1
|
Lee J. Development of quantitative structure activity relationships (QSARs) for predicting the aggregation of TiO 2 nanoparticles under favorable conditions. Heliyon 2024; 10:e27966. [PMID: 38571612 PMCID: PMC10987904 DOI: 10.1016/j.heliyon.2024.e27966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/08/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
This study developed multi-linear regression (MLR) quantitative structure-activity relationships (QSARs) to predict n-TiO2 aggregation in the presence of high concentrations of representative emerging organic contaminants (EOCs), which presented favorable conditions to interaction with n-TiO2. The largest diameter change (Δ 517 nm at 0 h and Δ 1164 nm at 12 h) of n-TiO2 was observed by estrone, while the smallest diameter change (Δ -114 nm at 0 h and - 4 nm at 12 h) was observed by lincomycin during experimental periods. In addition, the zeta potential changes of n-TiO2 were observed that the biggest changes were observed by 17β-estradiol (-1.3 mV) and alachlor (-10.02 mV) at 0 h, while 17β-estradiol (-1.31 mV) and pendimethalin (-11.4 mV) showed the biggest changes at 12 h comparing to control. These changes of n-TiO2 diameter and zeta potential may implicate the effects of unique physico-chemical properties of each EOC on the surface modification of n-TiO2. Based on the interaction results, this study investigated the QSARs between n-TiO2 aggregation and physico-chemical descriptors of EOCs with 7 representative descriptors (pKa, Cw, log Kow, M.W., P.S.A., M.V., # of HBD) for predicting n-TiO2 aggregation rate kinetics at 0 h and 12 h by applying MATLAB statistical methods (model 1 - fitlm and model 2 - stepwiselm). In a model 1, QSARs showed the good coefficients of determination (R2 = 0.92) at 0 h and (R2 = 0.87) at 12 h with 7 descriptors. In a model 2, QSARs showed the goodness of fit of a model (R2 = 0.9998) with 8 descriptors (pKa, Cw, log Kow, M.W., P.S.A., M.V., #HBD, pKa⋅#H bond donors) at 0 h, while QSARs showed the coefficients of determination (R2 = 0.68) with 2 descriptors (pKa, M.V.) at 12 h. Particularly, we observed that some descriptors of EOCs such as pKa and # of HBD having polarity have more influenced on the n-TiO2 aggregation rate kinetics. Our developed QSARs demonstrated that the 7 descriptors of EOCs were significantly effective descriptors for predicting n-TiO2 aggregation rate kinetics in favorable conditions, which may implicate the complexity interactions between heterogeneous surfaces of n-TiO2 and physico-chemical properties of EOCs.
Collapse
Affiliation(s)
- Jaewoong Lee
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
2
|
Wang D, Pan Q, Yang J, Gong S, Liu X, Fu Y. Effects of Mixtures of Engineered Nanoparticles and Cocontaminants on Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2598-2614. [PMID: 38291652 DOI: 10.1021/acs.est.3c09239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The widespread application of nanotechnology inevitably leads to an increased release of engineered nanoparticles (ENPs) into the environment. Due to their specific physicochemical properties, ENPs may interact with other contaminants and exert combined effects on the microbial community and metabolism of anaerobic digestion (AD), an important process for organic waste reduction, stabilization, and bioenergy recovery. However, the complicated interactions between ENPs and other contaminants as well as their combined effects on AD are often overlooked. This review therefore focuses on the co-occurrence of ENPs and cocontaminants in the AD process. The key interactions between ENPs and cocontaminants and their combined influences on AD are summarized from the available literature, including the critical mechanisms and influencing factors. Some sulfides, coagulants, and chelating agents have a dramatic "detoxification" effect on the inhibition effect of ENPs on AD. However, some antibiotics and surfactants increase the inhibition of ENPs on AD. The reasons for these differences may be related to the interactive effects between ENPs and cocontaminants, changes of key enzyme activities, adenosine triphosphate (ATP) levels, reactive oxygen species (ROS) production, and microbial communities. New scientific opportunities for a better understanding of the coexistence in real world situations are converging on the scale of nanoparticles.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Qinyi Pan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Jingnan Yang
