1
|
Haque M, Binte Dayem S, Tabassum Tasnim N, Islam MR, Shakil MS. Biological impact of Chornobyl radiation: a review of recent progress. Int J Radiat Biol 2024; 100:1405-1415. [PMID: 39186765 DOI: 10.1080/09553002.2024.2391813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 06/06/2024] [Accepted: 07/06/2024] [Indexed: 08/28/2024]
Abstract
The incident of Chernobyl Nuclear Power Plant (CNPP) explosion has pioneered a plethora of studies unfolding various biological effects of radiation stress on several living systems. Determining radiation dose rates at which both acute and chronic biological effects occur in different biological systems will aid in the ex-situ generation of radiation-tolerant organisms. So far, the accumulation of data on different radiation doses from Chernobyl area demonstrating various biological impacts has not been documented altogether vastly. Therefore, this review aims to document the recorded doses in CNPP over the years at which different biological changes have been observed in plants, soil, aquatic organisms, birds, and animals. A total of 72 peer-reviewed papers obtained from PubMed, Google Scholar, Scopus, and Research4life were included in this review. A few factors have come under attention in this review. Firstly, plant and soil systems combinedly showed the most published studies after the catastrophe where plants showed a higher frequency of DNA methylation in their genome to resist radiation stress. Secondly, reduced species abundance, chromosomal aberrations, increased sterility, and mortality were mostly observed in the aftermath of Chernobyl catastrophe among plants, soil, aquatic organisms, birds, and small mammals. Furthermore, major scares of data after 2018 were prominently observed. Very few studies on radiation dose levels after 2018 are available. Hence, a major research area has emerged for radiation biologists to study present radiation levels and any genetic changes in the recent generation of the original victim species. This will help provide a standard dataset that can act as a reference resource for radiation biologists and future research on the impact of both acute and chronic radiation on the different biological systems.
Collapse
Affiliation(s)
- Munima Haque
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Shabnoor Binte Dayem
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Nazifa Tabassum Tasnim
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Md Rashadul Islam
- Physics Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Md Salman Shakil
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| |
Collapse
|
2
|
Sakauchi K, Otaki JM. Soil Microbes and Plant-Associated Microbes in Response to Radioactive Pollution May Indirectly Affect Plants and Insect Herbivores: Evidence for Indirect Field Effects from Chernobyl and Fukushima. Microorganisms 2024; 12:364. [PMID: 38399767 PMCID: PMC10892324 DOI: 10.3390/microorganisms12020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The biological impacts of the nuclear accidents in Chernobyl (1986) and Fukushima (2011) on wildlife have been studied in many organisms over decades, mainly from dosimetric perspectives based on laboratory experiments using indicator species. However, ecological perspectives are required to understand indirect field-specific effects among species, which are difficult to evaluate under dosimetric laboratory conditions. From the viewpoint that microbes play a fundamental role in ecosystem function as decomposers and symbionts for plants, we reviewed studies on microbes inhabiting soil and plants in Chernobyl and Fukushima in an attempt to find supporting evidence for indirect field-specific effects on plants and insect herbivores. Compositional changes in soil microbes associated with decreases in abundance and species diversity were reported, especially in heavily contaminated areas of both Chernobyl and Fukushima, which may accompany explosions of radioresistant species. In Chernobyl, the population size of soil microbes remained low for at least 20 years after the accident, and the abundance of plant-associated microbes, which are related to the growth and defense systems of plants, possibly decreased. These reported changes in microbes likely affect soil conditions and alter plant physiology. These microbe-mediated effects may then indirectly affect insect herbivores through food-mass-mediated, pollen-mediated, and metabolite-mediated interactions. Metabolite-mediated interactions may be a major pathway for ecological impacts at low pollution levels and could explain the decreases in insect herbivores in Fukushima. The present review highlights the importance of the indirect field effects of long-term low-dose radiation exposure under complex field circumstances.
