1
|
Sayed R, Omran AA, Farag RS, Mahmoud HA, Soliman M. Overcoming challenges in the analysis of the ubiquitous emerging contaminant trifluoroacetic acid employing trap column liquid chromatography tandem mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137976. [PMID: 40120281 DOI: 10.1016/j.jhazmat.2025.137976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/09/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Trifluoroacetic acid (TFA) is a ubiquitous ultra-short chain emerging contaminant and a widely observant pollutant in the environment. Its analytical determination usually encounters two main challenges, difficulties of chromatographic separation on reversed-phase C18 columns and the false positive results in blank samples due to TFA ubiquitous nature. This study presents the successful separation of TFA on Poroshell 120 EC-C18, 3.0 × 50 mm, 2.7 μm column, enabling the determination of TFA along with other long-chain contaminants. The application of trap column technique resulted in delaying the elution of TFA contamination arising from mobile phase later than the retention time of the target analyte. For direct samples injection, acetonitrile and methanol (MeOH) with acid and alkali modifications were evaluated as dilution solvents. 6 mL of 0.1 % NH4-modified MeOH and 4 mL of water sample provided the optimum TFA peak shape. The method was successfully validated and satisfied the requirements of SANTE/11312/2021 (V2) guidelines. The evaluated criteria were specificity and selectivity, trueness, precision, calibration linearity, limit of quantification (LOQ), and matrix effect. The validated method was applied to monitor the concentration levels of TFA in 30 real samples. The detected concentrations were
Collapse
Affiliation(s)
- Ramadan Sayed
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt; Agricultural Research Center, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods (QCAP Egypt), 7-Nadi Elsaid St, Dokki, Giza, Egypt.
| | - Ahmed A Omran
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Rabie S Farag
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hend A Mahmoud
- Agricultural Research Center, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods (QCAP Egypt), 7-Nadi Elsaid St, Dokki, Giza, Egypt
| | - Mostafa Soliman
- Agricultural Research Center, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods (QCAP Egypt), 7-Nadi Elsaid St, Dokki, Giza, Egypt.
| |
Collapse
|
2
|
Pem B, Vazdar M, Bakarić D. Elucidation of the hydration pattern of trifluoroacetic acid in dilute solutions: FTIR and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124900. [PMID: 39098294 DOI: 10.1016/j.saa.2024.124900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
The atmospheric partitioning of trifluoroacetic acid (TFA) in aerosol is a complex function of the size of suspended water droplets and their pH value. The unraveling of the affinity of TFA towards basic but not acidic conditions may be accomplished by providing an insight into the hydration pattern of undissociated TFA. Owing to rather scarce details on very dilute aqueous solutions of trifluoroacetic acid (TFA), we examined CF3COOD and CF3COONa solutions in D2O in the concentration range 0.001-0.1 mol dm-3 using transmission FTIR spectroscopy and computational methods. Besides detecting the signals originated from undissociated species in both CF3COOD (1787 cm-1 and 1766 cm-1 at c0 = 0.1 mol dm-3) and CF3COONa (1807 cm-1 at c0 = 0.1 mol dm-3) D2O solutions, through computational techniques we identified different TFA hydrates that contribute to the complexity of the spectral appearance. The combination of experimental and computational data suggested the concentration dependence of the predominant hydrogen bonding pattern of TFA. The results obtained in this work should help in understanding the partitioning of TFA into micron-size water droplets in the atmosphere in molecular and structural terms, i.e. the eventual stability of a hydrated complex for a particular TFA conformer.
Collapse
Affiliation(s)
- Barbara Pem
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Mario Vazdar
- Department of Mathematics, Informatics and Cybernetics, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Danijela Bakarić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Zhi Y, Lu X, Munoz G, Yeung LWY, De Silva AO, Hao S, He H, Jia Y, Higgins CP, Zhang C. Environmental Occurrence and Biotic Concentrations of Ultrashort-Chain Perfluoroalkyl Acids: Overlooked Global Organofluorine Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21393-21410. [PMID: 39535433 DOI: 10.1021/acs.est.4c04453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a large group of anthropogenic fluorinated chemicals. Ultrashort-chain perfluoroalkyl acids (PFAAs) have recently gained attention due to their prevalence in the environment and increasing environmental concerns. In this review, we established a literature database from 1990 to 2024, encompassing environmental and biological concentrations (>3,500 concentration records) of five historically overlooked ultrashort-chain PFAAs (perfluoroalkyl carboxylic and sulfonic acids with less than 4 carbons): trifluoroacetic acid (TFA), perfluoropropanoic acid (PFPrA), trifluoromethanesulfonic acid (TFMS), perfluoroethanesulfonate (PFEtS), and perfluoropropanesulfonate (PFPrS). Our data mining and analysis reveal that (1) ultrashort-chain PFAAs are globally distributed in various environments including water bodies, solid matrices, and air, with concentrations usually higher than those of longer-chain compounds; (2) TFA, the most extensively studied ultrashort-chain PFAA, shows a consistent upward trend in concentrations in surface water, rainwater, and air over the past three decades; and (3) ultrashort-chain PFAAs are present in various organisms, including plants, wildlife, and human blood, serum, and urine, with concentrations sometimes similar to those of longer-chain compounds. The current state of knowledge regarding the sources and fate of TFA and other ultrashort-chain PFAAs is also reviewed. Amid the global urgency to regulate PFASs, particularly as countries worldwide have intensified such efforts, this critical review will inform scientific research and regulatory policies.