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Water Resources and Environmental Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Sheng Gong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Yukui Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
3
|
Parsai T, Kumar A. Effect of seawater acidification and plasticizer (Bisphenol-A) on aggregation of nanoparticles. ENVIRONMENTAL RESEARCH 2021; 201:111498. [PMID: 34139225 DOI: 10.1016/j.envres.2021.111498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the effect of an organic pollutant (Bisphenol- A, an endocrine-disrupting chemical) on the stability of a mixture of nanoparticles (NPs). Experiments were conducted in seawater chemistry condition with TiO2/ZnO NP concentration ratio: 0.01, 0.1, 1, 10,100; pH: 7.4 and 8.1; BPA concentration: 1 and 10 μg/L. The presence of BPA was found to increase the size of NP. Lower pH of 7.4 increased size of NPs from 3 to 297% (at 1 μg/L BPA; NP ratio = 0.1 to 100). Aggregation rate constant values ranged between 0.17 and 1.81 nm/s in pH 7.4 suspension and between 0.48 and 56 nm/s in pH 8.1 suspension. Factors, such as pH and NP mass concentration had major effects on size change for suspension having the same ratio of TiO2/ZnO. NP aggregate was comprised of 97% ZnO NP, 3% TiO2 NP and had 1.39 mg/kg BPA. Overall, this study found dominance of van der Waals forces of attraction in mixture suspension of NPs and BPA. The obtained result on NP persistence in seawater can now be used in estimating exposure doses of a mixture of nanoparticles during inadvertent exposure.
Collapse
Affiliation(s)
- Tanushree Parsai
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, India.
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, India.
| |
Collapse
|
4
|
Song Y, Wei Q, Lu T, Chen J, Chen W, Qi W, Liu S, Qi Z, Zhou Y. Insight into the inhibitory mechanism of soluble ionic liquids on the transport of TiO 2 nanoparticles in saturated porous media: Roles of alkyl chain lengths and counteranion types. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126367. [PMID: 34130158 DOI: 10.1016/j.jhazmat.2021.126367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Column experiments were carried out to investigate the transport of TiO2 nanoparticles (nTiO2) in water-saturated porous media in the presence of various imidazolium-based ionic liquids (ILs) with different alkyl chain lengths and counteranions. The results indicated that the effects of ILs on nTiO2 transport were considerably dependent upon IL species. In general, the transport-inhibition effects increased with the increasing length of branched alkyl chain on the ILs (i.e., [C6mim]Cl > [C4mim]Cl > [C2mim]Cl). The trend was dominated by the hydrophobicity effects of ILs. Meanwhile, the inhibitory effects of ILs were strongly related to the counteranions and followed the order of [C4mim]Cl > [C4mim][TOS] > [C4mim][PF6], mainly due to different electrostatic repulsion force between nanoparticles and porous media in the presence of various ILs. Furthermore, the inhibitory role of [C4mim][TOS] in nTiO2 transport under acidic conditions (i.e., pH 6.5) was greater than that under alkaline conditions (i.e., pH 8.0). The dominant mechanism was that the differences in the extent of electrostatic repulsion between sand grains and nTiO2 with or without ILs at pH 6.5 were larger than that at pH 8.0. Moreover, two-site kinetic retention model and DLVO theory provided good descriptions for the transport behaviors of nTiO2 with different ILs.
