Affiliation(s)
- Xiaodong Zhang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, Jiangsu, China
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, Jiangsu, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, Jiangsu, China
| | - Qiang Chen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, Jiangsu, China
| | - Sheng Chen
- Geo-engineering Investigation Institute of Jiangsu Province, Nanjing 210041, Jiangsu, China
| | - Moye Luo
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, Jiangsu, China
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China
| | - Xin Zhu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, Jiangsu, China
| |
Collapse
|
6
|
Lo KH, Lu CW, Chien CC, Sheu YT, Lin WH, Chen SC, Kao CM. Cleanup chlorinated ethene-polluted groundwater using an innovative immobilized Clostridium butyricum column scheme: A pilot-scale study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114836. [PMID: 35272161 DOI: 10.1016/j.jenvman.2022.114836] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
In this study, the developed innovative immobilized Clostridium butyricum (ICB) (hydrogen-producing bacteria) column scheme was applied to cleanup chlorinated-ethene [mainly cis-1,2-dichloroethene (cis-DCE)] polluted groundwater in situ via the anaerobic reductive dechlorinating processes. The objectives were to assess the effectiveness of the field application of ICB scheme on the cleanup of cis-DCE polluted groundwater, and characterize changes of microbial communities after ICB application. Three remediation wells and two monitor wells were installed within the cis-DCE plume. In the remediation well, a 1.2-m PVC column (radius = 2.5 cm) (filled with ICB beads) and 20 L of slow polycolloid-releasing substrate (SPRS) were supplied for hydrogen production enhancement and primary carbon supply, respectively. Groundwater samples from remediation and monitor wells were analyzed periodically for cis-DCE and its degradation byproducts, microbial diversity, reductive dehalogenase, and geochemical indicators. Results reveal that cis-DCE was significantly decreased within the ICB and SPRS influence zone. In a remediation well with ICB injection, approximately 98.4% of cis-DCE removal (initial concentration = 1.46 mg/L) was observed with the production of ethene (end-product of cis-DCE dechlorination) after 56 days of system operation. Up to 0.72 mg/L of hydrogen was observed in remediation wells after 14 days of ICB and SPRS introduction, which corresponded with the increased population of Dehalococcoides spp. (Dhc) (increased from 3.76 × 103 to 5.08 × 105 gene copies/L). Results of metagenomics analyses show that the SPRS and ICB introduction caused significant impacts on the bacterial communities, and increased Bacteroides, Citrobacter, and Desulfovibrio populations were observed, which had significant contributions to the reductive dechlorination of cis-DCE. Application of ICB could effectively result in increased populations of Dhc and RDase genes, which corresponded with improved dechlorination of cis-DCE and vinyl chloride. Introduction of ICB and SPRS could be applied as a potential in situ remedial option to enhance anaerobic dechlorination efficiencies of chlorinated ethenes.
Collapse
Affiliation(s)
- Kai-Hung Lo
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Che-Wei Lu
- Department of Life Sciences, National Central University, Chung-Li City, Taoyuan, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li City, Taoyuan, Taiwan
| | - Yi-Tern Sheu
- General Education Center, National University of Kaohsiung, Kaohsiung City, Taiwan
| | - Wei-Han Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Chung-Li City, Taoyuan, Taiwan.
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Matturro B, Zeppilli M, Lai A, Majone M, Rossetti S. Metagenomic Analysis Reveals Microbial Interactions at the Biocathode of a Bioelectrochemical System Capable of Simultaneous Trichloroethylene and Cr(VI) Reduction. Front Microbiol 2021; 12:747670. [PMID: 34659183 PMCID: PMC8516407 DOI: 10.3389/fmicb.2021.747670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023] Open
Abstract
Bioelectrochemical systems (BES) are attractive and versatile options for the bioremediation of organic or inorganic pollutants, including trichloroethylene (TCE) and Cr(VI), often found as co-contaminants in the environment. The elucidation of the microbial players' role in the bioelectroremediation processes for treating multicontaminated groundwater is still a research need that attracts scientific interest. In this study, 16S rRNA gene amplicon sequencing and whole shotgun metagenomics revealed the leading microbial players and the primary metabolic interactions occurring in the biofilm growing at the biocathode where TCE reductive dechlorination (RD), hydrogenotrophic methanogenesis, and Cr(VI) reduction occurred. The presence of Cr(VI) did not negatively affect the TCE degradation, as evidenced by the RD rates estimated during the reactor operation with TCE (111±2 μeq/Ld) and TCE/Cr(VI) (146±2 μeq/Ld). Accordingly, Dehalococcoides mccartyi, the primary biomarker of the RD process, was found on the biocathode treating both TCE (7.82E+04±2.9E+04 16S rRNA gene copies g-1 graphite) and TCE/Cr(VI) (3.2E+07±2.37E+0716S rRNA gene copies g-1 graphite) contamination. The metagenomic analysis revealed a selected microbial consortium on the TCE/Cr(VI) biocathode. D. mccartyi was the sole dechlorinating microbe with H2 uptake as the only electron supply mechanism, suggesting that electroactivity is not a property of this microorganism. Methanobrevibacter arboriphilus and Methanobacterium formicicum also colonized the biocathode as H2 consumers for the CH4 production and cofactor suppliers for D. mccartyi cobalamin biosynthesis. Interestingly, M. formicicum also harbors gene complexes involved in the Cr(VI) reduction through extracellular and intracellular mechanisms.
Collapse
Affiliation(s)
| | - Marco Zeppilli
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Agnese Lai
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Mauro Majone
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
8
|
Chen K, Liu Z, Wang X, Yu C, Ye J, Yu C, Wang F, Shen C. Enhancement of perchloroethene dechlorination by a mixed dechlorinating culture via magnetic nanoparticle-mediated isolation method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147421. [PMID: 33964769 DOI: 10.1016/j.scitotenv.2021.147421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Highly enriched active dechlorinating cultures are important in advancing microbial remediation technology. This study attempted to enrich a rapid perchloroethene (PCE) dechlorinating culture via magnetic nanoparticle-mediated isolation (MMI). MMI is a novel method that can separate the fast-growing and slow-growing population in a microbial community without labelling. In the MMI process, PCE dechlorination was enhanced but the subsequent trichloroethene (TCE) dechlorination was inhibited, with TCE cumulative rate reached up to 80.6% within 70 days. Meanwhile, the microbial community was also changed, with fast-growing genera like Dehalobacterium and Petrimonas enriched, and slow-growing Methanosarcina almost ruled out. Relative abundances of several major genera including Petrimonas and Methanosarcina were positively related to TCE dechlorination rate and the relative abundance of Dehalococcoides. On the other hand, Dehalobacterium was negatively related to TCE dechlorination rate and Dehalococcoides abundance, suggesting potential competition between Dehalobacterium and Dehalococcoides. The regrowth of Methanosarcina coupled well with the recovery of TCE dechlorination capacity, which implied the important role of methanogens in TCE dechlorination. Via MMI method, a simpler but more active microbial consortium could be established to enhance PCE remediation efficiency. Methanogens may act as the indicators or biomarkers for TCE dechlorination, suggesting that methanogenic activity should also be monitored when enriching dechlorination cultures and remediating PCE contaminated sites. CAPSULE: A rapid perchloroethene dechlorinator was gotten via magnetic nanoparticles and dechlorination of trichloroethene coupled well with growth of Methanosarcina.
Collapse
Affiliation(s)
- Kezhen Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zefan Liu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaomin Wang
- Ecological Environmental Science Design and Research Institute of Zhejiang Province, Hangzhou 310007, China
| | - Chungui Yu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junxiang Ye
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Feier Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| |
Collapse
|
9
|
Kandris K, Pantazidou M, Mamais D. Model-based evidence for the relevance of microbial community variability to the efficiency of the anaerobic reductive dechlorination of TCE. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 241:103834. [PMID: 34044306 DOI: 10.1016/j.jconhyd.2021.103834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
The composition of mixed dechlorinating communities varies considerably in field and laboratory conditions. Dechlorinators thrive alongside with distinctive populations that help or hinder dechlorination. The variability of the composition of dechlorinating communities inevitably precludes a firm consensus regarding the optimal strategies for biostimulation. This lack of consensus motivated a model-based approach for the investigation of how the variability of the composition of a microbial community impacts the electron donor supply strategies for accelerating chloroethene removal. To this end, a kinetic model accounting for dechlorination in conjunction with cooperative and competing processes was developed. Model parameters were estimated using a multi-experiment, multi-start algorithm and data from research previously performed with two generations of a methane-producing, Dehalococcoides mccartyi-dominated consortium. The two generations of the consortium functioned comparably under maintenance conditions but performed divergently under high electron donor surpluses. The multi-experiment, multi-start algorithm overcame the hurdles of poor parameter identifiability and offered a probable cause for the different behaviors exhibited by each of the two generations of the chloroethene-degrading consortium: modest differences in the make-up of non-dechlorinators, which were minority populations, significantly influenced the fate of the offered electron donor.
Collapse
Affiliation(s)
- Kyriakos Kandris
- Department of Geotechnical Engineering, School of Civil Engineering, National Technical University of Athens, Athens, Greece.
| | - Marina Pantazidou
- Department of Geotechnical Engineering, School of Civil Engineering, National Technical University of Athens, Athens, Greece.
| | - Daniel Mamais
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
10
|
Ghezzi D, Filippini M, Cappelletti M, Firrincieli A, Zannoni D, Gargini A, Fedi S. Molecular characterization of microbial communities in a peat-rich aquifer system contaminated with chlorinated aliphatic compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23017-23035. [PMID: 33438126 DOI: 10.1007/s11356-020-12236-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
In an aquifer-aquitard system in the subsoil of the city of Ferrara (Emilia-Romagna region, northern Italy) highly contaminated with chlorinated aliphatic toxic organics such as trichloroethylene (TCE) and tetrachloroethylene (PCE), a strong microbial-dependent dechlorination activity takes place during migration of contaminants through shallow organic-rich layers with peat intercalations. The in situ microbial degradation of chlorinated ethenes, formerly inferred by the utilization of contaminant concentration profiles and Compound-Specific Isotope Analysis (CSIA), was here assessed using Illumina sequencing of V4 hypervariable region of 16S rRNA gene and by clone library analysis of dehalogenase metabolic genes. Taxon-specific investigation of the microbial communities catalyzing the chlorination process revealed the presence of not only dehalogenating genera such as Dehalococcoides and Dehalobacter but also of numerous other groups of non-dehalogenating bacteria and archaea thriving on diverse metabolisms such as hydrolysis and fermentation of complex organic matter, acidogenesis, acetogenesis, and methanogenesis, which can indirectly support the reductive dechlorination process. Besides, the diversity of genes encoding some reductive dehalogenases was also analyzed. Geochemical and 16S rRNA and RDH gene analyses, as a whole, provided insights into the microbial community complexity and the distribution of potential dechlorinators. Based on the data obtained, a possible network of metabolic interactions has been hypothesized to obtain an effective reductive dechlorination process.