Collapse
Affiliation(s)
- Yue Zhi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiongwei Lu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Gabriel Munoz
- Centre d'expertise en analyse environnementale du Québec (CEAEQ), Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, QC G1P 3W8, Canada
| | - Leo W Y Yeung
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro 701 82, Sweden
| | - Amila O De Silva
- Aquatic Contaminants Research Division, Environment Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Shilai Hao
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Huan He
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yonghui Jia
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Chuhui Zhang
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100084, China
| |
Collapse
|
4
|
Yu L, Hua Z, Liu X, Xing X, Zhang C, Hu T, Xue H. Multi-compartment levels and distributions of per- and polyfluoroalkyl substances surrounding fluorochemical manufacturing parks in China: A review of the current literature. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136196. [PMID: 39426146 DOI: 10.1016/j.jhazmat.2024.136196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Fluorochemical manufacturing parks (FMPs) are important point sources of per- and polyfluoroalkyl substances (PFASs) emissions to the surrounding environment. With legacy PFASs being phased-out and restricted in developed countries, China has emerged as one of the world's leading producers of PFASs. However, the occurrence and distribution patterns of PFASs emitted from FMPs in China remain poorly understood. This knowledge gap may lead to an underestimation of the contribution of FMPs as a source of PFASs in the environment. In this study, we collected pertinent data from published studies of PFAS emissions from FMPs and explored the occurrence patterns and distribution characteristics of PFASs across various media, including surface water, groundwater, tap water, sediment, soil, air, dust, plants, and animals. Seventeen classes of PFASs containing 80 compounds were identified in different media around FMPs, with concentrations significantly greater than in other suspected PFAS-contaminated sites. Notably, the levels of ultra-short-chain and emerging PFASs in the areas surrounding some FMPs were comparable to those of legacy PFASs, highlighting an increasing prevalence for the use of PFAS alternatives. In terms of spatial distribution, there was a decline in the PFAS concentration in most environmental media as the distance from FMPs increased. In addition, the distribution patterns of PFASs were associated with PFAS characteristics, the properties of different media, migration pathways, and other relevant aspects. This information will provide valuable insights into the current contamination situation regarding PFASs surrounding FMPs and will have profound implications for the effective implementation of PFAS management at FMPs.
Collapse
Affiliation(s)
- Liang Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Xiaodong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China.
| | - Xiaolei Xing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Chenyang Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Tao Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Glüge J, Breuer K, Hafner A, Vering C, Müller D, Cousins IT, Lohmann R, Goldenman G, Scheringer M. Finding non-fluorinated alternatives to fluorinated gases used as refrigerants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1955-1974. [PMID: 39360734 PMCID: PMC11448211 DOI: 10.1039/d4em00444b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Hydrofluorocarbons (HFCs) and so-called hydrofluoroolefins (HFOs) are used as refrigerants in air conditioning, refrigeration, chillers, heat pumps and devices for dehumidification and drying. However, many HFCs, including R-134a and R-125, have a high global warming potential and some of the HFCs and HFOs degrade atmospherically and form trifluoroacetic acid (TFA) as a persistent degradation product. Rising levels of TFA around the globe reveal an urgent need to replace fluorinated refrigerants with non-fluorinated working fluids to avoid direct emissions due to leakage, incorrect loading or removal. It is important, however, also to select refrigerants with high efficiencies to avoid increasing indirect CO2 emissions due to higher energy consumption during the use phase. The present study investigates the available non-fluorinated alternatives to fluorinated refrigerants and shows that a transition to non-fluorinated refrigerants, in general, is possible and has happened in many sectors already. Technically, there are only slight barriers to overcome in order to replace fluorinated refrigerants in almost all newly developed systems conforming to existing standards. Additionally, we show that alternatives are available even for some use cases for which derogations have been proposed in the EU PFAS restriction proposal and suggest making these derogations more specific to support a speedy transition to non-fluorinated refrigerants in all sectors.
Collapse
Affiliation(s)
- Juliane Glüge
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland.
| | - Katharina Breuer
- Institute for Energy Efficient Buildings and Indoor Climate, E.ON ERC, RWTH Aachen, 52074 Aachen, Germany
| | - Armin Hafner
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Christian Vering
- Institute for Energy Efficient Buildings and Indoor Climate, E.ON ERC, RWTH Aachen, 52074 Aachen, Germany
| | - Dirk Müller
- Institute for Energy Efficient Buildings and Indoor Climate, E.ON ERC, RWTH Aachen, 52074 Aachen, Germany
| | - Ian T Cousins
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | | | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
6
|
Wang L, Chen L, Wang J, Hou J, Han B, Liu W. Spatial distribution, compositional characteristics, and source apportionment of legacy and novel per- and polyfluoroalkyl substances in farmland soil: A nationwide study in mainland China. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134238. [PMID: 38608586 DOI: 10.1016/j.jhazmat.2024.134238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
China, as one of the largest global producers and consumers of per- and poly-fluoroalkyl substances (PFASs), faces concerning levels of PFAS pollution in soil. However, knowledge of their occurrence in agricultural soils of China on the national scale remains unknown. Herein, the first nationwide survey was done by collecting 352 soil samples from 31 provinces in mainland China. The results indicated that the Σ24PFASs concentrations were 74.3 - 24880.0 pg/g, with mean concentrations of PFASs in decreasing order of legacy PFASs > emerging PFASs > PFAS precursors (640.2 pg/g, 340.7 pg/g, and 154.9 pg/g, respectively). The concentrations in coastal eastern China were distinctly higher than those in inland regions. Tianjin was the most severely PFASs-contaminated province because of rapid urban industrialization. This study further compared the PFAS content in monoculture and multiple cropping farmland soils, finding the concentrations of PFASs were high in soils planted with vegetable and fruit monocultures. Moreover, a positive matrix factorization (PMF) model was employed to identify different sources of PFASs. Fluoropolymer industries and aqueous film-forming foams were the primary contributors. The contributions from different emission sources varied across the seven geographical regions. This study provides new baseline data for prevention and control policies for reducing pollution.
Collapse
Affiliation(s)
- Lixi Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Liyuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jinze Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jie Hou
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bingjun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wenxin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Austin C, Purohit AL, Thomsen C, Pinkard BR, Strathmann TJ, Novosselov IV. Hydrothermal Destruction and Defluorination of Trifluoroacetic Acid (TFA). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8076-8085. [PMID: 38661729 DOI: 10.1021/acs.est.3c09404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have received increased attention due to their environmental prevalence and threat to public health. Trifluoroacetic acid (TFA) is an ultrashort-chain PFAS and the simplest perfluorocarboxylic acid (PFCA). While the US EPA does not currently regulate TFA, its chemical similarity to other PFCAs and its simple molecular structure make it a suitable model compound for studying the transformation of PFAS. We show that hydrothermal processing in compressed liquid water transforms TFA at relatively mild conditions (T = 150-250 °C, P < 30 MPa), initially yielding gaseous products, such as CHF3 and CO2, that naturally aspirate from the solution. Alkali amendment (e.g., NaOH) promotes the mineralization of CHF3, yielding dissolved fluoride, formate, and carbonate species as final products. Fluorine and carbon balances are closed using Raman spectroscopy and fluoride ion selective electrode measurements for experiments performed at alkaline conditions, where gas yields are negligible. Qualitative FTIR gas analysis allows for establishing the transformation pathways; however, the F-balance could not be quantitatively closed for experiments without NaOH amendment. The kinetics of TFA transformation under hydrothermal conditions are measured, showing little to no dependency on NaOH concentration, indicating that the thermal decarboxylation is a rate-limiting step. A proposed TFA transformation mechanism motivates additional work to generalize the hydrothermal reaction pathways to other PFCAs.