Collapse
Affiliation(s)
- Yumeng Song
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; Ministry of Education Key Laboratory of Humid Subtropical Eco-Geographical Process, Fujian Provincial Key Laboratory for Plant Eco-Physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Qiqi Wei
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Taotao Lu
- Department of Hydrology, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth D-95440, Germany
| | - Jiuyan Chen
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-Geographical Process, Fujian Provincial Key Laboratory for Plant Eco-Physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Wei Qi
- Henan University Minsheng College, Kaifeng 475004, China
| | - Shanhu Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
5
|
Cheng R, Liu YP, Chen YH, Shen LJ, Wu JJ, Shi L, Zheng X. Combined effect of nanoscale zero-valent iron and linear alkylbenzene sulfonate (LAS) to the freshwater algae Scenedesmus obliquus. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1366-1375. [PMID: 33131022 DOI: 10.1007/s10646-020-02294-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
With wide use of nanoparticles, co-exposure of aquatic organisms to nanoparticles and organic pollutants often takes place in the environment. However, the combined effects are still rarely understood. In this study, in order to study the interaction and biological effects of nanoscale zero-valent iron (nZVI) and linear alkylbenzene sulfonate (LAS), which acts as a typical surfactant, the freshwater algae Scenedesmus obliquus was exposed to nZVI and LAS individually and in combination for 96 h. According to the inhibition rate of the algae, the toxic effects were investigated by dose-response analysis. Then the combined effect of nZVI and LAS was evaluated using three evaluation models including toxicity unit (TU), additional index (AI), and mixture toxicity index (MTI). The results showed that the 96 h IC50 of nZVI and LAS to Scenedesmus obliquus was 2.464 mmol L-1 and 0.332 mmol L-1, respectively. When nZVI coexisted with LAS at toxic ratio 1:1, the 96 h IC50 value was 1.658 mmol L-1 (shown with nZVI), and the partly additive effect of nZVI mixed with LAS was confirmed. However, when the toxic ratio of nZVI:LAS was 4:1, it showed synergistic effect. In addition, when nZVI mixed with LAS at toxic ratio 1:4, the joint effect is antagonistic effect. In addition, the content of chorophyll in Scenedesmus obliquus, especially the content of chlorophyll a, was decreased with the increase of mixture dose. However, the protein levels did not show significant changes at different mixture doses.
Collapse
Affiliation(s)
- Rong Cheng
- School of Environment & Natural Resources, Renmin University of China, 100872, Beijing, PR China
| | - Ya-Ping Liu
- School of Environment & Natural Resources, Renmin University of China, 100872, Beijing, PR China
| | - Yi-Hui Chen
- School of Environment & Natural Resources, Renmin University of China, 100872, Beijing, PR China
| | - Liang-Jie Shen
- School of Environment & Natural Resources, Renmin University of China, 100872, Beijing, PR China
| | - Jiao-Jiao Wu
- School of Environment & Natural Resources, Renmin University of China, 100872, Beijing, PR China
| | - Lei Shi
- School of Environment & Natural Resources, Renmin University of China, 100872, Beijing, PR China.
| | - Xiang Zheng
- School of Environment & Natural Resources, Renmin University of China, 100872, Beijing, PR China.
| |
Collapse
|
6
|
Kumar M, Snow DD, Li Y, Shea PJ. Perchlorate behavior in the context of black carbon and metal cogeneration following fireworks emission at Oak Lake, Lincoln, Nebraska, USA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:930-938. [PMID: 31351301 DOI: 10.1016/j.envpol.2019.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/24/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
The imprints of fireworks displays on the adjacent water body were investigated from the perspective of cogeneration of black carbon, metals and perchlorate (ClO4-). In particular, the mixing and dissipation of ClO4- were studied at Oak Lake, Lincoln, Nebraska, following fireworks displays in 2015 and 2016. Following the display, ClO4- concentration in the water increased up to 4.3 μg/L and 4.0 μg/L in 2015 and 2016, respectively. A first-order model generally provided a good fit to the measured perchlorate concentrations from which the rate of dissipation was estimated as 0.07 d-1 in 2015 and 0.43 d-1 in 2016. SEM images show imprints of soot and metal particles in aerosol samples. EDS analysis of the lake sediment confirmed the presence of Si, K, Ca, Zn and Ba, most of which are components of fireworks. The δ13C range of -7.55‰ to -9.19‰ in the lake water system closely resembles fire-generated carbon. Cogeneration of black carbon and metal with perchlorate was established, indicating that ClO4- is an excellent marker of fireworks or a burning event over all other analyzed parameters. Future microcosmic, aggregation and column-based transport studies on black carbon in the presence of perchlorate and metals under different environmental conditions will help in developing transport and fate models for perchlorate and black carbon particles.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382-355, India.