Collapse
Affiliation(s)
- Daniele Ghezzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
- Laboratory of NanoBiotechnology, IRCSS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Maria Filippini
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Zamboni 67, 40126, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Alessandro Gargini
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Zamboni 67, 40126, Bologna, Italy
| | - Stefano Fedi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| |
Collapse
|
11
|
Hellal J, Joulian C, Urien C, Ferreira S, Denonfoux J, Hermon L, Vuilleumier S, Imfeld G. Chlorinated ethene biodegradation and associated bacterial taxa in multi-polluted groundwater: Insights from biomolecular markers and stable isotope analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142950. [PMID: 33127155 DOI: 10.1016/j.scitotenv.2020.142950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Chlorinated ethenes (CEs) are most problematic pollutants in groundwater. Dehalogenating bacteria, and in particular organohalide-respiring bacteria (OHRB), can transform PCE to ethene under anaerobic conditions, and thus contribute to bioremediation of contaminated sites. Current approaches to characterize in situ biodegradation of CEs include hydrochemical analyses, quantification of the abundance of key species (e.g. Dehalococcoides mccartyi) and dehalogenase genes (pceA, vcrA, bvcA and tceA) involved in different steps of organohalide respiration (OHR) by qPCR, and compound-specific isotope analysis (CSIA) of CEs. Here we combined these approaches with sequencing of 16S rRNA gene amplicons to consider both OHRB and bacterial taxa involved in CE transformation at a multi-contaminated site. Integrated analysis of hydrogeochemical characteristics, gene abundances and bacterial diversity shows that bacterial diversity and OHRB mainly correlated with hydrogeochemical conditions, suggesting that pollutant exposure acts as a central driver of bacterial diversity. CSIA, abundances of four reductive dehalogenase encoding genes and the prevalence of Dehalococcoides highlighted sustained PCE, DCE and VC degradation in several wells of the polluted plume. These results suggest that bacterial taxa associated with OHR play an essential role in natural attenuation of CEs, and that representatives of taxa including Dehalobacterium and Desulfosporosinus co-occur with Dehalococcoides. Overall, our study emphasizes the benefits of combining several approaches to evaluate the interplay between the dynamics of bacterial diversity in CE-polluted plumes and in situ degradation of CEs, and to contribute to a more robust assessment of natural attenuation at multi-polluted sites.
Collapse
Affiliation(s)
- Jennifer Hellal
- BRGM, Geomicrobiology and Environmental Monitoring Unit, FR-45060 Orléans, France.
| | - Catherine Joulian
- BRGM, Geomicrobiology and Environmental Monitoring Unit, FR-45060 Orléans, France
| | - Charlotte Urien
- Service Recherche, Développement et Innovation-Communautés Microbiennes, GenoScreen, Lille, France
| | - Stéphanie Ferreira
- Service Recherche, Développement et Innovation-Communautés Microbiennes, GenoScreen, Lille, France
| | - Jérémie Denonfoux
- Service Recherche, Développement et Innovation-Communautés Microbiennes, GenoScreen, Lille, France
| | - Louis Hermon
- BRGM, Geomicrobiology and Environmental Monitoring Unit, FR-45060 Orléans, France; Université de Strasbourg, CNRS, GMGM UMR 7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Stéphane Vuilleumier
- Université de Strasbourg, CNRS, GMGM UMR 7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Gwenaël Imfeld
- Université de Strasbourg, CNRS/EOST, LHyGeS UMR 7517, Laboratory of Hydrology and Geochemistry of Strasbourg, Strasbourg, France
| |
Collapse
|
12
|
Siggins A, Thorn C, Healy MG, Abram F. Simultaneous adsorption and biodegradation of trichloroethylene occurs in a biochar packed column treating contaminated landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123676. [PMID: 33264877 DOI: 10.1016/j.jhazmat.2020.123676] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/25/2020] [Accepted: 08/07/2020] [Indexed: 06/12/2023]
Abstract
Trichloroethylene (TCE) is a human carcinogen that is commonly found in landfill leachate. Contaminated leachate plumes may be intercepted prior to reaching groundwater and treated in situ using permeable reactive barriers (PRB). This study used a packed column system containing herbal pomace and spruce biochar, previously shown to have TCE adsorptive capabilities. Influent containing raw or autoclaved landfill leachate was used to investigate the potential for environmental micro-organisms to establish a TCE-dechlorinating biofilm on the biochar, in order to prolong the operational life span of the system. TCE removal ≥ 99.7 % was observed by both biochars. No dichloroethylene (DCE) isomers were present in the column effluents, but cis-1,2 DCE was adsorbed to the biochar treating raw landfill leachate, indicating that dechlorination was occurring biologically in these columns. Known microbial species that are individually capable of complete dechlorination of TCE to ethene were not detected by 16S rRNA gene sequencing, but several species capable of partial TCE dechlorination (Desulfitobacterium spp., Sulfurospirillium spp. and Desulfuromonas spp) were present in the biofilms of the columns treating raw landfill leachate. These data demonstrate that biochar from waste material may be capable of supporting a dechlorinating biofilm to promote bioremediation of TCE.
Collapse
Affiliation(s)
- Alma Siggins
- School of Natural Sciences, National University of Ireland, Galway, Ireland; Civil Engineering, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland.
| | - Camilla Thorn
- School of Natural Sciences, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland
| | - Mark G Healy
- Civil Engineering, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland
| | - Florence Abram
- School of Natural Sciences, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
13
|
Sonthiphand P, Rattanaroongrot P, Mek-Yong K, Kusonmano K, Rangsiwutisak C, Uthaipaisanwong P, Chotpantarat S, Termsaithong T. Microbial community structure in aquifers associated with arsenic: analysis of 16S rRNA and arsenite oxidase genes. PeerJ 2021; 9:e10653. [PMID: 33510973 PMCID: PMC7798605 DOI: 10.7717/peerj.10653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/04/2020] [Indexed: 11/20/2022] Open
Abstract
The microbiomes of deep and shallow aquifers located in an agricultural area, impacted by an old tin mine, were explored to understand spatial variation in microbial community structures and identify environmental factors influencing microbial distribution patterns through the analysis of 16S rRNA and aioA genes. Although Proteobacteria, Cyanobacteria, Actinobacteria, Patescibacteria, Bacteroidetes, and Epsilonbacteraeota were widespread across the analyzed aquifers, the dominant taxa found in each aquifer were unique. The co-dominance of Burkholderiaceae and Gallionellaceae potentially controlled arsenic immobilization in the aquifers. Analysis of the aioA gene suggested that arsenite-oxidizing bacteria phylogenetically associated with Alpha-, Beta-, and Gamma proteobacteria were present at low abundance (0.85 to 37.13%) and were more prevalent in shallow aquifers and surface water. The concentrations of dissolved oxygen and total phosphorus significantly governed the microbiomes analyzed in this study, while the combination of NO3 --N concentration and oxidation-reduction potential significantly influenced the diversity and abundance of arsenite-oxidizing bacteria in the aquifers. The knowledge of microbial community structures and functions in relation to deep and shallow aquifers is required for further development of sustainable aquifer management.
Collapse
Affiliation(s)
- Prinpida Sonthiphand
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Kasarnchon Mek-Yong
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kanthida Kusonmano
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.,Systems Biology and Bioinformatics Research Laboratory, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Chalida Rangsiwutisak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Pichahpuk Uthaipaisanwong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Srilert Chotpantarat
- Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Research Program on Controls of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand.,Research Unit of Green Mining (GMM), Chulalongkorn University, Bangkok, Thailand
| | - Teerasit Termsaithong
- Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.,Theoretical and Computational Science Center (TaCS), King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
14
|
Summer D, Schöftner P, Watzinger A, Reichenauer TG. Inhibition and stimulation of two perchloroethene degrading bacterial cultures by nano- and micro-scaled zero-valent iron particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137802. [PMID: 32199366 DOI: 10.1016/j.scitotenv.2020.137802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The pollutant perchloroethene (PCE) can often be found at urban contaminated sites. Thus in-situ clean-up methods, like remediation using zero valent iron (ZVI) or bacterial dechlorination, are preferred. During the remediation with ZVI particles anaerobic corrosion occurs as an unwanted, particle consuming side reaction with water. However, in this reaction H2 is formed, which is usually scarce during anaerobic microbial dechlorination. Dehalococcoides needs H2 for cell growth using it as an electron donor to dechlorinate chlorinated hydrocarbons. Combining application of ZVI with bacterial dechlorination can turn ZVI in a H2 donor leading to a more controllable bacterial dechlorination, a smaller amount of ZVI suspension and decreased remediation costs. In this study nano- and micro scaled ZVI particles (nZVI, mZVI) were combined in microcosms with two dechlorinating bacterial cultures. The two cultures showed different dechlorination behaviors with ethene and cis-DCE as final products. Phospholipid fatty acids (PLFA) associated with Dehalococcoides (18:1w7, 18:1w7c, 10:Me16:0) and Geobacteriaceae (16,1w7c; 15:0; 16:0) have been found in both bacterial cultures, slight differences in their abundance could explain the different dechlorinating behaviors. The combination of both bacterial cultures with mZVI led to a stimulated dechlorination process leading to about two times higher kobs for PCE dechlorination (0.01-0.05 h-1). In the otherwise cis-DCE accumulating culture complete dechlorination to ethene was achieved. While addition of nZVI inhibited both cultures. Combined with nZVI the completely dechlorinating culture produced lower amounts of dechlorinated products (3.2 μmol) as compared to the single biotic treatment (5.1 μmol). Combining the incompletely dechlorinating culture with nZVI significantly reduced the kobs,PCE (single: 8 × 10-3 ± 3 × 10-4 h-1; combination: 5 × 10-3 ± 2 × 10-4 h-1). H2 produced by nZVI and mZVI was utilized by both bacterial cultures. The particle size, resulting specific surface areas, agglomeration tendencies and reactivity appears to be crucial for the effect on microbial cells.