Collapse
Affiliation(s)
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan;
| |
Collapse
|
3
|
Tessaro APG, de Araujo LG, Silva TT, Coelho E, Corrêa B, Rolindo NC, Vicente R. Prospects for fungal bioremediation of unburied waste packages from the Goiânia radiological accident. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41045-41059. [PMID: 36627427 DOI: 10.1007/s11356-023-25247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Goiânia, the Goiás State capital, starred in 1987, where one of the largest radiological accidents in the world happened. A teletherapy machine was subtracted from a derelict radiotherapy clinic and disassembled by scavengers who distributed fragments of the 50 TBq 137CsCl source among relatives and acquaintances, enchanted by the blue shine of the substance. During the 15 days before the accident was acknowledged, contaminated recycling materials were delivered to recycling factories in four cities in the state of São Paulo, Brazil, in the form of recycling paper bales. The contaminated bales were spotted, collected, and stored in fifty 1.6 m3 steel boxes at the interim storage facility of the Nuclear and Energy Research Institute (IPEN). In 2017, a check of the content was performed in a few boxes and the presence of high moisture content was observed even though the bales were dry when conditioned and the packages were kept sealed since then. The main objective of this work was to report the fungi found in the radioactive waste after they evolved for 30 years in isolation inside the waste boxes and their role in the decay of the waste. Examination of the microbiome showed the presence of nematodes and fungal communities. The fungi species isolated were Aspergillus quadricinctus, Fusarium oxysporum, Lecanicillium coprophilumi, Scedosporium boydii, Scytalidium lignicola, Xenoacremonium recifei, and Pleurostoma richardsiae. These microorganisms showed a significant capacity to digest cellulose in our trials, which could be one of the ways they survive in such a harsh environment, reducing the volume of radioactive paper waste. These metabolic abilities give us a future perspective of using these fungi in biotechnology to remediate radioactively contaminated materials, particularly cellulose-based waste.
Collapse
Affiliation(s)
- Ana Paula Gimenes Tessaro
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil
| | - Leandro Goulart de Araujo
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil.
- Current Affiliation, Université de Lorraine, CNRS, 88000, Epinal, IJL, France.
| | - Thalita Tieko Silva
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil
| | - Ednei Coelho
- Microbiology Department, University of Sao Paulo, Av. Professor Lineu Prestes, São Paulo, 1374, Brazil
| | - Benedito Corrêa
- Microbiology Department, University of Sao Paulo, Av. Professor Lineu Prestes, São Paulo, 1374, Brazil
| | - Natalie Costa Rolindo
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil
| | - Roberto Vicente
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
4
|
Beresford NA, Wood MD, Gashchak S, Barnett CL. Current ionising radiation doses in the Chernobyl Exclusion Zone do not directly impact on soil biological activity. PLoS One 2022; 17:e0263600. [PMID: 35196340 PMCID: PMC8865656 DOI: 10.1371/journal.pone.0263600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/22/2022] [Indexed: 11/18/2022] Open
Abstract
Although soil organisms are essential for ecosystem function, the impacts of radiation on soil biological activity at highly contaminated sites has been relatively poorly studied. In April-May 2016, we conducted the first largescale deployment of bait lamina to estimate soil organism (largely soil invertebrate) feeding activity in situ at study plots in the Chernobyl Exclusion Zone (CEZ). Across our 53 study plots, estimated weighted absorbed dose rates to soil organisms ranged from 0.7 μGy h-1 to 1753 μGy h-1. There was no significant relationship between soil organism feeding activity and estimated weighted absorbed dose rate. Soil biological activity did show significant relationships with soil moisture content, bulk density (used as a proxy for soil organic matter) and pH. At plots in the Red Forest (an area of coniferous plantation where trees died because of high radiation exposure in 1986) soil biological activity was low compared to plots elsewhere in the CEZ. It is possible that the lower biological activity observed in the Red Forest is a residual consequence of what was in effect an acute high exposure to radiation in 1986.
Collapse
Affiliation(s)
- Nicholas A. Beresford
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster, United Kingdom
- School of Science, Engineering & Environment, University of Salford, Manchester, United Kingdom
- * E-mail:
| | - Michael D. Wood
- School of Science, Engineering & Environment, University of Salford, Manchester, United Kingdom
| | - Sergey Gashchak
- International Radioecology Laboratory, Chornobyl Center for Nuclear Safety, Radioactive Waste & Radioecology, Slavutych, Kyiv Region, Ukraine
| | - Catherine L. Barnett
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster, United Kingdom
| |
Collapse
|
5
|
Car C, Gilles A, Armant O, Burraco P, Beaugelin‐Seiller K, Gashchak S, Camilleri V, Cavalié I, Laloi P, Adam‐Guillermin C, Orizaola G, Bonzom J. Unusual evolution of tree frog populations in the Chernobyl exclusion zone. Evol Appl 2022; 15:203-219. [PMID: 35233243 PMCID: PMC8867709 DOI: 10.1111/eva.13282] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
Despite the ubiquity of pollutants in the environment, their long-term ecological consequences are not always clear and still poorly studied. This is the case concerning the radioactive contamination of the environment following the major nuclear accident at the Chernobyl nuclear power plant. Notwithstanding the implications of evolutionary processes on the population status, few studies concern the evolution of organisms chronically exposed to ionizing radiation in the Chernobyl exclusion zone. Here, we examined genetic markers for 19 populations of Eastern tree frog (Hyla orientalis) sampled in the Chernobyl region about thirty years after the nuclear power plant accident to investigate microevolutionary processes ongoing in local populations. Genetic diversity estimated from nuclear and mitochondrial markers showed an absence of genetic erosion and higher mitochondrial diversity in tree frogs from the Chernobyl exclusion zone compared to other European populations. Moreover, the study of haplotype network permitted us to decipher the presence of an independent recent evolutionary history of Chernobyl exclusion zone's Eastern tree frogs caused by an elevated mutation rate compared to other European populations. By fitting to our data a model of haplotype network evolution, we suspected that Eastern tree frog populations in the Chernobyl exclusion zone have a high mitochondrial mutation rate and small effective population sizes. These data suggest that Eastern tree frog populations might offset the impact of deleterious mutations because of their large clutch size, but also question the long-term impact of ionizing radiation on the status of other species living in the Chernobyl exclusion zone.