| | - Daniel D Snow
- Water Sciences Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68588-6105, USA
| | - Yusong Li
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0844, USA
| | - Patrick J Shea
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583-0817, USA
| |
Collapse
|
7
|
Liu S, Liu Y, Jiang L, Zeng G, Li Y, Zeng Z, Wang X, Ning Q. Removal of 17β-Estradiol from water by adsorption onto montmorillonite-carbon hybrids derived from pyrolysis carbonization of carboxymethyl cellulose. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 236:25-33. [PMID: 30711739 DOI: 10.1016/j.jenvman.2019.01.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
In this work, we demonstrated the preparation of the carbonized montmorillonite/carboxymethyl cellulose (MMT/CMC) hybrids and their application as an adsorbent for efficient removal of 17β-Estradiol (βE2). X-ray diffractometer (XRD) results showed that CMC intercalation reached saturation at a CMC to MMT weight ratio of 1; transmission electron microscope (TEM) measurements clearly revealed that carbonization caused graphenes distribute on the MMT surfaces; pyrolysis temperature at 600 °C yielded novel MMT/CMC sample of high surface areas as reflected by Brunauer-Emmett-Teller (BET) surface area. The adsorbed amount of βE2 under various conditions decreased in the order MMT/CMC1:1(600) > MMT/CMC1:1(450) > MMT/CMC1:1(300) ∼ MMT/CMC2:1(600) ∼ MMT > MMT/CMC5:1(600). The removal of βE2 by MMT/CMC1:1(600) occurred very quickly, and the adsorption kinetics could be well fitted by the Ritchie nth-order kinetic model; the best-fit adsorption isotherm model was Freundlich model. The MMT/CMC1:1(600) also exhibited good regeneration performance after five adsorption/desorption cycles. The experimental results also showed that the adsorption of βE2 on the MMT/CMC1:1(600) composite could contribute to hydrophobic partitioning, π-π staking interaction, H-bond interaction, pore-filling effect and simple van der Waals interaction. This highly effective and novel adsorbent can be easily synthesized and regenerated, indicating its great potential in drinking and wastewater purification for endocrine disruptor compounds.
Collapse
Affiliation(s)
- Shaobo Liu
- School of Architecture and Art, Central South University, Changsha 410082, China
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ya Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhiwei Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xiaohua Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Qimeng Ning
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
8
|
Zhou Y, Cheng T. Influence of natural organic matter in porous media on fine particle transport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:176-188. [PMID: 29426139 DOI: 10.1016/j.scitotenv.2018.01.210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/17/2018] [Accepted: 01/20/2018] [Indexed: 06/08/2023]
Abstract
Although extensive research has been conducted to understand the effects of dissolved organic matter (DOM) on fine particle transport, less attention has been paid to natural organic matter (NOM) in the transport medium (i.e., immobile rock and sediment grains). The objective of this study is to elucidate the roles of NOM in the transport medium in mediating particle transport. We conducted experimental and modelling study on the transport of nanoscale titanium dioxide (nTiO2) and illite colloid in columns packed with quartz sand under water-saturated conditions. Peat moss was used as an example NOM and packed in some of the columns to investigate its influence on particle transport. Experimental results showed that NOM may either increase or decrease particle transport depending on the specific conditions. NOM in the transport medium was found to attract particles and reduce particle mobility when the energy barrier between particle and NOM is low or non-existent. NOM also adsorb to Fe and Al oxyhydroxides and promote the transport of negatively-charged particles at low pH. Partial dissolution of NOM releases DOM, and the DOM adsorbs to and increases the transport of positively-charged particles. Additionally, NOM changes pore water pH, which influences particle mobility by affecting the interaction energy between the particle and transport medium. Modelling results showed that the deposition sites provided by peat moss are very heterogeneous, and the NOM from peat moss may reduce particle deposition rate by adsorbing to the particle and/or transport medium. Findings from this study demonstrate that NOM in the transport medium not only changes property of the medium, but also may alter water chemistry. Therefore, the role of NOM in mediating particle transport is complicated and dependent on the property of the particle, NOM, and mineralogical composition of the medium.