Collapse
Affiliation(s)
- Dorothea Summer
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln a.d. Donau, Austria
| | - Philipp Schöftner
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln a.d. Donau, Austria
| | - Andrea Watzinger
- Institute of Soil Research, Department of Forest- and Soil Sciences, Institute of Soil Sciences, University of Natural Resources and Applied Life Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria.
| | - Thomas G Reichenauer
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln a.d. Donau, Austria.
| |
Collapse
|
15
|
Breton-Deval L, Sanchez-Reyes A, Sanchez-Flores A, Juárez K, Salinas-Peralta I, Mussali-Galante P. Functional Analysis of a Polluted River Microbiome Reveals a Metabolic Potential for Bioremediation. Microorganisms 2020; 8:microorganisms8040554. [PMID: 32290598 PMCID: PMC7232204 DOI: 10.3390/microorganisms8040554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 03/24/2020] [Indexed: 11/17/2022] Open
Abstract
The objective of this study is to understand the functional and metabolic potential of the microbial communities along the Apatlaco River and highlight activities related to bioremediation and its relationship with the Apatlaco’s pollutants, to enhance future design of more accurate bioremediation processes. Water samples were collected at four sampling sites along the Apatlaco River (S1–S4) and a whole metagenome shotgun sequencing was performed to survey and understand the microbial metabolic functions with potential for bioremediation. A HMMER search was used to detect sequence homologs related to polyethylene terephthalate (PET) and polystyrene biodegradation, along with bacterial metal tolerance in Apatlaco River metagenomes. Our results suggest that pollution is a selective pressure which enriches microorganisms at polluted sites, displaying metabolic capacities to tolerate and transform the contamination. According to KEGG annotation, all sites along the river have bacteria with genes related to xenobiotic biodegradation. In particular, functions such as environmental processing, xenobiotic biodegradation and glycan biosynthesis are over-represented in polluted samples, in comparison to those in the clean water site. This suggests a functional specialization in the communities that inhabit each perturbated point. Our results can contribute to the determination of the partition in a metabolic niche among different Apatlaco River prokaryotic communities, that help to contend with and understand the effect of anthropogenic contamination.
Collapse
Affiliation(s)
- Luz Breton-Deval
- Cátedras Conacyt - Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca 62210, Morelos, Mexico;
- Correspondence:
| | - Ayixon Sanchez-Reyes
- Cátedras Conacyt - Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca 62210, Morelos, Mexico;
| | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | - Katy Juárez
- Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Cuernavaca 62210, Mexico; (K.J.); (I.S.-P.)
| | - Ilse Salinas-Peralta
- Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Cuernavaca 62210, Mexico; (K.J.); (I.S.-P.)
| | - Patricia Mussali-Galante
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Colonia Chamilpa, Cuernavaca 62209, Morelos, Mexico;
| |
Collapse
|
16
|
Summer D, Schöftner P, Wimmer B, Pastar M, Kostic T, Sessitsch A, Gerzabek MH, Reichenauer TG. Synergistic effects of microbial anaerobic dechlorination of perchloroethene and nano zero-valent iron (nZVI) - A lysimeter experiment. N Biotechnol 2020; 57:34-44. [PMID: 32247067 DOI: 10.1016/j.nbt.2020.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 12/22/2022]
Abstract
Perchloroethene (PCE) is a hazardous and persistent groundwater pollutant. Both treatment with nanoscaled zero-valent iron (nZVI) and biological degradation by bacteria have downsides. Distribution of nZVI underground is difficult and a high percentage of injected nZVI is consumed by anaerobic corrosion, forming H2 rather than being available for PCE dechlorination. On the other hand, microbial PCE degradation can suffer from the absence of H2. This can cause the accumulation of the hazardous metabolites cis-1,2-dichloroethene (DCE) or vinylchloride (VC). The combination of chemical and biological PCE degradation is a promising approach to overcome the disadvantages of each method alone. In this lysimeter study, artificial aquifers were created to test the influence of nZVI on anaerobic microbial PCE dechlorination by a commercially available culture containing Dehalococcoides spp. under field-like conditions. The effect of the combined treatment was investigated with molasses as an additional electron source and after cessation of molasses addition. The combination of nZVI and the Dehalococcoides spp. containing culture led to a PCE discharge in the lysimeter outflow that was 4.7 times smaller than that with nZVI and 1.6 times smaller than with bacterial treatment. Moreover, fully dechlorinated end-products showed an 11-fold increase compared to nZVI and a 4.2-fold increase compared to the microbial culture. The addition of nZVI to the microbial culture also decreased the accumulation of hazardous metabolites by 1.7 (cis-DCE) and 1.2 fold (VC). The stimulatory effect of nZVI on microbial degradation was most obvious after the addition of molasses was stopped.
Collapse
Affiliation(s)
- Dorothea Summer
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430, Tulln a.d. Donau, Austria.
| | - Philipp Schöftner
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430, Tulln a.d. Donau, Austria.
| | - Bernhard Wimmer
- Quality Management, AIT Austrian Institute of Technology GmbH, 2444, Seibersdorf, Austria.
| | - Milica Pastar
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430, Tulln a.d. Donau, Austria
| | - Tanja Kostic
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430, Tulln a.d. Donau, Austria
| | - Angela Sessitsch
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430, Tulln a.d. Donau, Austria
| | - Martin Hubert Gerzabek
- Department of Forestry and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Peter-Jordan-Strasse 82, 1190, Vienna, Austria.
| | - Thomas Gerhard Reichenauer
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430, Tulln a.d. Donau, Austria.
| |
Collapse
|
17
|
Li H, Jiang Y, Wang S, Chen L, Wen X, Huang M, Cheng X, Cheng Z, Tao L. Bacterial networks mediate pentachlorophenol dechlorination across land-use types with citrate addition. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121295. [PMID: 31577970 DOI: 10.1016/j.jhazmat.2019.121295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/01/2019] [Accepted: 09/22/2019] [Indexed: 05/25/2023]
Abstract
Soil microorganisms play a crucial role in the bioremediation of pentachlorophenol (PCP)-contaminated soils. However, whether and how soil bacterial networks with keystone taxa affect PCP dechlorination is not well understood. The present study investigated the effects of citrate on soil bacterial networks mediating PCP dechlorination by direct and indirect transformation in iron-rich upland and paddy soils. The rates of PCP dechlorination and Fe(II) generation were accelerated by citrate addition, particularly in the paddy soils. Network analysis revealed that the topological properties of bacterial networks were changed by citrate addition; more modules and keystone taxa were significantly correlated with PCP dechlorination and Fe(II) generation in the networks. Random forest modeling indicated that Clostridiales was the most important bacterial order; it was significantly involved in both the direct and indirect pathways of PCP dechlorination. Citrate addition had less influence on the balance between the direct and indirect pathways of PCP dechlorination in the upland soils, whereas it enhanced biological PCP dechlorination more directly and efficiently in the paddy soils. Our results suggested that land-use type and citrate addition play a critical role in controlling the biogeochemical mechanisms of PCP dechlorination.
Collapse
Affiliation(s)
- Hui Li
- School of Computer Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Shanli Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan, ROC
| | - Lijun Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Xiaocui Wen
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, PR China
| | - Minxue Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, PR China
| | - Xiaocui Cheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Zhongliang Cheng
- China Resources & WISCO General Hospital, Wuhan, 430080, PR China
| | - Liang Tao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, PR China.
| |
Collapse
|
18
|
Wu YJ, Liu PWG, Hsu YS, Whang LM, Lin TF, Hung WN, Cho KC. Application of molecular biological tools for monitoring efficiency of trichloroethylene remediation. CHEMOSPHERE 2019; 233:697-704. [PMID: 31195274 DOI: 10.1016/j.chemosphere.2019.05.203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/11/2019] [Accepted: 05/23/2019] [Indexed: 05/20/2023]
Abstract
Trichloroethylene (TCE) is one of the most ubiquitous halogenated organic compounds of concerns of carcinogens in groundwater in Taiwan. Bioremediation has been recognized as a cost-effective approach in reducing TCE concentration. Five pilot-scale wells were constructed to monitor TCE concentrations in contaminated groundwater. With injection of EOS®, TCE was effectively degraded to 42%-93% by the end of 175 days. The biostimulation with EOS® was useful in establishing a micro-site anaerobic but with limited contribution. Dilution of the aquifer movement also caused the TCE reduction among injection and monitoring wells. The degradability was affected by the location and the proximity from the injection well. TCE concentrations found to be negatively correlated with the associated Dehalococcoides spp. and functional genes levels. Dhc concentration of 108 copies L-1 caused the initial 40% of TCE degradation. The well with the optimal degradation owned tceA of 109 cells L-1. T-RFLP results indicate the wells with the superior TCE degradability also performed the highest Shannon index number (means the highest diversity), which occurred on the same day that Dhc levels started to enlarge. Desulfovibrio desulfuricans and Desulfuromonas chloroethenica were predominant species identified in the T-RFLP fingerprint profile. In brief, a variety of different factors including well locations, geochemical indicators, and microbial contribution were useful to explain the site-specific optimal TCE remediation approach. The consistence among TCE degradation, Dhc growing pattern, functional gene levels, and the dynamics of the microbial community structure present the novelty of this study.
Collapse
Affiliation(s)
- Yi-Ju Wu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Wen Grace Liu
- Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan.
| | - You-Siang Hsu
- Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Liang-Ming Whang
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Tsair-Fuh Lin
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Nung Hung
- Industrial Technology Research Institute of Taiwan, Taiwan
| | - Kun-Ching Cho
- Industrial Technology Research Institute of Taiwan, Taiwan
| |
Collapse
|
19
|
Murray AM, Maillard J, Jin B, Broholm MM, Holliger C, Rolle M. A modeling approach integrating microbial activity, mass transfer, and geochemical processes to interpret biological assays: An example for PCE degradation in a multi-phase batch setup. WATER RESEARCH 2019; 160:484-496. [PMID: 31177078 DOI: 10.1016/j.watres.2019.05.087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
The rate at which organic contaminants can be degraded in aquatic environments is not only dependent upon specific degrading bacteria, but also upon the composition of the microbial community, mass transfer of the contaminant, and abiotic processes that occur in the environment. In this study, we present three-phase batch experiments of tetrachloroethene (PCE) degradation by a consortium of organohalide-respiring bacteria, cultivated alone or in communities with iron- and/or sulfate-reducers. We developed a modeling approach to quantitatively evaluate the experimental results, comprised of chemical and biomolecular time series data. The model utilizes the IPhreeqc module to couple multi-phase mass transfer between gaseous, organic and aqueous phases with microbial and aquatic geochemical processes described using the geochemical code PHREEQC. The proposed approach is able to capture the contaminant degradation, the microbial population dynamics, the effects of multi-phase kinetic mass transfer and sample removal, and the geochemical reactions occurring in the aqueous phase. The model demonstrates the importance of aqueous speciation and abiotic reactions on the bioavailability of the substrates. The model-based interpretation allowed us to quantify the reaction kinetics of the different bacterial guilds. The model further revealed that the inclusion of sulfate-reducing bacteria lowers the rate of PCE degradation and that this effect is moderated in the presence of iron-reducing bacteria.