Collapse
Affiliation(s)
- Clément Car
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - André Gilles
- UMR RECOVERINRAEAix‐Marseille Université, Centre Saint‐CharlesMarseilleFrance
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - Pablo Burraco
- Animal EcologyDepartment of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
- Institute of Biodiversity, Animal Health and Comparative MedicineCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | | | - Sergey Gashchak
- Chornobyl Center for Nuclear SafetyRadioactive Waste and RadioecologySlavutychUkraine
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - Isabelle Cavalié
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - Patrick Laloi
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | | | - Germán Orizaola
- IMIB‐Biodiversity Research Institute (Univ. Oviedo‐CSIC‐Princip. Asturias)Universidad de OviedoMieres‐AsturiasSpain
- Department Biology Organisms and SystemsZoology UnitUniversity of OviedoOviedo‐AsturiasSpain
| | - Jean‐Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| |
Collapse
|
6
|
Gombeau K, Bonzom JM, Cavalié I, Camilleri V, Orjollet D, Dubourg N, Beaugelin-Seiller K, Bourdineaud JP, Lengagne T, Armant O, Ravanat JL, Adam-Guillermin C. Dose-dependent genomic DNA hypermethylation and mitochondrial DNA damage in Japanese tree frogs sampled in the Fukushima Daiichi area. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 225:106429. [PMID: 33059178 DOI: 10.1016/j.jenvrad.2020.106429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
The long-term consequences of the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant (FDNPP) that occurred on March 2011, have been scarcely studied on wildlife. We sampled Japanese tree frogs (Dryophytes japonicus), in a 50 -km area around the FDNPP to test for an increase of DNA damages and variation of DNA methylation level. The ambient dose rate ranged between 0.4 and 2.8 μGy h-1 and the total estimated dose rate absorbed by frogs ranged between 0.3 and 7.7 μGy h-1. Frogs from contaminated sites exhibited a dose-dependent increase of global genomic DNA methylation level (5-mdC and 5-hmdC) and of mitochondrial DNA damages. Such DNA damages may indicate a genomic instability, which may induce physiological adaptations governed by DNA methylation changes. This study stresses the need for biological data combining targeted molecular methods and classic ecotoxicology, in order to better understand the impacts on wildlife of long term exposure to low ionizing radiation levels.
Collapse
Affiliation(s)
- Kewin Gombeau
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France; University of Bordeaux, CNRS, UMR5095 CNRS, Institute for Cellular Biochemistry and Genetics, 1 Rue Camille Saint Saëns, CS 61390, 33077, Bordeaux Cedex, France
| | - Jean-Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Isabelle Cavalié
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Daniel Orjollet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LR2T, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Nicolas Dubourg
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Karine Beaugelin-Seiller
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Jean-Paul Bourdineaud
- University of Bordeaux, CNRS, UMR MFP 5234, European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607, Pessac, France
| | - Thierry Lengagne
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 6 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, INAC-SCIB, 38000, Grenoble, France; CEA, INAC-SCIB Laboratoire des Lésions des Acides Nucléiques, 38000, Grenoble, France
| | | |
Collapse
|
7
|
Beaugelin-Seiller K, Garnier-Laplace J, Della-Vedova C, Métivier JM, Lepage H, Mousseau TA, Møller AP. Dose reconstruction supports the interpretation of decreased abundance of mammals in the Chernobyl Exclusion Zone. Sci Rep 2020; 10:14083. [PMID: 32826946 PMCID: PMC7442794 DOI: 10.1038/s41598-020-70699-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
We re-analyzed field data concerning potential effects of ionizing radiation on the abundance of mammals collected in the Chernobyl Exclusion Zone (CEZ) to interpret these findings from current knowledge of radiological dose–response relationships, here mammal response in terms of abundance. In line with recent work at Fukushima, and exploiting a census conducted in February 2009 in the CEZ, we reconstructed the radiological dose for 12 species of mammals observed at 161 sites. We used this new information rather than the measured ambient dose rate (from 0.0146 to 225 µGy h−1) to statistically analyze the variation in abundance for all observed species as established from tracks in the snow in previous field studies. All available knowledge related to relevant confounding factors was considered in this re-analysis. This more realistic approach led us to establish a correlation between changes in mammal abundance with both the time elapsed since the last snowfall and the dose rate to which they were exposed. This relationship was also observed when distinguishing prey from predators. The dose rates resulting from our re-analysis are in agreement with exposure levels reported in the literature as likely to induce physiological disorders in mammals that could explain the decrease in their abundance in the CEZ. Our results contribute to informing the Weight of Evidence approach to demonstrate effects on wildlife resulting from its field exposure to ionizing radiation.