Collapse
Affiliation(s)
- Yuhong Zhou
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador A1B 3X5, Canada
| | - Tao Cheng
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador A1B 3X5, Canada.
| |
Collapse
|
9
|
Part F, Berge N, Baran P, Stringfellow A, Sun W, Bartelt-Hunt S, Mitrano D, Li L, Hennebert P, Quicker P, Bolyard SC, Huber-Humer M. A review of the fate of engineered nanomaterials in municipal solid waste streams. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 75:427-449. [PMID: 29477652 DOI: 10.1016/j.wasman.2018.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/15/2018] [Accepted: 02/06/2018] [Indexed: 05/16/2023]
Abstract
Significant knowledge and data gaps associated with the fate of product-embedded engineered nanomaterials (ENMs) in waste management processes exist that limit our current ability to develop appropriate end-of-life management strategies. This review paper was developed as part of the activities of the IWWG ENMs in Waste Task Group. The specific objectives of this review paper are to assess the current knowledge associated with the fate of ENMs in commonly used waste management processes, including key processes and mechanisms associated with ENM fate and transport in each waste management process, and to use that information to identify the data gaps and research needs in this area. Literature associated with the fate of ENMs in wastes was reviewed and summarized. Overall, results from this literature review indicate a need for continued research in this area. No work has been conducted to quantify ENMs present in discarded materials and an understanding of ENM release from consumer products under conditions representative of those found in relevant waste management process is needed. Results also indicate that significant knowledge gaps associated with ENM behaviour exist for each waste management process investigated. There is a need for additional research investigating the fate of different types of ENMs at larger concentration ranges with different surface chemistries. Understanding how changes in treatment process operation may influence ENM fate is also needed. A series of specific research questions associated with the fate of ENMs during the management of ENM-containing wastes have been identified and used to direct future research in this area.
Collapse
Affiliation(s)
- Florian Part
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna, Austria
| | - Nicole Berge
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, United States.
| | - Paweł Baran
- Unit of Technologies of Fuels, RWTH Aachen University, Wüllnerstraße 2, 52062 Aachen, Germany
| | - Anne Stringfellow
- Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton, England, United Kingdom
| | - Wenjie Sun
- Department of Civil and Environmental Engineering, Southern Methodist University, 3101 Dyer Street, Dallas, TX 75205, United States
| | - Shannon Bartelt-Hunt
- Department of Civil Engineering, University of Nebraska-Lincoln, 1110 S. 67th St., Omaha, NE 68182-0178, United States
| | - Denise Mitrano
- Process Engineering, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Liang Li
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, United States
| | - Pierre Hennebert
- National Institute for Industrial and Environmental Risk Assessment (INERIS), BP 33, 13545 Aix-en-Provence Cedex 4, France
| | - Peter Quicker
- Unit of Technologies of Fuels, RWTH Aachen University, Wüllnerstraße 2, 52062 Aachen, Germany
| | - Stephanie C Bolyard