Collapse
Affiliation(s)
- Conrad Austin
- Mechanical Engineering Department, University of Washington, Seattle, Washington 98195, United States
- Aquagga, Inc., Tacoma, Washington 98402, United States
| | - Anmol L Purohit
- Mechanical Engineering Department, University of Washington, Seattle, Washington 98195, United States
| | - Cody Thomsen
- Mechanical Engineering Department, University of Washington, Seattle, Washington 98195, United States
- Aquagga, Inc., Tacoma, Washington 98402, United States
| | - Brian R Pinkard
- Mechanical Engineering Department, University of Washington, Seattle, Washington 98195, United States
- Aquagga, Inc., Tacoma, Washington 98402, United States
| | - Timothy J Strathmann
- Civil and Environmental Engineering Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Igor V Novosselov
- Mechanical Engineering Department, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
8
|
Zheng L, Deng Y. Advancing rainwater treatment technologies for irrigation of urban agriculture: A pathway toward innovation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170087. [PMID: 38232849 DOI: 10.1016/j.scitotenv.2024.170087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Urban agriculture (UA) has emerged for local food security since the 1960s. However, the access to sufficient and safe irrigation water remains a significant constraint. Municipal water supply, though commonly used in UA practices, proves unsustainable due to high costs, intensive energy consumption, and limited availability in many vacant urban spaces. In contrast, rainwater harvesting (RWH) exhibits a potential as a non-traditional water supply for urban farming. This article aims to provide insights into the advantages and challenges associated with RWH for UA irrigation, analyze existing low-cost RWH treatment technologies, and identify a visionary way toward innovative, new-generation RWH treatment processes in UA practices. Despite a promising water source, harvested rainwater is challenged for crop irrigation owing to the presence of various contaminants (e.g., waterborne pathogens, potentially toxic metals and metalloids, and synthetic organic chemicals). While established RWH treatment processes (e.g., first flush diversion, sedimentation, solar disinfection, chlorination, UV irradiation, granular filtration, and bio-sand filtration) can remove certain pollutants, they cannot offer viable treatment solutions for UA irrigation due to different technical, economic, and social restrictions. Particularly, their capacity to reliably remove contaminants of emerging concern in runoff remains limited or uncertain. Consequently, it is essential to develop next-generation RWH treatment technologies tailored specifically for UA irrigation. To this end, three fundamental principles are recommended. First, the focus should be on technically viable, low-cost, simple-operation, and easy-maintenance treatment technologies capable of simultaneously addressing traditional and emerging runoff contaminants, while minimizing the production of undesirable treatment byproducts. Second, advancing the understanding of the water, soil, and crop interactions enables the development of "right" RWH treatment processes for irrigation of "right" crops at a "right" place. Last, crop nutrients, if possible, are retained in rainwater to reduce the nutrient demand for crop production. The insights and perspectives have far-reaching implications for water conservation, stormwater management, and the integration of water, food, and energy systems within the urban environment.
Collapse
Affiliation(s)
- Lei Zheng
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Province 310023, China
| | - Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States.
| |
Collapse
|
9
|
Jiao E, Zhu Z, Yin D, Qiu Y, Kärrman A, Yeung LWY. A pilot study on extractable organofluorine and per- and polyfluoroalkyl substances (PFAS) in water from drinking water treatment plants around Taihu Lake, China: what is missed by target PFAS analysis? ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1060-1070. [PMID: 35687097 DOI: 10.1039/d2em00073c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have raised concerns due to their worldwide occurrence and adverse effects on both the environment and humans as well as posing challenges for monitoring. Further collection of information is required for a better understanding of their occurrence and the unknown fractions of the extractable organofluorine (EOF) not explained by commonly monitored target PFAS. In this study, eight pairs of raw and treated water were collected from drinking water treatment plants (DWTPs) around Taihu Lake in China and analyzed for EOF and 34 target PFAS. Mass balance analysis of organofluorine revealed that at least 68% of EOF could not be explained by target PFAS. Relatively higher total target concentrations were observed in 4 DWTPs (D1 to D4) when compared to other samples with the highest sum concentration up to 189 ng L-1. PFOA, PFOS and PFHxS were the abundant compounds. Suspect screening analysis identified 10 emerging PFAS (e.g., H-PFAAs, H-PFESAs and OBS) in addition to target PFAS in raw or treated water. The ratios PFBA/PFOA and PFBS/PFOS between previous and current studies showed significant replacements of short-chain to long-chain PFAS. The ratios of the measured PFAS concentrations to the guideline values showed that some of the treated drinking water exceeds guideline values, appealing for efforts on drinking water safety guarantee.
Collapse
Affiliation(s)
- Enmiao Jiao
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, China.