Collapse
Affiliation(s)
- Karine Beaugelin-Seiller
- Institut de Radioprotection et de Sûreté Nucléaire, Pôle Santé Environnement, PSE-ENV/SRTE, Cadarache, Bâtiment 183, BP3, 13115, Saint Paul lez Durance Cedex, France.
| | - Jacqueline Garnier-Laplace
- Institut de Radioprotection et de Sûreté Nucléaire, Pôle Santé Environnement, PSE-ENV, Bâtiment 28, BP 17, 92262, Fontenay-aux-Roses Cedex, France
| | - Claire Della-Vedova
- Institut de Radioprotection et de Sûreté Nucléaire, Pôle Santé Environnement, PSE-ENV/SRTE, Cadarache, Bâtiment 183, BP3, 13115, Saint Paul lez Durance Cedex, France
| | - Jean-Michel Métivier
- Institut de Radioprotection et de Sûreté Nucléaire, Pôle Santé Environnement, PSE-ENV/SEREN, Cadarache, Bâtiment 153, BP3, 13115, Saint Paul lez Durance Cedex, France
| | - Hugo Lepage
- Institut de Radioprotection et de Sûreté Nucléaire, Pôle Santé Environnement, PSE-ENV/SRTE, Cadarache, Bâtiment 183, BP3, 13115, Saint Paul lez Durance Cedex, France
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Anders Pape Møller
- Laboratoire d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Bâtiment 362, 91405, Orsay Cedex, France
| |
Collapse
|
8
|
Lerebours A, Robson S, Sharpe C, Nagorskaya L, Gudkov D, Haynes-Lovatt C, Smith JT. Transcriptional Changes in the Ovaries of Perch from Chernobyl. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10078-10087. [PMID: 32686935 DOI: 10.1021/acs.est.0c02575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fish have been highly exposed to radiation in freshwater systems after the Chernobyl Nuclear Power Plant (NPP) accident in 1986 and in freshwater and marine systems after the more recent Fukushima NPP accident in 2011. In the years after the accident, the radioactivity levels rapidly declined due to radioactive decay and environmental processes, but chronic lower dose exposures persisted. To gain insights into the long-term effects of environmental low dose radiation on fish ovaries development, a high-throughput transcriptomic approach including a de novo assembly was applied to different gonad phenotypes of female perch: developed gonads from reference lakes, developed/irradiated from medium contaminated lake, and both developed/irradiated and undeveloped from more highly contaminated lakes. This is the most comprehensive analysis to date of the gene responses in wildlife reproductive system to radiation. Some gene responses that were modulated in irradiated gonads were found to be involved in biological processes including cell differentiation and proliferation (ggnb2, mod5, rergl), cytoskeleton organization (k1C18, mtpn), gonad development (nell2, tcp4), lipid metabolism (ldah, at11b, nltp), reproduction (cyb5, cyp17A, ovos), DNA damage repair (wdhd1, rad51, hus1), and epigenetic mechanisms (dmap1). Identification of these genes provides a better understanding of the underlying molecular mechanisms underpinning the development of the gonad phenotypes of wild perch and how fish may respond to chronic exposure to radiation in their natural environment, though causal attribution of gene responses remains unclear in the undeveloped gonads.