- Environmental Research & Education Foundation, 3301 Benson Drive, Suite 101, Raleigh, NC 27609, United States
| | - Marion Huber-Humer
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna, Austria
| |
Collapse
|
10
|
Lv B, Wang C, Hou J, Wang P, Miao L, You G, Yang Y, Xu Y, Zhang M, Ci H. Towards a better understanding on aggregation behavior of CeO 2 nanoparticles in different natural waters under flow disturbance. JOURNAL OF HAZARDOUS MATERIALS 2018; 343:235-244. [PMID: 28963887 DOI: 10.1016/j.jhazmat.2017.09.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
The fate of nanoparticles in natural waters is affected by the combination of various factors, especially the flow disturbance which plays a decisive role in the transport of nanoparticles. This study investigated the aggregation behavior of CeO2 nanoparticles (NPs) in natural waters by using a unique instrument to simulate flow disturbance. The results indicated that, in the absence of a shear force, the CeO2 NPs formed linear, chain-like aggregates in seawater, owing to the high IS, which compressed the electrical double layer of particles. On the other hand, the NPs formed more compact aggregates in lake water, owing to an ion bridge effect between the NPs and the dissolved organic matter (DOM). It was also found that shear forces affected the aggregation behavior of the NPs. A low shear force promoted the aggregation of the NPs by increasing the collision efficiency while the aggregates were broken by a high shear force. Remarkably, the NPs maintained their potential for continuous aggregation when the slow stirring was reintroduced, suggesting that the aggregates began to grow again under renewed stirring. The results of this study could help in predicting the fate and transport behavior of CeO2 NPs in actual aquatic environments.
Collapse
Affiliation(s)
- Bowen Lv
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yangyang Yang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Hanlin Ci
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
11
|
Jiang L, Liu Y, Liu S, Zeng G, Hu X, Hu X, Guo Z, Tan X, Wang L, Wu Z. Adsorption of Estrogen Contaminants by Graphene Nanomaterials under Natural Organic Matter Preloading: Comparison to Carbon Nanotube, Biochar, and Activated Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6352-6359. [PMID: 28494154 DOI: 10.1021/acs.est.7b00073] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Adsorption of two estrogen contaminants (17β-estradiol and 17α-ethynyl estradiol) by graphene nanomaterials was investigated and compared to those of a multi-walled carbon nanotube (MWCNT), a single-walled carbon nanotube (SWCNT), two biochars, a powdered activated carbon (PAC), and a granular activate carbon (GAC) in ultrapure water and in the competition of natural organic matter (NOM). Graphene nanomaterials showed comparable or better adsorption ability than carbon nanotubes (CNTs), biochars (BCs), and activated carbon (ACs) under NOM preloading. The competition of NOM decreased the estrogen adsorption by all adsorbents. However, the impact of NOM on the estrogen adsorption was smaller on graphenes than CNTs, BCs, and ACs. Moreover, the hydrophobicity of estrogens also affected the uptake of estrogens. These results suggested that graphene nanomaterials could be used to removal estrogen contaminants from water as an alternative adsorbent. Nevertheless, if transferred to the environment, they would also adsorb estrogen contaminants, leading to great environmental hazards.