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, China.
| | - Anna Kärrman
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Sweden.
| | - Leo W Y Yeung
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Sweden.
| |
Collapse
|
10
|
Wang B, Yao Y, Wang Y, Chen H, Sun H. Per- and Polyfluoroalkyl Substances in Outdoor and Indoor Dust from Mainland China: Contributions of Unknown Precursors and Implications for Human Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6036-6045. [PMID: 33769795 DOI: 10.1021/acs.est.0c08242] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) were analyzed in outdoor (n = 101) and indoor dust (n = 43, 38 paired with outdoors) samples across mainland China. From 2013 to 2017, the median concentration of ∑PFASs in outdoor dust tripled from 63 to 164 ng/g with an elevated contribution of trifluoroacetic acid and 6:2 fluorotelomer alcohol. In 2017, the indoor dust levels of ∑PFASs were in the range 185-913 ng/g, which were generally higher than the outdoor dust levels (105-321 ng/g). Emerging PFASs were found at high median levels of 5.7-97 ng/g in both indoor and outdoor dust samples. As first revealed by the total oxidized precursors assay, unknown perfluoroalkyl acid (PFAA)-precursors contributed 37-67 mol % to the PFAS profiles in indoor dust samples. A great proportion of C8 PFAA-precursors were precursors for perfluorooctanesulfonic acid, while C6 and C4 PFAA-precursors were mostly fluorotelomer based. Furthermore, daily perfluorooctanoic acid (PFOA) equivalent intakes of PFAAs (C4-C12) mixtures via indoor dust were first estimated at 1.3-1.5 ng/kg b.w./d for toddlers at high scenarios, which exceeds the derived daily threshold of 0.63 ng/kg b.w./d. from the European Food Safety Authority (EFSA). On this basis, an underestimation of 56%-69% likely remains without considering potential risks due to the biotransformation of unknown PFAA-precursors.
Collapse
Affiliation(s)
- Bin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
11
|
Sosa J, Santiago R, Redondo AE, Avila J, Lepre LF, Gomes MC, Araújo JM, Palomar J, Pereiro AB. Design of Ionic Liquids for Fluorinated Gas Absorption: COSMO-RS Selection and Solubility Experiments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5898-5909. [PMID: 35435682 PMCID: PMC9069701 DOI: 10.1021/acs.est.2c00051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In recent years, the fight against climate change and the mitigation of the impact of fluorinated gases (F-gases) on the atmosphere is a global concern. Development of technologies that help to efficiently separate and recycle hydrofluorocarbons (HFCs) at the end of the refrigeration and air conditioning equipment life is a priority. The technological development is important to stimulate the F-gas capture, specifically difluoromethane (R-32) and 1,1,1,2-tetrafluoroethane (R-134a), due to their high global warming potential. In this work, the COSMO-RS method is used to analyze the solute-solvent interactions and to determine Henry's constants of R-32 and R-134a in more than 600 ionic liquids. The three most performant ionic liquids were selected on the basis of COSMO-RS calculations, and F-gas absorption equilibrium isotherms were measured using gravimetric and volumetric methods. Experimental results are in good agreement with COSMO-RS predictions, with the ionic liquid tributyl(ethyl)phosphonium diethyl phosphate, [P2444][C2C2PO4], being the salt presenting the highest absorption capacities in molar and mass units compared to salts previously tested. The other two ionic liquids selected, trihexyltetradecylphosphonium glycinate, [P66614][C2NO2], and trihexyl(tetradecyl)phosphonium 2-cyano-pyrrole, [P66614][CNPyr], may be competitive as far as their absorption capacities are concerned. Future works will be guided on evaluating the performance of these ionic liquids at an industrial scale by means of process simulations, in order to elucidate the role in process efficiency of other relevant absorbent properties such as viscosity, molar weight, or specific heat.
Collapse
Affiliation(s)
- Julio
E. Sosa
- LAQV,
REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Rubén Santiago
- Chemical
Engineering Department, Universidad Autónoma
de Madrid, Madrid 28049, Spain
| | - Andres E. Redondo
- LAQV,
REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Jocasta Avila
- Laboratoire
de Chimie, École Normale Superieure de Lyon & CNRS, Lyon 69364, France
| | - Luiz F. Lepre
- Laboratoire
de Chimie, École Normale Superieure de Lyon & CNRS, Lyon 69364, France
| | | | - João M.
M. Araújo
- LAQV,
REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - José Palomar
- Chemical
Engineering Department, Universidad Autónoma
de Madrid, Madrid 28049, Spain
| | - Ana B. Pereiro
- LAQV,
REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| |
Collapse
|
12
|
Björnsdotter MK, Hartz WF, Kallenborn R, Ericson Jogsten I, Humby JD, Kärrman A, Yeung LWY. Levels and Seasonal Trends of C 1-C 4 Perfluoroalkyl Acids and the Discovery of Trifluoromethane Sulfonic Acid in Surface Snow in the Arctic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15853-15861. [PMID: 34779623 PMCID: PMC8655978 DOI: 10.1021/acs.est.1c04776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/23/2021] [Accepted: 11/07/2021] [Indexed: 05/31/2023]
Abstract
C1-C4 perfluoroalkyl acids (PFAAs) are highly persistent chemicals that have been found in the environment. To date, much uncertainty still exists about their sources and fate. The importance of the atmospheric degradation of volatile precursors to C1-C4 PFAAs were investigated by studying their distribution and seasonal variation in remote Arctic locations. C1-C4 PFAAs were measured in surface snow on the island of Spitsbergen in the Norwegian Arctic during January-August 2019. Trifluoroacetic acid (TFA), perfluoropropanoic acid (PFPrA), perfluorobutanoic acid (PFBA), and trifluoromethane sulfonic acid (TFMS) were detected in most samples, including samples collected at locations presumably receiving PFAA input solely from long-range processes. The flux of TFA, PFPrA, PFBA, and TFMS per precipitation event was in the ranges of 22-1800, 0.79-16, 0.19-170, and 1.5-57 ng/m2, respectively. A positive correlation between the flux of TFA, PFPrA, and PFBA with downward short-wave solar radiation was observed. No correlation was observed between the flux of TFMS and solar radiation. These findings suggest that atmospheric transport of volatile precursors and their subsequent degradation plays a major role in the global distribution of C2-C4 perfluoroalkyl carboxylic acids and their consequential deposition in Arctic environments. The discovery of TFMS in surface snow at these remote Arctic locations suggests that TFMS is globally distributed. However, the transport mechanism to the Arctic environment remains unknown.