Collapse
Affiliation(s)
- Adélaïde Lerebours
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Samuel Robson
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Colin Sharpe
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Liubov Nagorskaya
- Applied Science Center for Bioresources of the National Academy of Sciences of Belarus, Minsk 220072, Belarus
| | - Dmitri Gudkov
- Institute of Hydrobiology of the National Academy of Sciences of Ukraine, Kiev UA-04210, Ukraine
| | | | - Jim T Smith
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom
| |
Collapse
|
9
|
Shuryak I. Review of resistance to chronic ionizing radiation exposure under environmental conditions in multicellular organisms. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 212:106128. [PMID: 31818732 DOI: 10.1016/j.jenvrad.2019.106128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Ionizing radiation resistance occurs among many phylogenetic groups and its mechanisms remain incompletely understood. Tolerances to acute and chronic irradiation do not always correlate because different mechanisms may be involved. The radioresistance phenomenon becomes even more complex in the field than in the laboratory because the effects of radioactive contamination on natural populations are intertwined with those of other factors, such as bioaccumulation of radionuclides, interspecific competition, seasonal variations in environmental conditions, and land use changes due to evacuation of humans from contaminated areas. Previous reviews of studies performed in radioactive sites like the Kyshtym, Chernobyl, and Fukushima accident regions, and of protracted irradiation experiments, often focused on detecting radiation effects at low doses in radiosensitive organisms. Here we review the literature with a different purpose: to identify organisms with high tolerance to chronic irradiation under environmental conditions, which maintained abundant populations and/or outcompeted more radiosensitive species at high dose rates. Taxa for which consistent evidence for radioresistance came from multiple studies conducted in different locations and at different times were found among plants (e.g. willow and birch trees, sedges), invertebrate and vertebrate animals (e.g. rotifers, some insects, crustaceans and freshwater fish). These organisms are not specialized "extremophiles", but tend to tolerate broad ranges of environmental conditions and stresses, have small genomes, reproduce quickly and/or disperse effectively over long distances. Based on these findings, resistance to radioactive contamination can be examined in a more broad context of chronic stress responses.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, USA.
| |
Collapse
|
10
|
Beaugelin-Seiller K, Garnier-Laplace J, Beresford NA. Estimating radiological exposure of wildlife in the field. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:105830. [PMID: 30385053 DOI: 10.1016/j.jenvrad.2018.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/31/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
The assessment of the ecological impact due to radionuclides at contaminated sites requires estimation of the exposure of wildlife, in order to correlate radiation dose with known radiological effects. The robust interpretation of field data requires consideration of possible confounding effects (e.g., from the tsunami at Fukushima) and an accurate and relevant quantification of radiation doses to biota. Generally, in field studies the exposure of fauna and flora has often been characterised as measurements of the ambient dose rate or activity concentrations in some components of the environment. The use of such data does not allow the establishment of a robust dose-effect relationship for wildlife exposed to ionising radiation in the field. Effects of exposure to radioactivity depend on the total amount of energy deposited into exposed organisms, which is estimated by adding doses (or dose rates) for all radionuclides and exposure pathways. Realistic dose estimation needs to reflect the entire story of the organisms of interest during their whole exposure period. The process of identifying and collecting all the related information should allow the "W" questions (Which organisms are exposed, Where, When and hoW) to be answered. Some parameters are well known to influence dose (rate): the organism life stage, its ecological characteristics (e.g. habitat, behaviour), the source term properties (e.g. discharging facility, nature of radiation), etc. The closer the collated data are to the ideal data set, the more accurate and realistic the dose (rate) assessment will be. This means characterising each exposure pathway (internal and external), the activity concentration in each exposure source, the time each organism spends in a given place, as well as the associated dose. In this paper the process of data collation in view of dose reconstruction is illustrated for Japanese birds exposed to radioactive deposition following the Fukushima accident. With respect to the Chernobyl Exclusion Zone we will also consider variability under field conditions, availability of relevant datasets and options for better estimating internal and external doses received by wildlife.
Collapse
|
11
|
Smith J. Field evidence of significant effects of radiation on wildlife at chronic low dose rates is weak and often misleading. A comment on "Is non-human species radiosensitivity in the lab a good indicator of that in the field? Making the comparison more robust" by Beaugelin-Seiller et al. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:105895. [PMID: 30773307 DOI: 10.1016/j.jenvrad.2019.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Jim Smith
- School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire, PO1 3QL, UK.