Collapse
Affiliation(s)
- Luhua Jiang
- College of Environmental Science and Engineering, Hunan University , Changsha, Hunan 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha, Hunan 410082, People's Republic of China
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University , Changsha, Hunan 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha, Hunan 410082, People's Republic of China
| | - Shaobo Liu
- School of Metallurgy and Environment, Central South University , Changsha, Hunan 410083, People's Republic of China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University , Changsha, Hunan 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha, Hunan 410082, People's Republic of China
| | - Xinjiang Hu
- College of Environmental Science and Engineering Research, Central South University of Forestry and Technology , Changsha, Hunan 410004, People's Republic of China
| | - Xi Hu
- College of Environmental Science and Engineering Research, Central South University of Forestry and Technology , Changsha, Hunan 410004, People's Republic of China
| | - Zhi Guo
- College of Environmental Science and Engineering, Hunan University , Changsha, Hunan 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha, Hunan 410082, People's Republic of China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University , Changsha, Hunan 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha, Hunan 410082, People's Republic of China
| | - Lele Wang
- Advanced Water Management Centre (AWMC), The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Zhibin Wu
- College of Environmental Science and Engineering, Hunan University , Changsha, Hunan 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha, Hunan 410082, People's Republic of China
| |
Collapse
|
12
|
Joo SH, Zhao D. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:29-47. [PMID: 26961405 DOI: 10.1016/j.jhazmat.2016.02.068] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/02/2016] [Accepted: 02/28/2016] [Indexed: 05/25/2023]
Abstract
Metal oxide nanoparticles (MNPs) have been used for many purposes including water treatment, health, cosmetics, electronics, food packaging, and even food products. As their applications continue to expand, concerns have been mounting about the environmental fate and potential health risks of the nanoparticles in the environment. Based on the latest information, this review provides an overview of the factors that affect the fate, transformation and toxicity of MNPs. Emphasis is placed on the effects of various aquatic contaminants under various environmental conditions on the transformation of metal oxides and their transport kinetics - both in homogeneous and heterogeneous systems - and the effects of contaminants on the toxicity of MNPs. The presence of existing contaminants decreases bioavailability through hetero-aggregation, sorption, and/or complexation upon an interaction with MNPs. Contaminants also influence the fate and transport of MNPs and exhibit their synergistic toxic effects that contribute to the extent of the toxicity. This review will help regulators, engineers, and scientists in this field to understand the latest development on MNPs, their interactions with aquatic contaminants as well as the environmental dynamics of their fate and transformation. The knowledge gap and future research needs are also identified, and the challenges in assessing the environmental fate and transport of nanoparticles in heterogeneous systems are discussed.
Collapse
Affiliation(s)
- Sung Hee Joo
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, 1251 Memorial Dr. McArthur Engineering Building, Coral Gables, FL 33146-0630, USA.
| | - Dongye Zhao
- Department of Civil and Environmental Engineering, 238 Harbert Engineering Center, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
13
|
Wang Z, Wang S, Peijnenburg WJGM. Prediction of joint algal toxicity of nano-CeO2/nano-TiO2 and florfenicol: Independent action surpasses concentration addition. CHEMOSPHERE 2016; 156:8-13. [PMID: 27156210 DOI: 10.1016/j.chemosphere.2016.04.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Co-exposure of aquatic organisms to engineered nanoparticles (ENPs) and antibiotics is likely to take place in the environment. However, the impacts of co-exposure on aquatic organisms are virtually unknown and understanding the joint toxicity of ENPs and antibiotics is a topic of importance. The independent action (IA) model and the concentration addition (CA) model are two of the most common approaches to mixture toxicity assessment. In this study, the joint toxicity of two ENPs (nCeO2 and nTiO2) and one antibiotic (florfenicol, FLO) to Chlorella pyrenoidosa was determined to compare the applicability of the IA and the CA model. Concentration-response analyses were performed for single toxicants and for binary mixtures containing FLO and one of the ENPs at two suspended particle concentrations. The effect concentrations and the observed effects of the binary mixtures were compared to the predictions of the joint toxicity. The observed toxicity associated with the nCeO2 or nTiO2 exposure was enhanced by the concomitant FLO exposure. The joint toxicity of nCeO2 and FLO was significantly higher than that of nTiO2 and FLO. Predictions based on the IA and CA models tend to underestimate the overall toxicity (in terms of median effect concentration) of the binary mixtures, but IA performs better than CA, irrespective of the effect level under consideration and the types of mixtures studied. This result underpins the need to consider the effects of mixtures of ENPs and organic chemicals on aquatic organisms, and the practicability of the IA and CA methods in toxicity assessment of ENPs.