Collapse
Affiliation(s)
- Maria K. Björnsdotter
- Man-Technology-Environment
Research Centre (MTM), Örebro University, Örebro SE-701 82, Sweden
| | - William F. Hartz
- Department
of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom
- Department
of Arctic Geology, University Centre in
Svalbard (UNIS), Longyearbyen, Svalbard NO-9171, Norway
| | - Roland Kallenborn
- Faculty
of Chemistry, Biotechnology and Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway
- Department
of Arctic Technology, University Centre
in Svalbard (UNIS), Longyearbyen, Svalbard NO-9171, Norway
| | - Ingrid Ericson Jogsten
- Man-Technology-Environment
Research Centre (MTM), Örebro University, Örebro SE-701 82, Sweden
| | - Jack D. Humby
- Ice Dynamics
and Paleoclimate, British Antarctic Survey, High Cross, Cambridge CB3 0ET, United
Kingdom
| | - Anna Kärrman
- Man-Technology-Environment
Research Centre (MTM), Örebro University, Örebro SE-701 82, Sweden
| | - Leo W. Y. Yeung
- Man-Technology-Environment
Research Centre (MTM), Örebro University, Örebro SE-701 82, Sweden
| |
Collapse
|
13
|
Anaraki MT, Lysak DH, Downey K, Kock FVC, You X, Majumdar RD, Barison A, Lião LM, Ferreira AG, Decker V, Goerling B, Spraul M, Godejohann M, Helm PA, Kleywegt S, Jobst K, Soong R, Simpson MJ, Simpson AJ. NMR spectroscopy of wastewater: A review, case study, and future potential. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:121-180. [PMID: 34852923 DOI: 10.1016/j.pnmrs.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
NMR spectroscopy is arguably the most powerful tool for the study of molecular structures and interactions, and is increasingly being applied to environmental research, such as the study of wastewater. With over 97% of the planet's water being saltwater, and two thirds of freshwater being frozen in the ice caps and glaciers, there is a significant need to maintain and reuse the remaining 1%, which is a precious resource, critical to the sustainability of most life on Earth. Sanitation and reutilization of wastewater is an important method of water conservation, especially in arid regions, making the understanding of wastewater itself, and of its treatment processes, a highly relevant area of environmental research. Here, the benefits, challenges and subtleties of using NMR spectroscopy for the analysis of wastewater are considered. First, the techniques available to overcome the specific challenges arising from the nature of wastewater (which is a complex and dilute matrix), including an examination of sample preparation and NMR techniques (such as solvent suppression), in both the solid and solution states, are discussed. Then, the arsenal of available NMR techniques for both structure elucidation (e.g., heteronuclear, multidimensional NMR, homonuclear scalar coupling-based experiments) and the study of intermolecular interactions (e.g., diffusion, nuclear Overhauser and saturation transfer-based techniques) in wastewater are examined. Examples of wastewater NMR studies from the literature are reviewed and potential areas for future research are identified. Organized by nucleus, this review includes the common heteronuclei (13C, 15N, 19F, 31P, 29Si) as well as other environmentally relevant nuclei and metals such as 27Al, 51V, 207Pb and 113Cd, among others. Further, the potential of additional NMR methods such as comprehensive multiphase NMR, NMR microscopy and hyphenated techniques (for example, LC-SPE-NMR-MS) for advancing the current understanding of wastewater are discussed. In addition, a case study that combines natural abundance (i.e. non-concentrated), targeted and non-targeted NMR to characterize wastewater, along with in vivo based NMR to understand its toxicity, is included. The study demonstrates that, when applied comprehensively, NMR can provide unique insights into not just the structure, but also potential impacts, of wastewater and wastewater treatment processes. Finally, low-field NMR, which holds considerable future potential for on-site wastewater monitoring, is briefly discussed. In summary, NMR spectroscopy is one of the most versatile tools in modern science, with abilities to study all phases (gases, liquids, gels and solids), chemical structures, interactions, interfaces, toxicity and much more. The authors hope this review will inspire more scientists to embrace NMR, given its huge potential for both wastewater analysis in particular and environmental research in general.
Collapse
Affiliation(s)
- Maryam Tabatabaei Anaraki
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Flávio Vinicius Crizóstomo Kock
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Department of Chemistry, Federal University of São Carlos-SP (UFSCar), São Carlos, SP, Brazil
| | - Xiang You
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Rudraksha D Majumdar
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8, Canada
| | - Andersson Barison
- NMR Center, Federal University of Paraná, CP 19081, 81530-900 Curitiba, PR, Brazil
| | - Luciano Morais Lião
- NMR Center, Institute of Chemistry, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | | | - Venita Decker
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Manfred Spraul
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Paul A Helm
- Environmental Monitoring & Reporting Branch, Ontario Ministry of the Environment, Toronto M9P 3V6, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada
| | - Karl Jobst
- Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Andre J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada.
| |
Collapse
|
14
|
Pike KA, Edmiston PL, Morrison JJ, Faust JA. Correlation Analysis of Perfluoroalkyl Substances in Regional U.S. Precipitation Events. WATER RESEARCH 2021; 190:116685. [PMID: 33279752 DOI: 10.1016/j.watres.2020.116685] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 05/28/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are transported in the atmosphere, leading to both wet and dry deposition to the surface. The concentrations of 15 PFAS were measured at six locations in the Ohio-Indiana region of the U.S. during the summer of 2019 and compared to samples collected at a distant site in NW Wyoming. ΣPFAS concentrations ranged from 50-850 ng L-1, with trifluoroacetic acid (TFA) being the dominant compound (~90%). Concentrations of perfluorooctanoic acid (PFOA) and perfluorosulfonic acid (PFOS) were similar to amounts observed over the past 20 years, indicating persistence in the atmosphere despite regulatory action, and the newer species HFPO-DA (GenX) was also widely detected in rainwater. ANOVA modeling and correlation matrices were used to determine association of PFAS concentrations, location, and functional group and chain length. Statistically significant differences (p < 0.05) in PFAS profiles across sites separated by 10-100 km indicate that local point sources strongly contribute to wet deposition. This work introduces correlation plots for PFAS that allow rapid visual comparison of multi-analyte and multi-site data sets.