Collapse
Affiliation(s)
- Alexandra Marie Murray
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Julien Maillard
- Laboratory for Environmental Biotechnology, ENAC-IIE, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Science, China
| | - Mette M Broholm
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Christof Holliger
- Laboratory for Environmental Biotechnology, ENAC-IIE, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Massimo Rolle
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
20
|
Hermon L, Hellal J, Denonfoux J, Vuilleumier S, Imfeld G, Urien C, Ferreira S, Joulian C. Functional Genes and Bacterial Communities During Organohalide Respiration of Chloroethenes in Microcosms of Multi-Contaminated Groundwater. Front Microbiol 2019; 10:89. [PMID: 30809199 PMCID: PMC6379275 DOI: 10.3389/fmicb.2019.00089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/16/2019] [Indexed: 02/01/2023] Open
Abstract
Microcosm experiments with CE-contaminated groundwater from a former industrial site were set-up to evaluate the relationships between biological CE dissipation, dehalogenase genes abundance and bacterial genera diversity. Impact of high concentrations of PCE on organohalide respiration was also evaluated. Complete or partial dechlorination of PCE, TCE, cis-DCE and VC was observed independently of the addition of a reducing agent (Na2S) or an electron donor (acetate). The addition of either 10 or 100 μM PCE had no effect on organohalide respiration. qPCR analysis of reductive dehalogenases genes (pceA, tceA, vcrA, and bvcA) indicated that the version of pceA gene found in the genus Dehalococcoides [hereafter named pceA(Dhc)] and vcrA gene increased in abundance by one order of magnitude during the first 10 days of incubation. The version of the pceA gene found, among others, in the genus Dehalobacter, Sulfurospirillum, Desulfuromonas, and Geobacter [hereafter named pceA(Dhb)] and bvcA gene showed very low abundance. The tceA gene was not detected throughout the experiment. The proportion of pceA(Dhc) or vcrA genes relative to the universal 16S ribosomal RNA (16S rRNA) gene increased by up to 6-fold upon completion of cis-DCE dissipation. Sequencing of 16S rRNA amplicons indicated that the abundance of Operational Taxonomic Units (OTUs) affiliated to dehalogenating genera Dehalococcoides, Sulfurospirillum, and Geobacter represented more than 20% sequence abundance in the microcosms. Among organohalide respiration associated genera, only abundance of Dehalococcoides spp. increased up to fourfold upon complete dissipation of PCE and cis-DCE, suggesting a major implication of Dehalococcoides in CEs organohalide respiration. The relative abundance of pceA and vcrA genes correlated with the occurrence of Dehalococcoides and with dissipation extent of PCE, cis-DCE and CV. A new type of dehalogenating Dehalococcoides sp. phylotype affiliated to the Pinellas group, and suggested to contain both pceA(Dhc) and vcrA genes, may be involved in organohalide respiration of CEs in groundwater of the study site. Overall, the results demonstrate in situ dechlorination potential of CE in the plume, and suggest that taxonomic and functional biomarkers in laboratory microcosms of contaminated groundwater following pollutant exposure can help predict bioremediation potential at contaminated industrial sites.
Collapse
Affiliation(s)
- Louis Hermon
- Geomicrobiology and Environmental Monitoring Unit, Bureau de Recherches Géologiques et Minières (BRGM), Orléans, France.,CNRS, GMGM UMR 7156, Genomics and Microbiology, Université de Strasbourg, Strasbourg, France
| | - Jennifer Hellal
- Geomicrobiology and Environmental Monitoring Unit, Bureau de Recherches Géologiques et Minières (BRGM), Orléans, France
| | - Jérémie Denonfoux
- Service Recherche, Développement et Innovation-Communautés Microbiennes, GenoScreen, SAS, Lille, France
| | - Stéphane Vuilleumier
- CNRS, GMGM UMR 7156, Genomics and Microbiology, Université de Strasbourg, Strasbourg, France
| | - Gwenaël Imfeld
- CNRS/EOST, LHyGeS UMR 7517, Laboratory of Hydrology and Geochemistry of Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Charlotte Urien
- Service Recherche, Développement et Innovation-Communautés Microbiennes, GenoScreen, SAS, Lille, France
| | - Stéphanie Ferreira
- Service Recherche, Développement et Innovation-Communautés Microbiennes, GenoScreen, SAS, Lille, France
| | - Catherine Joulian
- Geomicrobiology and Environmental Monitoring Unit, Bureau de Recherches Géologiques et Minières (BRGM), Orléans, France
| |
Collapse
|
21
|
Dang H, Kanitkar YH, Stedtfeld RD, Hatzinger PB, Hashsham SA, Cupples AM. Abundance of Chlorinated Solvent and 1,4-Dioxane Degrading Microorganisms at Five Chlorinated Solvent Contaminated Sites Determined via Shotgun Sequencing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13914-13924. [PMID: 30427665 DOI: 10.1021/acs.est.8b04895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Shotgun sequencing was used for the quantification of taxonomic and functional biomarkers associated with chlorinated solvent bioremediation in 20 groundwater samples (five sites), following bioaugmentation with SDC-9. The analysis determined the abundance of (1) genera associated with chlorinated solvent degradation, (2) reductive dehalogenase (RDases) genes, (3) genes associated with 1,4-dioxane removal, (4) genes associated with aerobic chlorinated solvent degradation, and (5) D. mccartyi genes associated with hydrogen and corrinoid metabolism. The taxonomic analysis revealed numerous genera previously linked to chlorinated solvent degradation, including Dehalococcoides, Desulfitobacterium, and Dehalogenimonas. The functional gene analysis indicated vcrA and tceA from D. mccartyi were the RDases with the highest relative abundance. Reads aligning with both aerobic and anaerobic biomarkers were observed across all sites. Aerobic solvent degradation genes, etnC or etnE, were detected in at least one sample from each site, as were pmoA and mmoX. The most abundant 1,4-dioxane biomarker detected was Methylosinus trichosporium OB3b mmoX. Reads aligning to thmA or Pseudonocardia were not found. The work illustrates the importance of shotgun sequencing to provide a more complete picture of the functional abilities of microbial communities. The approach is advantageous over current methods because an unlimited number of functional genes can be quantified.
Collapse
Affiliation(s)
- Hongyu Dang
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Yogendra H Kanitkar
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Robert D Stedtfeld
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Paul B Hatzinger
- APTIM , 17 Princess Road , Lawrenceville , New Jersey 08648 , United States
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
- Center for Microbial Ecology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Alison M Cupples
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
22
|
Dong J, Yu J, Bao Q. Simulated reactive zone with emulsified vegetable oil for the long-term remediation of Cr(VI)-contaminated aquifer: dynamic evolution of geological parameters and groundwater microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34392-34402. [PMID: 30306441 DOI: 10.1007/s11356-018-3386-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
Cr(VI), which is highly toxic and soluble, is one of the most challenging groundwater contaminants. Previous work has indicated that emulsified vegetable oil (EVO) is an effective in situ amendment for removing Cr(VI) from groundwater. However, the spatial and temporal changes in geological parameters and microbial community structures throughout the remediation period are poorly understood. In this study, a large laboratory-scale sand-packed chamber (reactive zone of 100 × 50 × 30 cm) was used to simulate the bioremediation of Cr(VI)-contaminated aquifer by EVO over a 512-day period. Various geological parameters and microbial communities were monitored during both the establishment and remediation stages. The results indicate that several biogeochemical reactions occurred in a specific sequence following the injection of EVO, creating an acidic and reducing environment. A shift in the community structure and a decrease in the community diversity were observed. The abundance of microbes involved in the degradation of EVO and reduction of electron acceptors significantly increased. Then, the EVO reactive zone was flushed with Cr(VI)-contaminated groundwater. Biogeochemical reactions were inhibited after the inflow of Cr(VI) and subsequently recovered a month later. The pH of the aquifer returned to the initial neutral condition (approximately 7.2). The EVO reactive zone could remediate Cr(VI)-contaminated groundwater at an efficiency exceeding 97% over 480 days. Biogeochemistry played a major role in the early period (0~75 days). In the later period (240~480 days), the remediation of Cr(VI) in the reactive zone depended mostly on bio-reduction by Cr(VI)-reducing bacteria.
Collapse
Affiliation(s)
- Jun Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Jinqiu Yu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Qiburi Bao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
23
|
Matturro B, Pierro L, Frascadore E, Petrangeli Papini M, Rossetti S. Microbial Community Changes in a Chlorinated Solvents Polluted Aquifer Over the Field Scale Treatment With Poly-3-Hydroxybutyrate as Amendment. Front Microbiol 2018; 9:1664. [PMID: 30087670 PMCID: PMC6066499 DOI: 10.3389/fmicb.2018.01664] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/04/2018] [Indexed: 12/18/2022] Open
Abstract
This study investigated the organohalide-respiring bacteria (OHRB) and the supporting microbial populations operating in a pilot scale plant employing poly-3-hydroxybutyrate (PHB), a biodegradable polymer produced by bacteria from waste streams, for the in situ bioremediation of groundwater contaminated by chlorinated solvents. The bioremediation was performed in ground treatment units, including PHB reactors as slow release source of electron donors, where groundwater extracted from the wells flows through before the re-infiltration to the low permeability zones of the aquifer. The coupling of the biological treatment with groundwater recirculation allowed to drastically reducing the contamination level and the remediation time by efficiently stimulating the growth of autochthonous OHRB and enhancing the mobilization of the pollutants. Quantitative PCR performed along the external treatment unit showed that the PHB reactor may efficiently act as an external incubator to growing Dehalococcoides mccartyi, known to be capable of fully converting chlorinated ethenes to innocuous end-products. The slow release source of electron donors for the bioremediation process allowed the establishment of a stable population of D. mccartyi, mainly carrying bvcA and vcrA genes which are implicated in the metabolic conversion of vinyl chloride to harmless ethene. Next generation sequencing was performed to analyze the phylogenetic diversity of the groundwater microbiome before and after the bioremediation treatment and allowed the identification of the microorganisms working closely with organohalide-respiring bacteria.