| |
Collapse
|
12
|
Guirandy N, Gagnaire B, Frelon S, Munch T, Dubourg N, Camilleri V, Cavalié I, Floriani M, Arcanjo C, Murat El Houdigui S, Armant O, Adam-Guillermin C, Gonzalez P, Simon O. Adverse effects induced by chronic gamma irradiation in progeny of adult fish not affecting parental reproductive performance. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2556-2567. [PMID: 31393625 DOI: 10.1002/etc.4562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/11/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Multigenerational studies have become of great interest in ecotoxicology since the consequence of parental exposure to contaminants on offspring generations was established in situ or in laboratory conditions. The present study mainly examined the chronic effects of external Cs-137 gamma irradiation exposure at 4 dose rates (control, 0.5, 5, and 50 mGy h-1 ) on adult zebrafish (F0) exposed for 10 d and their progeny (F1) exposed or unexposed for 4 to 5 d. The main endpoints investigated included parental reproductive performance, embryo-larval survival, DNA alterations, and reactive oxygen species (ROS) production in F0 and F1. No effects on reproductive success, fecundity, or egg fertilization rate were observed. However, drastic effects were observed on F1 exposed to 50 mGy h-1 , resulting in a mortality rate of 100%. The drastic effects were also observed when the progeny was not irradiated. It was demonstrated that the sensitivity of the embryos was mainly attributable to parental irradiation. Moreover, these drastic effects induced by adult irradiation disappeared over time when 10 d-irradiated adults were placed in a nonirradiated condition. Alterations in larval DNA were observed for the 3 dose rates, and an increase of ROS production was also shown for the 2 lowest dose rates. The present study improves our understanding of the consequences of parental exposure conditions to the progeny. Furthermore, it provides an incentive to take transmitted generational effects into account in ecological risk assessments. Environ Toxicol Chem 2019;38:2556-2567. © 2019 SETAC.
Collapse
Affiliation(s)
- Noémie Guirandy
- Institut de Radioprotection et de Surêté Nucléaire, PSE-ENV/SRTE/LECO, Cadarache, Saint Paul-lez-Durance, France
| | - Béatrice Gagnaire
- Institut de Radioprotection et de Surêté Nucléaire, PSE-ENV/SRTE/LECO, Cadarache, Saint Paul-lez-Durance, France
| | - Sandrine Frelon
- Institut de Radioprotection et de Surêté Nucléaire, PSE-ENV/SRTE/LECO, Cadarache, Saint Paul-lez-Durance, France
| | - Thomas Munch
- Institut de Radioprotection et de Surêté Nucléaire, PSE-ENV/SRTE/LECO, Cadarache, Saint Paul-lez-Durance, France
| | - Nicolas Dubourg
- Institut de Radioprotection et de Surêté Nucléaire, PSE-ENV/SRTE/LECO, Cadarache, Saint Paul-lez-Durance, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Surêté Nucléaire, PSE-ENV/SRTE/LECO, Cadarache, Saint Paul-lez-Durance, France
| | - Isabelle Cavalié
- Institut de Radioprotection et de Surêté Nucléaire, PSE-ENV/SRTE/LECO, Cadarache, Saint Paul-lez-Durance, France
| | - Magali Floriani
- Institut de Radioprotection et de Surêté Nucléaire, PSE-ENV/SRTE/LECO, Cadarache, Saint Paul-lez-Durance, France
| | - Caroline Arcanjo
- Institut de Radioprotection et de Surêté Nucléaire, PSE-ENV/SRTE/LECO, Cadarache, Saint Paul-lez-Durance, France
| | - Sophia Murat El Houdigui
- Institut de Radioprotection et de Surêté Nucléaire, PSE-ENV/SRTE/LECO, Cadarache, Saint Paul-lez-Durance, France
| | - Olivier Armant
- Institut de Radioprotection et de Surêté Nucléaire, PSE-ENV/SRTE/LECO, Cadarache, Saint Paul-lez-Durance, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Surêté Nucléaire, PSE-ENV/SRTE/LECO, Cadarache, Saint Paul-lez-Durance, France
| | | | - Olivier Simon
- Institut de Radioprotection et de Surêté Nucléaire, PSE-ENV/SRTE/LECO, Cadarache, Saint Paul-lez-Durance, France
| |
Collapse
|
13
|
Horemans N, Nauts R, Vives I Batlle J, Van Hees M, Jacobs G, Voorspoels S, Gaschak S, Nanba K, Saenen E. Genome-wide DNA methylation changes in two Brassicaceae species sampled alongside a radiation gradient in Chernobyl and Fukushima. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 192:405-416. [PMID: 30055441 DOI: 10.1016/j.jenvrad.2018.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 05/22/2023]
Abstract