Collapse
Affiliation(s)
- Kyndal A Pike
- Department of Chemistry, College of Wooster, 943 College Mall, Wooster, Ohio 44691, United States; Department of Mathematical and Computational Sciences, College of Wooster, 308 E. University, Wooster, Ohio 44691, United States
| | - Paul L Edmiston
- Department of Chemistry, College of Wooster, 943 College Mall, Wooster, Ohio 44691, United States
| | - Jillian J Morrison
- Department of Mathematical and Computational Sciences, College of Wooster, 308 E. University, Wooster, Ohio 44691, United States
| | - Jennifer A Faust
- Department of Chemistry, College of Wooster, 943 College Mall, Wooster, Ohio 44691, United States.
| |
Collapse
|
15
|
Freeling F, Behringer D, Heydel F, Scheurer M, Ternes TA, Nödler K. Trifluoroacetate in Precipitation: Deriving a Benchmark Data Set. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11210-11219. [PMID: 32806887 DOI: 10.1021/acs.est.0c02910] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although precipitation is considered to be the most important diffuse source of trifluoroacetate (TFA) to the nonmarine environment, information regarding the wet deposition of TFA as well as general data on the spatial and temporal variations in TFA concentration in precipitation is scarce. This is the first study to provide a comprehensive overview of the occurrence of TFA in precipitation by a systematic and nation-wide field monitoring campaign. In total, 1187 precipitation samples, which were collected over the course of 12 consecutive months at eight locations across Germany, were analyzed. The median, the estimated average, and the precipitation-weighted average TFA concentration of all analyzed wet deposition samples were 0.210, 0.703, and 0.335 μg/L, respectively. For Germany, an annual wet deposition flux of 190 μg/m2 or approximately 68 t was calculated for the sampling period from February 2018 to January 2019. The campaign revealed a pronounced seasonality of the TFA concentration and wet deposition flux of collected samples. Correlation analysis suggested an enhanced transformation of TFA precursors in the troposphere in the summertime due to higher concentrations of photochemically generated oxidants such as hydroxyl radicals, ultimately leading to an enhanced atmospheric deposition of TFA during summer.
Collapse
Affiliation(s)
- Finnian Freeling
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Strasse 84, 76139, Karlsruhe, Germany
| | - David Behringer
- Öko-Recherche Büro für Umweltforschung und-beratung GmbH, Münchener Strasse 23a, 60329 Frankfurt/Main, Germany
| | - Felix Heydel
- Öko-Recherche Büro für Umweltforschung und-beratung GmbH, Münchener Strasse 23a, 60329 Frankfurt/Main, Germany
| | - Marco Scheurer
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Strasse 84, 76139, Karlsruhe, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Karsten Nödler
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Strasse 84, 76139, Karlsruhe, Germany
| |
Collapse
|
16
|
Challenges in the analytical determination of ultra-short-chain perfluoroalkyl acids and implications for environmental and human health. Anal Bioanal Chem 2020; 412:4785-4796. [PMID: 32399685 PMCID: PMC7334270 DOI: 10.1007/s00216-020-02692-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/17/2020] [Accepted: 04/30/2020] [Indexed: 11/23/2022]
Abstract
Ultra-short-chain perfluoroalkyl acids have recently gained attention due to increasing environmental concentrations being observed. The most well-known ultra-short-chain perfluoroalkyl acid is trifluoroacetic acid (TFA) which has been studied since the 1990s. Potential sources and the fate of ultra-short-chain perfluoroalkyl acids other than TFA are not well studied and data reporting their environmental occurrence is scarce. The analytical determination of ultra-short-chain perfluoroalkyl acids is challenging due to their high polarity resulting in low retention using reversed-phase liquid chromatography. Furthermore, recent studies have reported varying extraction recoveries in water samples depending on the water matrix and different methods have been suggested to increase the extraction recovery. The present review gives an overview of the currently used analytical methods and summarizes the findings regarding potential analytical challenges. In addition, the current state of knowledge regarding TFA and other ultra-short-chain perfluoroalkyl acids, namely perfluoropropanoic acid, trifluoromethane sulfonic acid, perfluoroethane sulfonic acid, and perfluoropropane sulfonic acid‚ are reviewed. Both known and potential sources as well as environmental concentrations are summarized and discussed together with their fate and the environmental and human implications.
Collapse
|
17
|
Björnsdotter MK, Yeung LWY, Kärrman A, Jogsten IE. Ultra-Short-Chain Perfluoroalkyl Acids Including Trifluoromethane Sulfonic Acid in Water Connected to Known and Suspected Point Sources in Sweden. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11093-11101. [PMID: 31496234 DOI: 10.1021/acs.est.9b02211] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Data presenting the environmental occurrence of ultra-short-chain perfluoroalkyl acids (PFAAs) are scarce and little is known about the potential sources. In this study, ultra-short-chain PFAAs were analyzed in water connected to potential point sources using supercritical fluid chromatography coupled with tandem mass spectrometry. Samples (n = 34) were collected in connection with firefighting training sites, landfills, and a hazardous waste management facility. Ultra-short-chain PFAAs were detected in all samples at concentrations up to 84 000 ng/L (∑C1-C3), representing up to 69% of the concentration of 29 per- and polyfluoroalkyl substances (PFASs). Trifluoroacetic acid (TFA), perfluoropropanoic acid (PFPrA), trifluoromethane sulfonic acid (TFMS), perfluoroethane sulfonic acid (PFEtS), and perfluoropropane sulfonic acid (PFPrS) were detected at concentrations up to 14 000, 53 000, 940, 1700, and 15 000 ng/L, respectively. Principal component analysis suggests that TFA is associated with landfills. PFPrS was associated with samples collected close to the source at all types of sites included in this study. These findings reveal the presence of high concentrations of ultra-short-chain PFAAs released into the environment from various sources and emphasize the large fraction of ultra-short-chain PFAAs to the total concentration of PFASs in water.
