1
|
Tan H, Chen X, Shi D, Rao W, Liu J, Liu J, Eastoe CJ, Wang J. Base flow in the Yarlungzangbo River, Tibet, maintained by the isotopically-depleted precipitation and groundwater discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143510. [PMID: 33221005 DOI: 10.1016/j.scitotenv.2020.143510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
The extension-induced rift systems on the Tibetan Plateau (TP) may convey large amount of groundwater to rivers, but sources and flow paths of such groundwater are unknown. The Yarlungzangbo River (YR) is the only large river that traverses the southern Tibetan plateau from west to east, following one major suture zone that is cut by extensional normal faults. The faults could influence the flow paths of groundwater discharging to the river. In this study, O and H isotopes, major ions and 222Rn concentrations are analyzed along the YR, and interpreted in relation to structural geology and tectonics. The YR exhibits an abrupt change of isotopic and chemical compositions along with a large increase in flow where the middle reach intersects NE-SW-trending rifts. Low values of δD and δ18O and high concentrations of major ions and 222Rn in the middle reach show that waters are modified isotopically and chemically by a variety of possible water origins, such as recharge of high-altitude glacier melt and discharge from groundwater. Groundwater contributes 27 to 40% of the river flow in the middle reach. Isotopically-light meltwater from high-altitude glacier melt cannot account for the isotope composition of the present outflow of groundwater. The O and H isotope data in the YR and discharging groundwater can be well explained by the groundwater originated as paleo-precipitation during a cooler time, such as the late Pleistocene to early Holocene. The paleo-groundwater discharge can account for about 36 × 108 m3 water budget unbalance in the middle reach. The study provides the first clear isotope evidence for the source of groundwater discharge into a large river through favorable conduits in large-scale active tensile fault zones and confirms the regional scale of groundwater flow on the Tibetan Plateau. Understanding the characteristics and changes of streamflow and surface-groundwater circulation on the Tibetan Plateau will help to manage water resources under a changing environment.
Collapse
Affiliation(s)
- Hongbing Tan
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China.
| | - Xi Chen
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Dongping Shi
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
| | - Wenbo Rao
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
| | - Jing Liu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jintao Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Christopher J Eastoe
- Department of Geosciences, University of Arizona, Tucson, AZ 85721, United States
| | - Jiarong Wang
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| |
Collapse
|
2
|
Nitrogen and Phosphorus Loads in Greek Rivers: Implications for Management in Compliance with the Water Framework Directive. WATER 2020. [DOI: 10.3390/w12061531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reduction of nutrient loadings is often prioritized among other management measures for improving the water quality of freshwaters within the catchment. However, urban point sources and agriculture still thrive as the main drivers of nitrogen and phosphorus pollution in European rivers. With this article we present a nationwide assessment of nitrogen and phosphorus loads that 18 large rivers in Greece receive with the purpose to assess variability among seasons, catchments, and river types and distinguish relationships between loads and land uses of the catchment. We employed an extensive dataset of 636 field measurements of nutrient concentrations and river discharges to calculate nitrogen and phosphorus loads. Descriptive statistics and a cluster analysis were conducted to identify commonalties and differences among catchments and seasons. In addition a network analysis was conducted and its modularity feature was used to detect commonalities among rivers and sampling sites with regard to their nutrient loads. A correlation analysis was used to identify major possible connections between types of land uses and nutrient loads. The results indicated that the rivers Alfeios, Strymonas, and Aliakmonas receive the highest inorganic nitrogen loads while the highest inorganic phosphorus loads were calculated for the rivers Strymonas, Aliakmonas, and Axios. Concerning the temporal variation of loads, inorganic nitrogen presented a peak on March and gradually declined until October when the dry period typically ends for most regions of Greece. Inorganic phosphorus loads had the highest average value in August and the lowest in October. Thus, our findings confirmed the presence of a typical seasonal variation in nitrogen loads that follows the seasonality in hydrology where high surface runoff during the wet months contribute to higher river discharges and higher nitrogen loads from the catchment. On the contrary, high phosphorus loads persisted during dry months that could be attributed to a dilution effect. Furthermore, the results imply a clear connection between agriculture and both nitrogen and phosphorus. Overall, this work presents extensive information on the nitrogen and phosphorus loads that major rivers in Greece receive that can largely aid water managers to adapt and revise basin management plans in accordance with agricultural management (e.g., which months farmers should reduce the use of fertilizers) with the purpose of meeting the environmental targets defined by the Water Framework Directive (WFD).