Collapse
Affiliation(s)
| | - Lucia Pierro
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | | | | |
Collapse
|
24
|
Němeček J, Steinová J, Špánek R, Pluhař T, Pokorný P, Najmanová P, Knytl V, Černík M. Thermally enhanced in situ bioremediation of groundwater contaminated with chlorinated solvents - A field test. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:743-755. [PMID: 29223901 DOI: 10.1016/j.scitotenv.2017.12.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
In situ bioremediation (ISB) using reductive dechlorination is a widely accepted but relatively slow approach compared to other technologies for the treatment of groundwater contaminated by chlorinated ethenes (CVOCs). Due to the known positive kinetic effect on microbial metabolism, thermal enhancement may be a viable means of accelerating ISB. We tested thermally enhanced ISB in aquifers situated in sandy saprolite and underlying fractured granite. The system comprised pumping, heating and subsequent injection of contaminated groundwater aiming at an aquifer temperature of 20-30°C. A fermentable substrate (whey) was injected in separate batches. The test was monitored using hydrochemical and molecular tools (qPCR and NGS). The addition of the substrate and increase in temperature resulted in a rapid increase in the abundance of reductive dechlorinators (e.g., Dehalococcoides mccartyi, Dehalobacter sp. and functional genes vcrA and bvcA) and a strong increase in CVOC degradation. On day 34, the CVOC concentrations decreased by 87% to 96% in groundwater from the wells most affected by the heating and substrate. On day 103, the CVOC concentrations were below the LOQ resulting in degradation half-lives of 5 to 6days. Neither an increase in biomarkers nor a distinct decrease in the CVOC concentrations was observed in a deep well affected by the heating but not by the substrate. NGS analysis detected Chloroflexi dechlorinating genera (Dehalogenimonas and GIF9 and MSBL5 clades) and other genera capable of anaerobic metabolic degradation of CVOCs. Of these, bacteria of the genera Acetobacterium, Desulfomonile, Geobacter, Sulfurospirillum, Methanosarcina and Methanobacterium were stimulated by the substrate and heating. In contrast, groundwater from the deep well (affected by heating only) hosted representatives of aerobic metabolic and aerobic cometabolic CVOC degraders. The test results document that heating of the treated aquifer significantly accelerated the treatment process but only in the case of an abundant substrate.
Collapse
Affiliation(s)
- Jan Němeček
- ENACON s.r.o., Krčská 16, CZ-140 00 Prague 4, Czech Republic; Technical University of Liberec, Studentská 2, CZ-461 17 Liberec, Czech Republic.
| | - Jana Steinová
- Technical University of Liberec, Studentská 2, CZ-461 17 Liberec, Czech Republic
| | - Roman Špánek
- Technical University of Liberec, Studentská 2, CZ-461 17 Liberec, Czech Republic
| | - Tomáš Pluhař
- Technical University of Liberec, Studentská 2, CZ-461 17 Liberec, Czech Republic
| | - Petr Pokorný
- ENACON s.r.o., Krčská 16, CZ-140 00 Prague 4, Czech Republic
| | - Petra Najmanová
- DEKONTA a.s., Volutová 2523, CZ-158 00 Prague 5, Czech Republic
| | - Vladislav Knytl
- DEKONTA a.s., Volutová 2523, CZ-158 00 Prague 5, Czech Republic
| | - Miroslav Černík
- Technical University of Liberec, Studentská 2, CZ-461 17 Liberec, Czech Republic
| |
Collapse
|
25
|
Martinez-Cruz K, Leewis MC, Herriott IC, Sepulveda-Jauregui A, Anthony KW, Thalasso F, Leigh MB. Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:23-31. [PMID: 28686892 DOI: 10.1016/j.scitotenv.2017.06.187] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 05/25/2023]
Abstract
Anaerobic oxidation of methane (AOM) is a biological process that plays an important role in reducing the CH4 emissions from a wide range of ecosystems. Arctic and sub-Arctic lakes are recognized as significant contributors to global methane (CH4) emission, since CH4 production is increasing as permafrost thaws and provides fuels for methanogenesis. Methanotrophy, including AOM, is critical to reducing CH4 emissions. The identity, activity, and metabolic processes of anaerobic methane oxidizers are poorly understood, yet this information is critical to understanding CH4 cycling and ultimately to predicting future CH4 emissions. This study sought to identify the microorganisms involved in AOM in sub-Arctic lake sediments using DNA- and phospholipid-fatty acid (PLFA)- based stable isotope probing. Results indicated that aerobic methanotrophs belonging to the genus Methylobacter assimilate carbon from CH4, either directly or indirectly. Other organisms that were found, in minor proportions, to assimilate CH4-derived carbon were methylotrophs and iron reducers, which might indicate the flow of CH4-derived carbon from anaerobic methanotrophs into the broader microbial community. While various other taxa have been reported in the literature to anaerobically oxidize methane in various environments (e.g. ANME-type archaea and Methylomirabilis Oxyfera), this report directly suggest that Methylobacter can perform this function, expanding our understanding of CH4 oxidation in anaerobic lake sediments.
Collapse
Affiliation(s)
- Karla Martinez-Cruz
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA; Biotechnology and Bioengineering Department, Cinvestav, 2508 IPN Av, 07360, Mexico City, Mexico.
| | - Mary-Cathrine Leewis
- Institute of Arctic Biology, University of Alaska Fairbanks, 930 N Koyukuk Dr, 99775Fairbanks, AK, USA.
| | - Ian Charold Herriott
- Institute of Arctic Biology, University of Alaska Fairbanks, 930 N Koyukuk Dr, 99775Fairbanks, AK, USA.
| | - Armando Sepulveda-Jauregui
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA.
| | - Katey Walter Anthony
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA.
| | - Frederic Thalasso
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA; Biotechnology and Bioengineering Department, Cinvestav, 2508 IPN Av, 07360, Mexico City, Mexico.
| | - Mary Beth Leigh
- Institute of Arctic Biology, University of Alaska Fairbanks, 930 N Koyukuk Dr, 99775Fairbanks, AK, USA.
| |
Collapse
|
26
|
Leitner S, Berger H, Gorfer M, Reichenauer TG, Watzinger A. Isotopic effects of PCE induced by organohalide-respiring bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24803-24815. [PMID: 28913587 DOI: 10.1007/s11356-017-0075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Reductive dechlorination performed by organohalide-respiring bacteria (OHRB) enables the complete detoxification of certain emerging groundwater pollutants such as perchloroethene (PCE). Environmental samples from a contaminated site incubated in a lab-scale microcosm (MC) study enable documentation of such reductive dechlorination processes. As compound-specific isotope analysis is used to monitor PCE degradation processes, nucleic acid analysis-like 16S-rDNA analysis-can be used to determine the key OHRB that are present. This study applied both methods to laboratory MCs prepared from environmental samples to investigate OHRB-specific isotope enrichment at PCE dechlorination. This method linkage can enhance the understanding of isotope enrichment patterns of distinct OHRB, which further contribute to more accurate evaluation, characterisation and prospection of natural attenuation processes. Results identified three known OHRB genera (Dehalogenimonas, Desulfuromonas, Geobacter) in diverse abundance within MCs. One species of Dehalogenimonas was potentially involved in complete reductive dechlorination of PCE to ethene. Furthermore, the isotopic effects of PCE degradation were clustered and two isotope enrichment factors (ε) (- 11.6‰, - 1.7‰) were obtained. Notably, ε values were independent of degradation rates and kinetics, but did reflect the genera of the dechlorinating OHRB.
Collapse
Affiliation(s)
- Simon Leitner
- AIT Austrian Institute of Technology GmbH, Energy Department, Environmental Resources & Technologies, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Harald Berger
- AIT Austrian Institute of Technology GmbH, Health & Environment Department, Bioresources, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Markus Gorfer
- AIT Austrian Institute of Technology GmbH, Health & Environment Department, Bioresources, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Thomas G Reichenauer
- AIT Austrian Institute of Technology GmbH, Energy Department, Environmental Resources & Technologies, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Andrea Watzinger
- AIT Austrian Institute of Technology GmbH, Energy Department, Environmental Resources & Technologies, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria.
| |
Collapse
|
27
|
Němeček J, Dolinová I, Macháčková J, Špánek R, Ševců A, Lederer T, Černík M. Stratification of chlorinated ethenes natural attenuation in an alluvial aquifer assessed by hydrochemical and biomolecular tools. CHEMOSPHERE 2017; 184:1157-1167. [PMID: 28672697 DOI: 10.1016/j.chemosphere.2017.06.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Biomolecular and hydrochemical tools were used to evaluate natural attenuation of chlorinated ethenes in a Quaternary alluvial aquifer located close to a historical source of large-scale tetrachloroethylene (PCE) contamination. Distinct stratification of redox zones was observed, despite the aquifer's small thickness (2.8 m). The uppermost zone of the target aquifer was characterised by oxygen- and nitrate-reducing conditions, with mixed iron- to sulphate-reducing conditions dominant in the lower zone, along with indications of methanogenesis. Natural attenuation of PCE was strongly influenced by redox heterogeneity, while higher levels of PCE degradation coincided with iron- to sulphate reducing conditions. Next generation sequencing of the middle and/or lower zones identified anaerobic bacteria (Firmicutes, Chloroflexi, Actinobacteria and Bacteroidetes) associated with reductive dechlorination. The relative abundance of dechlorinators (Dehalococcoides mccartyi, Dehalobacter sp.) identified by real-time PCR in soil from the lower levels supports the hypothesis that there is a significant potential for reductive dechlorination of PCE. Local conditions were insufficiently reducing for rapid complete dechlorination of PCE to harmless ethene. For reliable assessment of natural attenuation, or when designing monitoring or remedial systems, vertical stratification of key biological and hydrochemical markers should be analysed as standard, even in shallow aquifers.