Collapse
Affiliation(s)
- Maria K Björnsdotter
- Man-Technology-Environment Research Centre (MTM) , Örebro University , 701 82 Örebro , Sweden
| | - Leo W Y Yeung
- Man-Technology-Environment Research Centre (MTM) , Örebro University , 701 82 Örebro , Sweden
| | - Anna Kärrman
- Man-Technology-Environment Research Centre (MTM) , Örebro University , 701 82 Örebro , Sweden
| | - Ingrid Ericson Jogsten
- Man-Technology-Environment Research Centre (MTM) , Örebro University , 701 82 Örebro , Sweden
| |
Collapse
|
18
|
Cui J, Guo J, Zhai Z, Zhang J. The contribution of fluoropolymer thermolysis to trifluoroacetic acid (TFA) in environmental media. CHEMOSPHERE 2019; 222:637-644. [PMID: 30731384 DOI: 10.1016/j.chemosphere.2019.01.174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
The source of trifluoroacetic acid (TFA) has long been a controversial issue. Fluoropolymer thermolysis is expected to be a potential anthropogenic source except for CFC alternatives. However, its TFA yield and contributions have rarely been reported more recently. In this study, we investigated the thermal properties of three kinds of fluoropolymers, including poly (vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP), poly (vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) and poly (tetrafluoroethylene) (PTFE). A laboratory simulation experiment was then performed to analyze the TFA levels in the thermolysis products and hence to examine the TFA yields of these fluoropolymers. Thermolysis of these fluoropolymers occurred in the temperature ranges from ∼400 °C to ∼650 °C, with the peak weight loss rate at around 550-600 °C. TFA could be produced through fluoropolymer thermolysis when being heated to 500 °C and above. Average TFA yields of PTFE, PVDF-HFP and PVDF-CTFE were 1.2%, 0.9% and 0.3%, respectively. Furthermore, the contribution of fluoropolymer thermolysis and CFC alternatives to rainwater TFA in Beijing, China was evaluated by using a Two-Box model. The degradation of fluoropolymers and HCFCs/HFCs could explain 37.9-43.4 ng L-1 rainwater TFA in Beijing in 2014. The thermolysis of fluoropolymers contributed 0.6-6.1 ng L-1 of rainwater TFA, accounting for 1.6-14.0% of the TFA burden from all the precursors which were considered here.
Collapse
Affiliation(s)
- Jia'nan Cui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Junyu Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Zihan Zhai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Land Consolidation and Rehabilitation Center, The Ministry of Land and Resources, Beijing, 100035, China
| | - Jianbo Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
19
|
Chen H, Zhang L, Li M, Yao Y, Zhao Z, Munoz G, Sun H. Per- and polyfluoroalkyl substances (PFASs) in precipitation from mainland China: Contributions of unknown precursors and short-chain (C2C3) perfluoroalkyl carboxylic acids. WATER RESEARCH 2019; 153:169-177. [PMID: 30711792 DOI: 10.1016/j.watres.2019.01.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/02/2019] [Accepted: 01/05/2019] [Indexed: 05/26/2023]
Abstract
A nationwide survey was conducted on per- and polyfluoroalkyl substances (PFASs) in precipitation across mainland China. Twenty-two PFASs, including precursors to perfluoroalkyl acids (pre-PFAAs), were investigated in thirty-nine precipitation samples collected from twenty-eight cities. Trifluoroacetate (TFA), perfluorooctanoic acid, and perfluorooctane sulfonic acid (PFOS) were ubiquitous in precipitation. TFA displayed the highest concentrations (8.8-1.8 × 103 ng/L), which were particularly elevated in coastal cities. 6:2 chlorinated polyfluorinated ether sulfonic acid, an alternative to PFOS, was detected for the first time in precipitation at a frequency of 43%. Polyfluoroalkyl phosphoric acid diesters and 6:2 fluorotelomer sulfonic acid were also occasionally detected. PFAS fluxes in the northeastern area (C4C12; 2.0 × 102-3.4 × 103 ng/m2/d) with major PFAS manufacturing facilities were higher than those in the southwestern area (63-1.7 × 103 ng/m2/d). Using total oxidizable precursor (TOP) assay, the occurrence of unknown pre-PFAAs was for the first time uncovered in precipitation with maximum estimated fluxes of C6 and C8 pre-PFAAs at 3.1 × 103 and 4.3 × 103 ng/m2/d, respectively. The relative contribution of ultrashort-chain PFCAs (C2C3) ranged from 22% to 91% of ∑PFASs, while unknown pre-PFAAs accounted for 6%-56% of the total molar concentrations of PFASs. This bears critical concerns on underestimation of PFAS mass load from precipitation to surface environment ascribed to monitoring data solely on known PFASs. Unknown precursors of PFAAs in the atmosphere are yet to be identified for their chemical structures and relevant environmental risks as well.
Collapse
Affiliation(s)
- Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lu Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Mengqi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
20
|
Sun H, Cannon FS, He X. Enhanced trifluoroacetate removal from groundwater by quaternary nitrogen-grafted granular activated carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:577-585. [PMID: 30641385 DOI: 10.1016/j.scitotenv.2019.01.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/13/2018] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
This research reports an integrated method for synthesizing a quaternary nitrogen-grafted activated carbon that is derived from a subbituminous coal source. The protocol employed nitric acid oxidation, thermal ammonia treatment and methyl iodide quaternization. The quaternized product greatly increased trifluoroacetate (TFA, CF3COO-) removal from a groundwater source. This quaternary nitrogen-grafted carbon (designated AWNQ) exhibited the highest TFA adsorption capacity of 32.9 mg/g and exhibited high energy of adsorption for TFA. Also, when processing groundwater that had been spiked with 200 ppb TFA, this quaternary nitrogen-grafted carbon removed TFA to 3 ppb breakthrough for 1860 BV, which was twelve times longer than the 150 BV for the pristine carbon. The enhanced sorption was attributed to its high quaternary nitrogen ratio (1.30, at.%), which offered 0.69 meq/g positive charge. Furthermore, high regeneration efficiency (89.5%) was achieved by the proposed regeneration protocol. The mixed regenerant (ethanol and NaCl solution) effectively stripped off the loaded TFA and regenerated the quaternary nitrogen sites. This quaternary nitrogen-grafted carbon with its fast and high uptake capacity offered technical promise for TFA removal from groundwater.
Collapse
Affiliation(s)
- Hao Sun
- School of Chemical Engineering and Technology, China University of Mining &Technology, Xuzhou 221116, Jiangsu, China; Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, United States; Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining &Technology, Xuzhou 221116, Jiangsu, China.
| | - Fred S Cannon
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, United States
| | - Xin He
- School of Chemical Engineering and Technology, China University of Mining &Technology, Xuzhou 221116, Jiangsu, China; Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining &Technology, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
21
|
Ateia M, Maroli A, Tharayil N, Karanfil T. The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review. CHEMOSPHERE 2019; 220:866-882. [PMID: 33395808 DOI: 10.1016/j.chemosphere.2018.12.186] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 05/28/2023]
Abstract
Poly- and perfluorinated substances (PFAS) comprise more than 3000 individual compounds; nevertheless, most studies to date have focused mainly on the fate, transport and remediation of long-chain PFAS (C > 7). The main objective of this article is to provide the first critical review of the peer-reviewed studies on the analytical methods, occurrence, mobility, and treatment for ultra-short-chain PFAS (C = 2-3) and short-chain PFAS (C = 4-7). Previous studies frequently detected ultra-short-chain and short-chain PFAS in various types of aqueous environments including seas, oceans, rivers, surface/urban runoffs, drinking waters, groundwaters, rain/snow, and deep polar seas. Besides, the recent regulations and restrictions on the use of long-chain PFAS has resulted in a significant shift in the industry towards short-chain alternatives. However, our understanding of the environmental fate and remediation of these ultra-short-chain and short-chain PFAS is still fragmentary. We have also covered the handful studies involving the removal of ultra-short and short-chain PFAS and identified the future research needs.