The long-term radiological impact to the environment of the nuclear accidents in Chernobyl and Fukushima is still under discussion. In the course of spring of 2016 we sampled two Brassicacea plants, Arabidopsis thaliana and Capsella bursa-pastoris native to Ukraine and Japan, respectively, alongside a gradient of radiation within the exclusion and difficult to return zones of Chernobyl (CEZ) and Fukushima (FEZ). Ambient dose rates were similar for both sampling gradients ranging from 0.5 to 80 μGy/h at plant height. The hypothesis was tested whether a history of several generations of plants growing in enhanced radiation exposure conditions would have led to changes in genome-wide DNA methylation. However, no differences were found in the global percentage of 5-methylated cytosines in Capsella bursa pastoris plants sampled in FEZ. On the other hand a significant decrease in whole genome methylation percentage in Arabidopsis thaliana plants was found in CEZ mainly governed by the highest exposed plants. These data support a link between exposure to changed environmental conditions and changes genome methylation. In addition to methylation the activity concentration of different radionuclides, 137Cs, 90Sr, 241Am and Pu-238,239,240 for CEZ and 137, 134Cs for FEZ, was analysed in both soil and plant samples. The ratio of 5.6 between 137Cs compared to 134Cs was as expected five years after the FEZ accident. For CEZ 137Cs is the most abundant polluting radionuclide in soil followed by 90Sr. Whereas 241Am and Pu-isotopes are only marginally present. In the plant tissue, however, higher levels of Sr than Cs were retrieved due to a high uptake of 90Sr in the plants. The 90Sr transfer factors ranged in CEZ from 5 to 20 (kg/kg) depending on the locality. Based on the activity concentrations of the different radionuclides the ERICA tool was used to estimate the total dose rates to the plants. It was found that for FEZ the doses was mainly contributable to the external Cs-isotopes and as such estimated total dose rates (0.13-38 μGy/h) were in the same range as the ambient measured dose rates. In strong contrast this was not true for CEZ where the total dose rate was mainly due to high uptake of the 90Sr leading to dose rates ranging from 1 to 370 μGy/h. Hence our data clearly indicate that not taking into account the internal contamination in CEZ will lead to considerable underestimation of the doses to the plants. Additionally they show that it is hard to compare the two nuclear accidental sites and one of the main reasons is the difference in contamination profile.
Collapse
Affiliation(s)
- Nele Horemans
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, B-2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Universiteitslaan 1, 3590, Diepenbeek, Belgium.
| | - Robin Nauts
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, B-2400, Mol, Belgium
| | - Jordi Vives I Batlle
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, B-2400, Mol, Belgium
| | - May Van Hees
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, B-2400, Mol, Belgium
| | - Griet Jacobs
- Flemish Institute for Technological Research (VITO Nv), Boeretang 200, B-2400, Mol, Belgium
| | - Stefan Voorspoels
- Flemish Institute for Technological Research (VITO Nv), Boeretang 200, B-2400, Mol, Belgium
| | - Sergey Gaschak
- Chernobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, 07100, Slavutych, Ukraine
| | - Kenji Nanba
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Eline Saenen
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, B-2400, Mol, Belgium
| |
Collapse
|
14
|
Geras'kin SA. Ecological effects of exposure to enhanced levels of ionizing radiation. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 162-163:347-357. [PMID: 27343462 DOI: 10.1016/j.jenvrad.2016.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/01/2016] [Accepted: 06/15/2016] [Indexed: 05/06/2023]
Abstract
Irradiation of plants and animals can result in disruption of ecological relationships between the components of ecosystems. Such effects may act as triggers of perturbation and lead to consequences that may differ essentially from expected ones based on effects observed at the organismal level. Considerable differences in ecology and niches occupied by different species lead to substantial differences in doses of ionizing radiation absorbed by species, even when they all are present in the same environment at the same time. This is especially evident for contamination with α-emitting radionuclides. Radioactive contamination can be considered an ecological factor that is able to modify the resistance in natural populations. However, there are radioecological situations when elevated radioresistance does not evolve or persist. The complexity and non-linearity of the structure and functioning of ecosystems can lead to unexpected consequences of stress effects, which would appear harmless if they were assessed within the narrower context of organism-based traditional radioecology. Therefore, the use of ecological knowledge is essential for understanding responses of populations and ecosystems to radiation exposure. Integration of basic ecological principles in the design and implementation of radioecological research is essential for predicting radiation effects under rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Stanislav A Geras'kin
- Russian Institute of Radiology and Agroecology, Obninsk, Kaluga Region, 249032, Russia.