Collapse
Affiliation(s)
- Zhuang Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China.
| | - Se Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Willie J G M Peijnenburg
- Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven 3720 BA, The Netherlands; Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, The Netherlands
| |
Collapse
|
14
|
Lee J, Bartelt-Hunt SL, Li Y, Gilrein EJ. The influence of ionic strength and organic compounds on nanoparticle TiO2 (n-TiO2) aggregation. CHEMOSPHERE 2016; 154:187-193. [PMID: 27045636 DOI: 10.1016/j.chemosphere.2016.03.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 05/26/2023]
Abstract
This study investigated the aggregation of n-TiO2 in the presence of humic acid (HA) and/or 17β-estradiol (E2) under high ionic strength conditions simulating levels detected in landfill leachate. Aggregation of n-TiO2 was strongly influenced by ionic strength as well as ionic valence in that divalent cations (Ca(2+)) were more effective than monovalent (Na(+)) at the surface modification. HA or E2 enhanced aggregation of n-TiO2 in 20 mM CaCl2, however little aggregation was observed in 100 mM NaCl. Similarly, we observed only the increased aggregation of n-TiO2 in the presence of HA/E2. These results showed the critical role of particles' surface charges on the aggregation behaviors of n-TiO2 that HA plays more significantly than E2. However, the slightly increased zeta potential and aggregation of n-TiO2 in the combination of HA and E2 at both 20 mM CaCl2 and 100 mM NaCl means that E2 has influenced on the surface modification of n-TiO2 by adsorption. Based on the aggregation of n-TiO2 under high ionic strength with HA and/or E2, we simulated the mobility of aggregated n-TiO2 in porous media. As a result, we observed that the mobility distance of aggregated n-TiO2 was dramatically influenced by the surface modification with both HA and/or E2 between particles and media. Furthermore, larger mobility distance was observed with larger aggregation of n-TiO2 particles that can be explained by clean bed filtration (CFT) theory.
Collapse
Affiliation(s)
- Jaewoong Lee
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; Division of Water Environmental Engineering Research, National Institute of Environmental Research, Ministry of Environment, Incheon 22689, Republic of Korea.
| | - Shannon L Bartelt-Hunt
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Yusong Li
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Erica Jeanne Gilrein
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071, United States
| |
Collapse
|
15
|
Wu Y, Cheng T. Stability of nTiO2 particles and their attachment to sand: Effects of humic acid at different pH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:579-589. [PMID: 26439650 DOI: 10.1016/j.scitotenv.2015.09.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
The fate and transport of nano-scale or micro-scale titanium dioxide particles (nTiO2) in subsurface environments are strongly influenced by the stability of nTiO2 and their attachment to sediment grains. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the stability and transport of negatively-charged colloids, may influence nTiO2 in different manners. The objective of this study is to investigate the effects of pH and humic acid (HA) on the stability and attachment of nTiO2 to sand at HA concentrations that are relevant to typical groundwater conditions, so that mechanisms that control nTiO2 immobilization and transport in natural systems can be elucidated. Stability and attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand are experimentally measured under a range of HA concentrations at pH5 and 9. Results show that at pH5, negatively-charged HA strongly adsorbs to positively-charged nTiO2 and Fe oxyhydroxide, which, at low HA concentrations, partially neutralizes the positive charges on nTiO2 and Fe oxyhydroxide, and therefore decreases the repulsive electrostatic forces between the surfaces, resulting in nTiO2 aggregation and attachment. At high HA concentrations, adsorbed HA reverses the surface charges of nTiO2 and Fe oxyhydroxide, and makes nTiO2 and Fe oxyhydroxide strongly negatively charged, resulting in stable nTiO2 suspension and low nTiO2 attachment. At pH9, HA, nTiO2, and Fe oxyhydroxide are all negatively charged, and HA adsorption is low and does not have a strong impact on the stability and attachment of nTiO2. Overall, this study shows that changes in surface charges of nTiO2 and Fe oxyhydroxide coating caused by HA adsorption is a key factor that influences the stability and attachment of nTiO2.
Collapse
Affiliation(s)
- Yang Wu
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador A1B 3X5, Canada
| | - Tao Cheng
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador A1B 3X5, Canada.
| |
Collapse
|