Collapse
Affiliation(s)
- Mohamed Ateia
- Department of Environmental Engineering and Earth Science, Clemson University, SC 29634, USA
| | - Amith Maroli
- Department of Environmental Engineering and Earth Science, Clemson University, SC 29634, USA
| | - Nishanth Tharayil
- Department of Plant & Environmental Sciences, Clemson University, SC 29634, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Science, Clemson University, SC 29634, USA.
| |
Collapse
|
22
|
Scheurer M, Nödler K, Freeling F, Janda J, Happel O, Riegel M, Müller U, Storck FR, Fleig M, Lange FT, Brunsch A, Brauch HJ. Small, mobile, persistent: Trifluoroacetate in the water cycle - Overlooked sources, pathways, and consequences for drinking water supply. WATER RESEARCH 2017; 126:460-471. [PMID: 28992593 DOI: 10.1016/j.watres.2017.09.045] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 05/06/2023]
Abstract
Elevated concentrations of trifluoroacetate (TFA) of more than 100 μg/L in a major German river led to the occurrence of more than 20 μg/L TFA in bank filtration based tap waters. Several spatially resolved monitoring programs were conducted and discharges from an industrial company were identified as the point source of TFA contamination. Treatment options for TFA removal were investigated at full-scale waterworks and in laboratory batch tests. Commonly applied techniques like ozonation or granulated activated carbon filtration are inappropriate for TFA removal, whereas TFA was partly removed by ion exchange and completely retained by reverse osmosis. Further investigations identified wastewater treatment plants (WWTPs) as additional TFA dischargers into the aquatic environment. TFA was neither removed by biological wastewater treatment, nor by a retention soil filter used for the treatment of combined sewer overflows. WWTP influents can even bear a TFA formation potential, when appropriate CF3-containing precursors are present. Biological degradation and ozonation batch experiments with chemicals of different classes (flurtamone, fluopyram, tembotrione, flufenacet, fluoxetine, sitagliptine and 4:2 fluorotelomer sulfonate) proved that there are yet overlooked sources and pathways of TFA, which need to be addressed in the future.
Collapse
Affiliation(s)
- Marco Scheurer
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, Karlsruhe 76139, Germany.
| | - Karsten Nödler
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, Karlsruhe 76139, Germany
| | - Finnian Freeling
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, Karlsruhe 76139, Germany
| | - Joachim Janda
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, Karlsruhe 76139, Germany
| | - Oliver Happel
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, Karlsruhe 76139, Germany
| | - Marcel Riegel
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, Karlsruhe 76139, Germany
| | - Uwe Müller
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, Karlsruhe 76139, Germany
| | | | - Michael Fleig
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, Karlsruhe 76139, Germany
| | - Frank Thomas Lange
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, Karlsruhe 76139, Germany
| | | | - Heinz-Jürgen Brauch
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, Karlsruhe 76139, Germany
| |
Collapse
|
23
|
Solomon KR, Velders GJM, Wilson SR, Madronich S, Longstreth J, Aucamp PJ, Bornman JF. Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts: Relevance to substances regulated under the Montreal and Kyoto Protocols. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2016; 19:289-304. [PMID: 27351319 DOI: 10.1080/10937404.2016.1175981] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Trifluoroacetic acid (TFA) is a breakdown product of several hydrochlorofluorocarbons (HCFC), regulated under the Montreal Protocol (MP), and hydrofluorocarbons (HFC) used mainly as refrigerants. Trifluoroacetic acid is (1) produced naturally and synthetically, (2) used in the chemical industry, and (3) a potential environmental breakdown product of a large number (>1 million) chemicals, including pharmaceuticals, pesticides, and polymers. The contribution of these chemicals to global amounts of TFA is uncertain, in contrast to that from HCFC and HFC regulated under the MP. TFA salts are stable in the environment and accumulate in terminal sinks such as playas, salt lakes, and oceans, where the only process for loss of water is evaporation. Total contribution to existing amounts of TFA in the oceans as a result of the continued use of HCFCs, HFCs, and hydrofluoroolefines (HFOs) up to 2050 is estimated to be a small fraction (<7.5%) of the approximately 0.2 μg acid equivalents/L estimated to be present at the start of the millennium. As an acid or as a salt TFA is low to moderately toxic to a range of organisms. Based on current projections of future use of HCFCs and HFCs, the amount of TFA formed in the troposphere from substances regulated under the MP is too small to be a risk to the health of humans and environment. However, the formation of TFA derived from degradation of HCFC and HFC warrants continued attention, in part because of a long environmental lifetime and due many other potential but highly uncertain sources.
Collapse
Affiliation(s)
- Keith R Solomon
- a Centre for Toxicology, School of Environmental Sciences , University of Guelph , Guelph , Ontario , Canada
| | - Guus J M Velders
- b National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Stephen R Wilson
- c Centre for Atmospheric Chemistry , University of Wollongong , Wollongong , NSW , Australia
| | - Sasha Madronich
- d National Center for Atmospheric Research , Boulder , Colorado , USA
| | - Janice Longstreth
- e The Institute for Global Risk Research , Bethesda , Maryland , USA
| | - Pieter J Aucamp
- f Ptersa Environmental Consultants , Faerie Glen , South Africa
| | - Janet F Bornman
- g International Institute of Agri-Food Security, Curtin University , Perth , Western Australia
| |
Collapse
|
24
|
Sánchez A, Cohim E, Kalid R. A review on physicochemical and microbiological contamination of roof-harvested rainwater in urban areas. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.swaqe.2015.04.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|