Collapse
Affiliation(s)
- Jan Němeček
- Technical University of Liberec, Studentská 2, CZ-461 17, Liberec, Czech Republic; ENACON s.r.o., Krčská 16, CZ-140 00, Prague 4, Czech Republic.
| | - Iva Dolinová
- Technical University of Liberec, Studentská 2, CZ-461 17, Liberec, Czech Republic
| | - Jiřina Macháčková
- Technical University of Liberec, Studentská 2, CZ-461 17, Liberec, Czech Republic
| | - Roman Špánek
- Technical University of Liberec, Studentská 2, CZ-461 17, Liberec, Czech Republic
| | - Alena Ševců
- Technical University of Liberec, Studentská 2, CZ-461 17, Liberec, Czech Republic
| | - Tomáš Lederer
- Technical University of Liberec, Studentská 2, CZ-461 17, Liberec, Czech Republic
| | - Miroslav Černík
- Technical University of Liberec, Studentská 2, CZ-461 17, Liberec, Czech Republic
| |
Collapse
|
28
|
Hosen JD, Febria CM, Crump BC, Palmer MA. Watershed Urbanization Linked to Differences in Stream Bacterial Community Composition. Front Microbiol 2017; 8:1452. [PMID: 28824582 PMCID: PMC5539594 DOI: 10.3389/fmicb.2017.01452] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/18/2017] [Indexed: 11/13/2022] Open
Abstract
Urbanization strongly influences headwater stream chemistry and hydrology, but little is known about how these conditions impact bacterial community composition. We predicted that urbanization would impact bacterial community composition, but that stream water column bacterial communities would be most strongly linked to urbanization at a watershed-scale, as measured by impervious cover, while sediment bacterial communities would correlate with environmental conditions at the scale of stream reaches. To test this hypothesis, we determined bacterial community composition in the water column and sediment of headwater streams located across a gradient of watershed impervious cover using high-throughput 16S rRNA gene amplicon sequencing. Alpha diversity metrics did not show a strong response to catchment urbanization, but beta diversity was significantly related to watershed impervious cover with significant differences also found between water column and sediment samples. Samples grouped primarily according to habitat—water column vs. sediment—with a significant response to watershed impervious cover nested within each habitat type. Compositional shifts for communities in urbanized streams indicated an increase in taxa associated with human activity including bacteria from the genus Polynucleobacter, which is widespread, but has been associated with eutrophic conditions in larger water bodies. Another indicator of communities in urbanized streams was an OTU from the genus Gallionella, which is linked to corrosion of water distribution systems. To identify changes in bacterial community interactions, bacterial co-occurrence networks were generated from urban and forested samples. The urbanized co-occurrence network was much smaller and had fewer co-occurrence events per taxon than forested equivalents, indicating a loss of keystone taxa with urbanization. Our results suggest that urbanization has significant impacts on the community composition of headwater streams, and suggest that processes driving these changes in urbanized water column vs. sediment environments are distinct.
Collapse
Affiliation(s)
- Jacob D Hosen
- Chesapeake Biological LaboratorySolomons, MD, United States.,Department of Entomology, University of MarylandCollege Park, MD, United States.,College of Earth, Ocean, and Atmospheric Sciences, Oregon State UniversityCorvallis, OR, United States
| | - Catherine M Febria
- Chesapeake Biological LaboratorySolomons, MD, United States.,School of Biological Sciences, University of CanterburyChristchurch, New Zealand
| | - Byron C Crump
- School of Forestry and Environmental Studies, Yale UniversityNew Haven, CT, United States
| | - Margaret A Palmer
- Chesapeake Biological LaboratorySolomons, MD, United States.,Department of Entomology, University of MarylandCollege Park, MD, United States.,National Socio-Environmental Synthesis CenterAnnapolis, MD, United States
| |
Collapse
|
29
|
Kotik M, Vanacek P, Kunka A, Prokop Z, Damborsky J. Metagenome-derived haloalkane dehalogenases with novel catalytic properties. Appl Microbiol Biotechnol 2017; 101:6385-6397. [PMID: 28674849 DOI: 10.1007/s00253-017-8393-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/11/2017] [Accepted: 06/13/2017] [Indexed: 01/30/2023]
Abstract
Haloalkane dehalogenases (HLDs) are environmentally relevant enzymes cleaving a carbon-halogen bond in a wide range of halogenated pollutants. PCR with degenerate primers and genome-walking was used for the retrieval of four HLD-encoding genes from groundwater-derived environmental DNA. Using specific primers and the environmental DNA as a template, we succeeded in generating additional amplicons, resulting altogether in three clusters of sequences with each cluster comprising 8-13 closely related putative HLD-encoding genes. A phylogenetic analysis of the translated genes revealed that three HLDs are members of the HLD-I subfamily, whereas one gene encodes an enzyme from the subfamily HLD-II. Two metagenome-derived HLDs, eHLD-B and eHLD-C, each from a different subfamily, were heterologously produced in active form, purified and characterized in terms of their thermostability, pH and temperature optimum, quaternary structure, substrate specificity towards 30 halogenated compounds, and enantioselectivity. eHLD-B and eHLD-C showed striking differences in their activities, substrate preferences, and tolerance to temperature. Profound differences were also determined in the enantiopreference and enantioselectivity of these enzymes towards selected substrates. Comparing our data with those of known HLDs revealed that eHLD-C exhibits a unique combination of high thermostability, high activity, and an unusually broad pH optimum, which covers the entire range of pH 5.5-8.9. Moreover, a so far unreported high thermostability for HLDs was determined for this enzyme at pH values lower than 6.0. Thus, eHLD-C represents an attractive and novel biocatalyst for biotechnological applications.
Collapse
Affiliation(s)
- Michael Kotik
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Pavel Vanacek
- Loschmidt Laboratories, Department of Experimental Biology and Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic, Brno, Czech Republic
| | - Antonin Kunka
- Loschmidt Laboratories, Department of Experimental Biology and Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic, Brno, Czech Republic.
| |
Collapse
|
30
|
Tong H, Chen M, Li F, Liu C, Liao C. Changes in the microbial community during repeated anaerobic microbial dechlorination of pentachlorophenol. Biodegradation 2017; 28:219-230. [PMID: 28357551 DOI: 10.1007/s10532-017-9791-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/27/2017] [Indexed: 11/29/2022]
Abstract
Pentachlorophenol (PCP) has been widely used as a pesticide in paddy fields and has imposed negative ecological effect on agricultural soil systems, which are in typically anaerobic conditions. In this study, we investigated the effect of repeated additions of PCP to paddy soil on the microbial communities under anoxic conditions. Acetate was added as the carbon source to induce and accelerate cycles of the PCP degradation. A maximum degradation rate occurred at the 11th cycle, which completely transformed 32.3 μM (8.6 mg L-1) PCP in 5 days. Illumina high throughput sequencing of 16S rRNA gene was used to profile the diversity and abundance of microbial communities at each interval and the results showed that the phyla of Bacteroidates, Firmicutes, Proteobacteria, and Euryarchaeota had a dominant presence in the PCP-dechlorinating cultures. Methanosarcina, Syntrophobotulus, Anaeromusa, Zoogloea, Treponema, W22 (family of Cloacamonaceae), and unclassified Cloacamonales were found to be the dominant genera during PCP dechlorination with acetate. The microbial community structure became relatively stable as cycles increased. Treponema, W22, and unclassified Cloacamonales were firstly observed to be associated with PCP dechlorination in the present study. Methanosarcina that have been isolated or identified in PCP dechlorination cultures previously was apparently enriched in the PCP dechlorination cultures. Additionally, the iron-cycling bacteria Syntrophobotulus, Anaeromusa, and Zoogloea were enriched in the PCP dechlorination cultures indicated they were likely to play an important role in PCP dechlorination. These findings increase our understanding for the microbial and geochemical interactions inherent in the transformation of organic contaminants from iron rich soil, and further extend our knowledge of the PCP-transforming microbial communities in anaerobic soil conditions.
Collapse
Affiliation(s)
- Hui Tong
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, People's Republic of China.,State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China
| | - Manjia Chen
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, People's Republic of China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, People's Republic of China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China.
| | - Changzhong Liao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, People's Republic of China
| |
Collapse
|
31
|
Huang B, Gu L, He H, Xu Z, Pan X. Enhanced biotic and abiotic transformation of Cr(vi) by quinone-reducing bacteria/dissolved organic matter/Fe(iii) in anaerobic environment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1185-1192. [PMID: 27421071 DOI: 10.1039/c6em00229c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study investigated the simultaneous transformation of Cr(vi) via a closely coupled biotic and abiotic pathway in an anaerobic system of quinone-reducing bacteria/dissolved organic matters (DOM)/Fe(iii). Batch studies were conducted with quinone-reducing bacteria to assess the influences of sodium formate (NaFc), electron shuttling compounds (DOM) and the Fe(iii) on Cr(vi) reduction rates as these chemical species are likely to be present in the environment during in situ bioremediation. Results indicated that the concentration of sodium formate and anthraquinone-2-sodium sulfonate (AQS) had apparently an effect on Cr(vi) reduction. The fastest decrease in rate for incubation supplemented with 5 mM sodium formate and 0.8 mM AQS showed that Fe(iii)/DOM significantly promoted the reduction of Cr(vi). Presumably due to the presence of more easily utilizable sodium formate, DOM and Fe(iii) have indirect Cr(vi) reduction capability. The coexisting cycles of Fe(ii)/Fe(iii) and DOM(ox)/DOM(red) exhibited a higher redox function than the individual cycle, and their abiotic coupling action can significantly enhance Cr(vi) reduction by quinone-reducing bacteria.
Collapse
Affiliation(s)
- Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| | | | | | | | | |
Collapse
|
32
|
Kao CM, Liao HY, Chien CC, Tseng YK, Tang P, Lin CE, Chen SC. The change of microbial community from chlorinated solvent-contaminated groundwater after biostimulation using the metagenome analysis. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:144-150. [PMID: 26474376 DOI: 10.1016/j.jhazmat.2015.09.047] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
The compositions of bacterial community in one site contaminated with PCE/TCE after the slow polycolloid-releasing substrate (SPRS) (contained vegetable oil, cane molasses, and surfactants) addition were analyzed. Results show that SPRS caused a rapid enhancement of reductive dechlorination of TCE. The transformation of PCE/TCE into ethene was observed after 20 days of operation. To compare the change of bacterial communities before and after SPRS addition, 16S rRNA amplicon sequencing using the metagenome analysis was performed. Results demonstrated the detection of the increased amounts of Dehalogenimonas by 2.2-fold, Pseudomonas by 3.4-fold and Sulfuricurvum by 4-fold with the analysis of the ribosomal database project (RDP). Metagenomic DNA was extracted from PCE/TCE-contaminated groundwater after SPRS addition, and subjected to sequencing. Results obtained from metagenomic sequencing indicate that genes from Dehalococcoides mccartyi was ranked as the second abundant bacteria among all of the detected bacteria via the analysis of the lowest common ancestor (LCA). Abundance of these bacterial groups, as shown above suggests their role in TCE biodegradation. Functional analysis of the metagenome, with the specific reference to chloroalkane and chloroalkene degradation, revealed the presence of some genes responsible for TCE biodegradation. Overall, results of this study provided new insights for a better understanding of the potential of biostimulation on TCE-contaminated sites.