| |
Collapse
|
15
|
Bonzom JM, Hättenschwiler S, Lecomte-Pradines C, Chauvet E, Gaschak S, Beaugelin-Seiller K, Della-Vedova C, Dubourg N, Maksimenko A, Garnier-Laplace J, Adam-Guillermin C. Effects of radionuclide contamination on leaf litter decomposition in the Chernobyl exclusion zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:596-603. [PMID: 27110974 DOI: 10.1016/j.scitotenv.2016.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 05/24/2023]
Abstract
The effects of radioactive contamination on ecosystem processes such as litter decomposition remain largely unknown. Because radionuclides accumulated in soil and plant biomass can be harmful for organisms, the functioning of ecosystems may be altered by radioactive contamination. Here, we tested the hypothesis that decomposition is impaired by increasing levels of radioactivity in the environment by exposing uncontaminated leaf litter from silver birch and black alder at (i) eleven distant forest sites differing in ambient radiation levels (0.22-15μGyh(-1)) and (ii) along a short distance gradient of radioactive contamination (1.2-29μGyh(-1)) within a single forest in the Chernobyl exclusion zone. In addition to measuring ambient external dose rates, we estimated the average total dose rates (ATDRs) absorbed by decomposers for an accurate estimate of dose-induced ecological consequences of radioactive pollution. Taking into account potential confounding factors (soil pH, moisture, texture, and organic carbon content), the results from the eleven distant forest sites, and from the single forest, showed increased litter mass loss with increasing ATDRs from 0.3 to 150μGyh(-1). This unexpected result may be due to (i) overcompensation of decomposer organisms exposed to radionuclides leading to a higher decomposer abundance (hormetic effect), and/or (ii) from preferred feeding by decomposers on the uncontaminated leaf litter used for our experiment compared to locally produced, contaminated leaf litter. Our data indicate that radio-contamination of forest ecosystems over more than two decades does not necessarily have detrimental effects on organic matter decay. However, further studies are needed to unravel the underlying mechanisms of the results reported here, in order to draw firmer conclusions on how radio-contamination affects decomposition and associated ecosystem processes.
Collapse
Affiliation(s)
- Jean-Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS, Cadarache, Bât. 183, BP 3, 13115 St Paul-lez-Durance, France.
| | - Stephan Hättenschwiler
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE), 1919 Route de Mende, F-34293 Montpellier, France
| | - Catherine Lecomte-Pradines
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS, Cadarache, Bât. 183, BP 3, 13115 St Paul-lez-Durance, France
| | - Eric Chauvet
- EcoLab, Université de Toulouse, CNRS, UPS, INPT, 118 Route de Narbonne, 31062 Toulouse cedex, France
| | - Sergey Gaschak
- Chernobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, 07100 Slavutych, Ukraine
| | - Karine Beaugelin-Seiller
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS, Cadarache, Bât. 183, BP 3, 13115 St Paul-lez-Durance, France
| | - Claire Della-Vedova
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS, Cadarache, Bât. 183, BP 3, 13115 St Paul-lez-Durance, France
| | - Nicolas Dubourg
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS, Cadarache, Bât. 183, BP 3, 13115 St Paul-lez-Durance, France
| | - Andrey Maksimenko
- Chernobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, 07100 Slavutych, Ukraine
| | - Jacqueline Garnier-Laplace
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS, Cadarache, Bât. 183, BP 3, 13115 St Paul-lez-Durance, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS, Cadarache, Bât. 183, BP 3, 13115 St Paul-lez-Durance, France
| |
Collapse
|
16
|
Beresford NA, Fesenko S, Konoplev A, Skuterud L, Smith JT, Voigt G. Thirty years after the Chernobyl accident: What lessons have we learnt? JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 157:77-89. [PMID: 27018344 DOI: 10.1016/j.jenvrad.2016.02.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 05/22/2023]
Abstract
April 2016 sees the 30(th) anniversary of the accident at the Chernobyl nuclear power plant. As a consequence of the accident populations were relocated in Belarus, Russia and Ukraine and remedial measures were put in place to reduce the entry of contaminants (primarily (134+137)Cs) into the human food chain in a number of countries throughout Europe. Remedial measures are still today in place in a number of countries, and areas of the former Soviet Union remain abandoned. The Chernobyl accident led to a large resurgence in radioecological studies both to aid remediation and to be able to make future predictions on the post-accident situation, but, also in recognition that more knowledge was required to cope with future accidents. In this paper we discuss, what in the authors' opinions, were the advances made in radioecology as a consequence of the Chernobyl accident. The areas we identified as being significantly advanced following Chernobyl were: the importance of semi-natural ecosystems in human dose formation; the characterisation and environmental behaviour of 'hot particles'; the development and application of countermeasures; the "fixation" and long term bioavailability of radiocaesium and; the effects of radiation on plants and animals.
Collapse
Affiliation(s)
- N A Beresford
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP, UK.
| | - S Fesenko
- International Atomic Energy Agency, 1400 Vienna, Austria
| | - A Konoplev
- Institute of Environmental Radioactivity, Fukushima University, Kanayagawa 1, Fukushima, 960-1296 Japan
| | - L Skuterud
- Norwegian Radiation Protection Authority, 1332 Østerås, Norway
| | - J T Smith
- School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Portsmouth, PO1 3QL, UK
| | - G Voigt
- r.e.m., Franz-Siegel-Gasse 26, 2380 Perchtoldsdorf, Austria
| |
Collapse
|