Collapse
|
3
|
Tappin AD, Comber S, Worsfold PJ. Orthophosphate-P in the nutrient impacted River Taw and its catchment (SW England) between 1990 and 2013. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:690-705. [PMID: 27152942 DOI: 10.1039/c6em00213g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Excess dissolved phosphorus (as orthophosphate-P) contributes to reduced river water quality within Europe and elsewhere. This study reports results from analysis of a 23 year (1990-2013) water quality dataset for orthophosphate-P in the rural Taw catchment (SW England). Orthophosphate-P and river flow relationships and temporal variations in orthophosphate-P concentrations indicate the significant contribution of sewage (across the catchment) and industrial effluent (upper R. Taw) to orthophosphate-P concentrations (up to 96%), particularly during the low flow summer months when maximum algal growth occurs. In contrast, concentrations of orthophosphate-P from diffuse sources within the catchment were more important (>80%) at highest river flows. The results from a 3 end-member mixing model incorporating effluent, groundwater and diffuse orthophosphate-P source terms suggested that sewage and/or industrial effluent contributes ≥50% of the orthophosphate-P load for 27-48% of the time across the catchment. The Water Framework Directive (WFD) Phase 2 standards for reactive phosphorus, introduced in 2015, showed the R. Taw to be generally classified as Poor to Moderate Ecological Status, with a Good Status occurring more frequently in the tributary rivers. Failure to achieve Good Ecological Status occurred even though, since the early-2000s, riverine orthophosphate-P concentrations have decreased (although the mechanism(s) responsible for this could not be identified). For the first time it has been demonstrated that sewage and industrial effluent sources of alkalinity to the river can give erroneous boundary concentrations of orthophosphate-P for WFD Ecological Status classification, the extent of which is dependent on the proportion of effluent alkalinity present. This is likely to be a European - wide issue which should be examined in more detail.
Collapse
Affiliation(s)
- Alan D Tappin
- School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK.
| | | | | |
Collapse
|
4
|
Stefanidis K, Panagopoulos Y, Mimikou M. Impact assessment of agricultural driven stressors on benthic macroinvertebrates using simulated data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 540:32-42. [PMID: 26311349 DOI: 10.1016/j.scitotenv.2015.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
Agricultural land use poses a significant threat to the ecological integrity of rivers in Europe. Particularly in the Mediterranean, water abstraction and nutrient application are anthropogenic pressures that have a significant impact on aquatic habitats and biodiversity. In this article, we assessed the effects of agricultural management practices on benthic macroinvertebrates in a large river basin of central Greece using simulated data based on the application of SWAT (Soil Water Assessment Tool) model. Physicochemical and hydrological output variables of the model were used as predictors of the ASPT (Average Score Per Taxon) metric based on a correlated component regression analysis (CCR) built on empirical data. The estimation of ASPT was performed for the wet and dry seasons within a 20-year period for a total of 47 subbasins under the baseline conditions and after implementing three management scenarios that reduced: a) irrigation water applied to crops by 30%, b) chemical fertilization applied to crops by 30% and c) both irrigation and fertilization by 30%. The results revealed that application of the reduced irrigation resulted to a slight increase of the simulated dissolved inorganic nitrogen concentration (DIN), which in turn decreased the mean ASPT in 21 of the 47 subbasins implying a negative effect on the macroinvertebrate communities. On the contrary, the reduction of fertilization as well as the combined scenario decreased both the simulated DIN and phosphate concentration causing an increase of the mean ASPT for a total of 40 of the 47 subbasins. Based on these results, we suggest that the best management option is a combined practice of deficit irrigation and fertilization reduction since it improved water quality, increased ASPT values and saved a considerable amount of water. Overall, this work demonstrates a simple methodology that can efficiently assess the effects of agricultural management practices on biotic indicators.