Collapse
Affiliation(s)
- Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, no. 70, Lienhai Rd., Kaohsiung 80424, Taiwan
| | - Hung-Yu Liao
- Department of Life Sciences, National Central University, no. 300, Jhingda Rd., Jhongli City, Taoyuan 32001, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, no. 135, Yuantung Rd., Jhongli City, Taoyuan 32003, Taiwan
| | - Yi-Kuan Tseng
- Graduate Institute of Statistics, National Central University, no. 300, Jhingda Rd., Jhongli City, Taoyuan 32001, Taiwan
| | - Petrus Tang
- Department of Parasitology, Chang Gung University, no.259, Wenhua 1st Rd., Guishan Dis., Taoyuan City 33302, Taiwan
| | - Chih-En Lin
- Jeptro Technology Co., Ltd., no. 211, 23F-1, Jhongjheng 4th Rd., Kaohsiung 801, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, no. 300, Jhingda Rd., Jhongli City, Taoyuan 32001, Taiwan.
| |
Collapse
|
33
|
Němeček J, Pokorný P, Lacinová L, Černík M, Masopustová Z, Lhotský O, Filipová A, Cajthaml T. Combined abiotic and biotic in-situ reduction of hexavalent chromium in groundwater using nZVI and whey: A remedial pilot test. JOURNAL OF HAZARDOUS MATERIALS 2015; 300:670-679. [PMID: 26292054 DOI: 10.1016/j.jhazmat.2015.07.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 06/04/2023]
Abstract
The paper describes a pilot remediation test combining two Cr(VI) geofixation methods - chemical reduction by nanoscale zero-valent iron (nZVI) and subsequent biotic reduction supported by whey. Combination of the methods exploited the advantages of both - a rapid decrease in Cr(VI) concentrations by nZVI, which prevented further spreading of the contamination and facilitated subsequent use of the cheaper biological method. Successive application of whey as an organic substrate to promote biotic reduction of Cr(VI) after application of nZVI resulted in a further and long-term decrease in the Cr(VI) contents in the groundwater. The effect of biotic reduction was observed even in a monitoring well located at a distance of 22 m from the substrate injection wells after 10 months. The results indicated a reciprocal effect of both the phases - nZVI oxidized to Fe(III) during the abiotic phase was microbially reduced back to Fe(II) and acted as a reducing agent for Cr(VI) even when the microbial density was already low due to the consumed substrate. Community analysis with pyrosequencing of the 16S rRNA genes further confirmed partial recycling of nZVI in the form of Fe(II), where the results showed that the Cr(VI) reducing process was mediated mainly by iron-reducing and sulfate-reducing bacteria.
Collapse
Affiliation(s)
- Jan Němeček
- ENACON s.r.o., Na holém vrchu 708/3, Prague CZ-14300, Czech Republic; Technical University of Liberec, Studentská 2, CZ-46117 Liberec, Czech Republic
| | - Petr Pokorný
- ENACON s.r.o., Na holém vrchu 708/3, Prague CZ-14300, Czech Republic
| | - Lenka Lacinová
- Technical University of Liberec, Studentská 2, CZ-46117 Liberec, Czech Republic
| | - Miroslav Černík
- Technical University of Liberec, Studentská 2, CZ-46117 Liberec, Czech Republic
| | - Zuzana Masopustová
- Technical University of Liberec, Studentská 2, CZ-46117 Liberec, Czech Republic
| | - Ondřej Lhotský
- DEKONTA a.s., Volutová 2523, Prague CZ-158 00, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, CZ-12801, Prague 2, Czech Republic
| | - Alena Filipová
- Institute of Microbiology AS CR, v.v.i., Vídeňská 1083, CZ-14220, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, CZ-12801, Prague 2, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology AS CR, v.v.i., Vídeňská 1083, CZ-14220, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, CZ-12801, Prague 2, Czech Republic.
| |
Collapse
|
34
|
Stella T, Covino S, Burianová E, Filipová A, Křesinová Z, Voříšková J, Větrovský T, Baldrian P, Cajthaml T. Chemical and microbiological characterization of an aged PCB-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 533:177-186. [PMID: 26156136 DOI: 10.1016/j.scitotenv.2015.06.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/03/2015] [Accepted: 06/03/2015] [Indexed: 06/04/2023]
Abstract
This study was aimed at complex characterization of three soil samples (bulk soil, topsoil and rhizosphere soil) from a site historically contaminated with polychlorinated biphenyls (PCB). The bulk soil was the most highly contaminated, with a PCB concentration of 705.95 mg kg(-1), while the rhizosphere soil was the least contaminated (169.36 mg kg(-1)). PCB degradation intermediates, namely chlorobenzoic acids (CBAs), were detected in all the soil samples, suggesting the occurrence of microbial transformation processes over time. The higher content of organic carbon in the topsoil and rhizosphere soil than in the bulk soil could be linked to the reduced bioaccessibility (bioavailability) of these chlorinated pollutants. However, different proportions of the PCB congener contents and different bioaccessibility of the PCB homologues indicate microbial biotransformation of the compounds. The higher content of organic carbon probably also promoted the growth of microorganisms, as revealed by phospholipid fatty acid (PFLA) quantification. Tag-encoded pyrosequencing analysis showed that the bacterial community structure was significantly similar among the three soils and was predominated by Proteobacteria (44-48%) in all cases. Moreover, analysis at lower taxonomic levels pointed to the presence of genera (Sphingomonas, Bulkholderia, Arthrobacter, Bacillus) including members with reported PCB removal abilities. The fungal community was mostly represented by Basidiomycota and Ascomycota, which accounted for >80% of all the sequences detected in the three soils. Fungal taxa with biodegradation potential (Paxillus, Cryptococcus, Phoma, Mortierella) were also found. These results highlight the potential of the indigenous consortia present at the site as a starting point for PCB bioremediation processes.
Collapse
Affiliation(s)
- T Stella
- Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague 2, Czech Republic
| | - S Covino
- Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - E Burianová
- Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - A Filipová
- Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Z Křesinová
- Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - J Voříšková
- Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - T Větrovský
- Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - P Baldrian
- Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - T Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague 2, Czech Republic.
| |
Collapse
|
35
|
Lee SS, Kaown D, Lee KK. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea. JOURNAL OF CONTAMINANT HYDROLOGY 2015; 182:231-243. [PMID: 26433603 DOI: 10.1016/j.jconhyd.2015.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/27/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ(13)C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes.
Collapse
Affiliation(s)
- Seong-Sun Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul 151-747, Korea
| | - Dugin Kaown
- School of Earth and Environmental Sciences, Seoul National University, Seoul 151-747, Korea
| | - Kang-Kun Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul 151-747, Korea.
| |
Collapse
|
36
|
Sutton NB, Atashgahi S, Saccenti E, Grotenhuis T, Smidt H, Rijnaarts HHM. Microbial Community Response of an Organohalide Respiring Enrichment Culture to Permanganate Oxidation. PLoS One 2015; 10:e0134615. [PMID: 26244346 PMCID: PMC4526698 DOI: 10.1371/journal.pone.0134615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/12/2015] [Indexed: 11/19/2022] Open
Abstract
While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and reductive dehalogenase (rdh) genes using quantitative PCR, and microbial community composition through sequencing of 16S rRNA genes. A PCE degrading enrichment was repeatedly treated with low (25 μmol), medium (50 μmol), or high (100 μmol) permanganate doses, or no oxidant treatment (biotic control). Low and medium treatments led to higher OHR rates and enrichment of several OHRB and rdh genes, as compared to the biotic control. Improved degradation rates can be attributed to enrichment of (1) OHRB able to also utilize Mn oxides as a terminal electron acceptor and (2) non-dechlorinating community members of the Clostridiales and Deltaproteobacteria possibly supporting OHRB by providing essential co-factors. In contrast, high permanganate treatment disrupted dechlorination beyond cis-dichloroethene and caused at least a 2-4 orders of magnitude reduction in the abundance of all measured OHRB and rdh genes, as compared to the biotic control. High permanganate treatments resulted in a notably divergent microbial community, with increased abundances of organisms affiliated with Campylobacterales and Oceanospirillales capable of dissimilatory Mn reduction, and decreased abundance of presumed supporters of OHRB. Although OTUs classified within the OHR-supportive order Clostridiales and OHRB increased in abundance over the course of 213 days following the final 100 μmol permanganate treatment, only limited regeneration of PCE dechlorination was observed in one of three microcosms, suggesting strong chemical oxidation treatments can irreversibly disrupt OHR. Overall, this detailed investigation into dose-dependent changes of microbial composition and activity due to permanganate treatment provides insight into the mechanisms of OHR stimulation or disruption upon chemical oxidation.
Collapse
Affiliation(s)
- Nora B. Sutton
- Environmental Technology, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands
| | - Tim Grotenhuis
- Environmental Technology, Wageningen University, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
37
|
He Y, Li X, Shen X, Jiang Q, Chen J, Shi J, Tang X, Xu J. Plant-assisted rhizoremediation of decabromodiphenyl ether for e-waste recycling area soil of Taizhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:9976-9988. [PMID: 25666473 DOI: 10.1007/s11356-015-4179-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
To develop an effective phytoremediation approach to purify soils polluted by decabromodiphenyl ether (BDE-209) in e-waste recycling area, pot experiments were conducted through greenhouse growth of seven plant species in BDE-209-polluted soils. The hygrocolous rice (Oryza sativa L.) cultivars (XiuS and HuangHZ) and the xerophyte ryegrass (Lolium perenne L.) were found to be as the most effective functional plants for facilitating BDE-209 dissipation, with the removal of 52.9, 41.9, and 38.7% in field-contaminated soils (collected directly from field, with an average pollution concentration of 394.6 μg BDE-209 kg(-1) soil), as well as 21.7, 27.6, and 28.1% in freshly spiked soils (an average pollution concentration of 4413.57 μg BDE-209 kg(-1) soil, with additional BDE-209 added to field-contaminated soils), respectively. Changes in soil phospholipid fatty acid (PLFA) profiles revealed that different selective enrichments of functional microbial groups (e.g., arbuscular mycorrhizal fungi and gram-positive bacteria) were induced due to plant growth under contrasting water management (flooded-drained sequentially, flooded only, and drained only, respectively). The abundance of available electron donors and acceptors and the activities of soil oxido-reductases were also correspondingly modified, with the activity of catalase, and the content of NO3(-) and Fe(3+) increased generally toward most of the xerophyte treatments, while the activity of dehydrogenase and the content of dissolved organic carbon (DOC) and NH4(+) increased toward the hygrophyte treatments. This differentiated dissipation of BDE-209 in soils as function of plant species, pollution doses and time, and water-dependent redox condition. This study illustrates a possibility of phytoremediation for BDE-209-polluted soils by successive cultivation of rice followed by ryegrass coupling with suitable water management, possibly through dissipation pathway of microbial reductive debromination and subsequent aerobic oxidative cleavage of benzene ring.