Collapse
Affiliation(s)
- K Stefanidis
- Laboratory of Hydrology and Water Resources Management, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens (NTUA), 5, Iroon Politechniou Street, 15780 Zografou, Athens, Greece.
| | - Y Panagopoulos
- Laboratory of Hydrology and Water Resources Management, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens (NTUA), 5, Iroon Politechniou Street, 15780 Zografou, Athens, Greece
| | - M Mimikou
- Laboratory of Hydrology and Water Resources Management, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens (NTUA), 5, Iroon Politechniou Street, 15780 Zografou, Athens, Greece
| |
Collapse
|
5
|
Kleinman PJA, Sharpley AN, Withers PJA, Bergström L, Johnson LT, Doody DG. Implementing agricultural phosphorus science and management to combat eutrophication. AMBIO 2015; 44 Suppl 2:S297-310. [PMID: 25681986 PMCID: PMC4329145 DOI: 10.1007/s13280-015-0631-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Experience with implementing agricultural phosphorus (P) strategies highlights successes and uncertainty over outcomes. We examine case studies from the USA, UK, and Sweden under a gradient of voluntary, litigated, and regulatory settings. In the USA, voluntary strategies are complicated by competing objectives between soil conservation and dissolved P mitigation. In litigated watersheds, mandated manure export has not wrought dire consequences on poultry farms, but has adversely affected beef producers who fertilize pastures with manure. In the UK, regulatory and voluntary approaches are improving farmer awareness, but require a comprehensive consideration of P management options to achieve downstream reductions. In Sweden, widespread subsidies sometime hinder serious assessment of program effectiveness. In all cases, absence of local data can undermine recommendations from models and outside experts. Effective action requires iterative application of existing knowledge of P fate and transport, coupled with unabashed description and demonstration of tradeoffs to local stakeholders.
Collapse
Affiliation(s)
- Peter J. A. Kleinman
- USDA-ARS Pasture Systems and Watershed Management Unit, University Park, PA 16802 USA
| | - Andrew N. Sharpley
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701 USA
| | - Paul J. A. Withers
- School of Environment, Natural Resources and Geography, Bangor University, Bangor, LL57 2DG UK
| | - Lars Bergström
- Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 75007 Uppsala, Sweden
| | - Laura T. Johnson
- National Center for Water Quality Research, Heidelberg University, Tiffin, OH 44883 USA
| | - Donnacha G. Doody
- Agri-food and Bioscience Institute, Newforge Lane, Belfast, 8T9 5PX UK
| |
Collapse
|
6
|
Dunn SM, Sample J, Potts J, Abel C, Cook Y, Taylor C, Vinten AJA. Recent trends in water quality in an agricultural catchment in Eastern Scotland: elucidating the roles of hydrology and land use. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:1659-1675. [PMID: 24718675 DOI: 10.1039/c3em00698k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Across the EU, programmes of measures have been introduced as part of river basin management planning as a means of tackling problems of diffuse pollution from agriculture. Evidence is required to demonstrate the effectiveness of these measures and with this overarching objective, monitoring of an agricultural catchment in Eastern Scotland was initiated in 2007. As a precursor to evaluating the effect of new management measures it is essential to understand how other factors, including hydrology and land use changes, could have influenced water quality. This study undertook an analysis of the trends in concentrations and loads of nitrate, soluble reactive phosphorus (SRP), suspended solids (SS) and turbidity measured at six points in the catchment over a six year period. The results identified both differing trends between determinands and differing trends occurring over varying spatial scales. The only direct relationships between land use and water quality that could be identified based on annual data was a positive link between arable cropping and nitrate concentrations. At the sub-catchment scale some temporal changes in land use and management explained short-term trends in nitrate but not in SRP. Lags in the system were identified due to soil adsorption, in-stream/loch processing and groundwater transport making the identification of cause and effect problematic. The results have implications for the demonstration of effectiveness of measures over the shorter term and the timescales of recovery from diffuse pollution. Longer term monitoring at small scales will be important in this regard.
Collapse
Affiliation(s)
- S M Dunn
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| | | | | | | | | | | | | |
Collapse
|