Collapse
Affiliation(s)
- Yan He
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China,
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Schostag M, Stibal M, Jacobsen CS, Bælum J, Taş N, Elberling B, Jansson JK, Semenchuk P, Priemé A. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses. Front Microbiol 2015; 6:399. [PMID: 25983731 PMCID: PMC4415418 DOI: 10.3389/fmicb.2015.00399] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/17/2015] [Indexed: 01/17/2023] Open
Abstract
The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below −10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.
Collapse
Affiliation(s)
- Morten Schostag
- Department of Geosciences and Natural Resource Management, Center for Permafrost, University of Copenhagen Copenhagen, Denmark ; Geological Survey of Denmark and Greenland (GEUS) Copenhagen, Denmark ; Department of Biology, University of Copenhagen Copenhagen, Denmark
| | - Marek Stibal
- Department of Geosciences and Natural Resource Management, Center for Permafrost, University of Copenhagen Copenhagen, Denmark ; Geological Survey of Denmark and Greenland (GEUS) Copenhagen, Denmark
| | - Carsten S Jacobsen
- Department of Geosciences and Natural Resource Management, Center for Permafrost, University of Copenhagen Copenhagen, Denmark ; Geological Survey of Denmark and Greenland (GEUS) Copenhagen, Denmark ; Department of Environmental Sciences, Aarhus University Denmark
| | - Jacob Bælum
- Department of Environmental Sciences, Aarhus University Denmark
| | - Neslihan Taş
- Ecology Department, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Bo Elberling
- Department of Geosciences and Natural Resource Management, Center for Permafrost, University of Copenhagen Copenhagen, Denmark
| | - Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Philipp Semenchuk
- Department of Geosciences and Natural Resource Management, Center for Permafrost, University of Copenhagen Copenhagen, Denmark ; Department of Arctic and Marine Biology, University of Tromsø Tromsø, Norway
| | - Anders Priemé
- Department of Geosciences and Natural Resource Management, Center for Permafrost, University of Copenhagen Copenhagen, Denmark ; Department of Biology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
39
|
Koribanics NM, Tuorto SJ, Lopez-Chiaffarelli N, McGuinness LR, Häggblom MM, Williams KH, Long PE, Kerkhof LJ. Spatial distribution of an uranium-respiring betaproteobacterium at the Rifle, CO field research site. PLoS One 2015; 10:e0123378. [PMID: 25874721 PMCID: PMC4395306 DOI: 10.1371/journal.pone.0123378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/13/2015] [Indexed: 11/21/2022] Open
Abstract
The Department of Energy’s Integrated Field-Scale Subsurface Research Challenge Site (IFRC) at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI) bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in radionuclide containment have been described; however, most of the evidence implicating uranium reduction with specific microbiota has been indirect. Here, we report on the cultivation of a microorganism from the Rifle IFRC that reduces uranium and appears to utilize it as a terminal electron acceptor for respiration with acetate as electron donor. Furthermore, this bacterium constitutes a significant proportion of the subsurface sediment community prior to biostimulation based on TRFLP profiling of 16S rRNA genes. 16S rRNA gene sequence analysis indicates that the microorganism is a betaproteobacterium with a high similarity to Burkholderia fungorum. This is, to our knowledge, the first report of a betaproteobacterium capable of uranium respiration. Our results indicate that this microorganism occurs commonly in alluvial sediments located between 3-6 m below ground surface at Rifle and may play a role in the initial reduction of uranium at the site.
Collapse
Affiliation(s)
- Nicole M. Koribanics
- Inst. of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Steven J. Tuorto
- Inst. of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Nora Lopez-Chiaffarelli
- Inst. of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
- Dept. of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Lora R. McGuinness
- Inst. of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Max M. Häggblom
- Dept. of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Kenneth H. Williams
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Philip E. Long
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Lee J. Kerkhof
- Inst. of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
40
|
Sheu YT, Chen SC, Chien CC, Chen CC, Kao CM. Application of a long-lasting colloidal substrate with pH and hydrogen sulfide control capabilities to remediate TCE-contaminated groundwater. JOURNAL OF HAZARDOUS MATERIALS 2015; 284:222-232. [PMID: 25463237 DOI: 10.1016/j.jhazmat.2014.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 11/15/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
A long-lasting emulsified colloidal substrate (LECS) was developed for continuous carbon and nanoscale zero-valent iron (nZVI) release to remediate trichloroethylene (TCE)-contaminated groundwater under reductive dechlorinating conditions. The developed LECS contained nZVI, vegetable oil, surfactants (Simple Green™ and lecithin), molasses, lactate, and minerals. An emulsification study was performed to evaluate the globule droplet size and stability of LECS. The results show that a stable oil-in-water emulsion with uniformly small droplets (0.7 μm) was produced, which could continuously release the primary substrates. The emulsified solution could serve as the dispensing agent, and nZVI particles (with diameter 100-200 nm) were distributed in the emulsion evenly without aggregation. Microcosm results showed that the LECS caused a rapid increase in the total organic carbon concentration (up to 488 mg/L), and reductive dechlorination of TCE was significantly enhanced. Up to 99% of TCE (with initial concentration of 7.4 mg/L) was removed after 130 days of operation. Acidification was prevented by the production of hydroxide ion by the oxidation of nZVI. The formation of iron sulfide reduced the odor from produced hydrogen sulfide. Microbial analyses reveal that dechlorinating bacteria existed in soils, which might contribute to TCE dechlorination.
Collapse
Affiliation(s)
- Y T Sheu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - S C Chen
- Department of Life Sciences, National Central University, Chung-Li, Taiwan
| | - C C Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li, Taiwan
| | - C C Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - C M Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
41
|
Freitas JG, Rivett MO, Roche RS, Durrant Neé Cleverly M, Walker C, Tellam JH. Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 505:236-252. [PMID: 25461025 DOI: 10.1016/j.scitotenv.2014.09.083] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 06/04/2023]
Abstract
The typically elevated natural attenuation capacity of riverbed-hyporheic zones is expected to decrease chlorinated hydrocarbon (CHC) groundwater plume discharges to river receptors through dechlorination reactions. The aim of this study was to assess physico-chemical processes controlling field-scale variation in riverbed-hyporheic zone dechlorination of a TCE groundwater plume discharge to an urban river reach. The 50-m long pool-riffle-glide reach of the River Tame in Birmingham (UK) studied is a heterogeneous high energy river environment. The shallow riverbed was instrumented with a detailed network of multilevel samplers. Freeze coring revealed a geologically heterogeneous and poorly sorted riverbed. A chlorine number reduction approach provided a quantitative indicator of CHC dechlorination. Three sub-reaches of contrasting behaviour were identified. Greatest dechlorination occurred in the riffle sub-reach that was characterised by hyporheic zone flows, moderate sulphate concentrations and pH, anaerobic conditions, low iron, but elevated manganese concentrations with evidence of sulphate reduction. Transient hyporheic zone flows allowing input to varying riverbed depths of organic matter are anticipated to be a key control. The glide sub-reach displayed negligible dechlorination attributed to the predominant groundwater baseflow discharge condition, absence of hyporheic zone, transition to more oxic conditions and elevated sulphate concentrations expected to locally inhibit dechlorination. The tail-of-pool-riffle sub-reach exhibited patchy dechlorination that was attributed to sub-reach complexities including significant flow bypass of a low permeability, high organic matter, silty unit of high dechlorination potential. A process-based conceptual model of reach-scale dechlorination variability was developed. Key findings of practitioner relevance were: riverbed-hyporheic zone CHC dechlorination may provide only a partial, somewhat patchy barrier to CHC groundwater plume discharges to a surface water receptor; and, monitoring requirements to assess the variability in CHC attenuation within a reach are expected to be onerous. Further research on transient hyporheic zone dechlorination is recommended.
Collapse
Affiliation(s)
- Juliana G Freitas
- Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, 275, Jd. Eldorado, Diadema, SP 09972-270, Brazil
| | - Michael O Rivett
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Rachel S Roche
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Caroline Walker
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - John H Tellam
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
42
|
Xu Y, He Y, Feng X, Liang L, Xu J, Brookes PC, Wu J. Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(III) reduction by an iron-reducing bacterium Clostridium beijerinckii Z. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 473-474:215-223. [PMID: 24370696 DOI: 10.1016/j.scitotenv.2013.12.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 06/03/2023]
Abstract
A novel Fe(III) reducing bacterium, Clostridium beijerinckii Z, was isolated from glucose amended paddy slurries, and shown to dechlorinate pentachlorophenol (PCP). Fifty percent of added PCP was removed by C. beijerinckii Z alone, which increased to 83% in the presence of both C. beijerinckii Z and ferrihydrite after 11 days of incubation. Without C. beijerinckii Z, the surface-bound Fe(II) also abiotically dechlorinated more than 40% of the added PCP. This indicated that the biotic dechlorination by C. beijerinckii Z is a dominant process causing PCP transformation through anaerobic dechlorination, and that the dechlorination rates can be accelerated by simultaneous reduction of Fe(III). A biochemical electron transfer coupling process between sorbed Fe(II) produced by C. beijerinckii Z and reductive dehalogenation is a possible mechanism. This finding increases our knowledge of the role of Fe(III) reducing genera of Clostridium in dechlorinating halogenated organic pollutants, such as PCP, in anaerobic paddy soils.
Collapse
Affiliation(s)
- Yan Xu
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yan He
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoli Feng
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Luyi Liang
- Experiment Teaching Center for Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Philip C Brookes
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jianjun Wu
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
43
|
Tabernacka A, Zborowska E, Lebkowska M, Borawski M. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system. JOURNAL OF HAZARDOUS MATERIALS 2014; 264:363-369. [PMID: 24316808 DOI: 10.1016/j.jhazmat.2013.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/20/2013] [Accepted: 11/05/2013] [Indexed: 06/02/2023]
Abstract
A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished.
Collapse
Affiliation(s)
- Agnieszka Tabernacka
- Warsaw University of Technology, Faculty of Environmental Engineering, Biology Division, Nowowiejska 20, 00-653 Warsaw, Poland.
| | - Ewa Zborowska
- Warsaw University of Technology, Faculty of Environmental Engineering, Biology Division, Nowowiejska 20, 00-653 Warsaw, Poland
| | - Maria Lebkowska
- Warsaw University of Technology, Faculty of Environmental Engineering, Biology Division, Nowowiejska 20, 00-653 Warsaw, Poland
| | - Maciej Borawski
- AstraZeneca Pharma Poland Sp. z o.o., Postępu 18, 02-676 Warsaw, Poland
| |
Collapse
|