1
|
Yu Y, Liu M, Wang S, Zhang C, Zhang X, Liu L, Xue S. Unveiling the Photodegradation Mechanism of Monochlorinated Naphthalenes under UV-C Irradiation: Affecting Factors Analysis, the Roles of Hydroxyl Radicals, and DFT Calculation. Molecules 2024; 29:4535. [PMID: 39407464 PMCID: PMC11477601 DOI: 10.3390/molecules29194535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Polychlorinated naphthalenes (PCNs) are a new type of persistent organic pollutant (POP) characterized by persistence, bioaccumulation, dioxin-like toxicity, and long-range atmospheric transport. Focusing on one type of PCN, monochlorinated naphthalenes (CN-1, CN-2), this study aimed to examine their photodegradation in the environment. In this work, CN-1 and CN-2 were employed as the model pollutants to investigate their photodegradation process under UV-C irradiation. Factors like the pH, initial concentrations of CN-1, and inorganic anions were investigated. Next, the roles of hydroxyl radicals (•OH), superoxide anion radicals (O2•-), and singlet oxygen (1O2) in the photodegradation process were discussed and proposed via theory computation. The results show that the photodegradation of CN-1 and CN-2 follows pseudo-first-order kinetics. Acidic conditions promote the photodegradation of CN-1, while the effects of pH on the photodegradation of CN-2 are not remarkable. Cl-, NO3-, and SO32- accelerate the photodegradation of CN-1, whereas the effect of SO42- and CO32- is not significant. Additionally, the contributions of •OH and O2•- to the photodegradation of CN-1 are 20.47% and 38.80%, while, for CN-2, the contribution is 16.40% and 16.80%, respectively. Moreover, the contribution of 1O2 is 15.7%. Based on DFT calculations, C4 and C6 of the CN-1 benzene ring are prioritized attack sites for •OH, while C2 and C9 of CN-2 are prioritized attack sites.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Liu
- School of Environment, Liaoning University, Shenyang 110036, China; (Y.Y.); (M.L.); (S.W.); (C.Z.); (X.Z.)
| | - Shuang Xue
- School of Environment, Liaoning University, Shenyang 110036, China; (Y.Y.); (M.L.); (S.W.); (C.Z.); (X.Z.)
| |
Collapse
|
2
|
Zhang T, Yang Y, Zhou K, Liu B, Tian G, Zuo W, Zhou H, Bian B. Hydrothermal oxidation degradation of dioxins in fly ash with water-washing and added Ce-Mn catalyst. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115430. [PMID: 35649334 DOI: 10.1016/j.jenvman.2022.115430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
A comprehensive analysis of the effects of the temperature, reaction time, liquid-solid ratio (L/S), and initial pH on the hydrothermal degradation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) (which are both PCDD/Fs) in municipal solid waste incineration (MSWI) fly ash is presented. Consequently, the hydrothermal degradation reaction is catalyzed using Ce-Mn catalyst under low-temperature conditions to study the effect of the catalyst on the degradation efficiency of PCDD/Fs. The experimental results show that temperature is the most critical factor for the reaction. When the hydrothermal oxidation temperature reaches 280 °C (reaction time = 120 min, original pH = 8.5, L/S = 4 mL/g), the toxicity equivalent (I-TEQ) of PCDD/Fs is only 5.4 ng TEQ/kg, and the degradation efficiency reaches 99.71%. Under these conditions, 2,3,4,7,8-P5CDF makes the highest contribution to I-TEQ degradation, reaching 37.4%. There are four main pathways for the reaction of 2,3,4,7,8-P5CDF with hydroxyl radicals. A comparison of the PCDD/F concentrations of different products shows that the addition of 0.5%, 1.0%, and 1.5% of the Ce-Mn catalyst reduces the degradation efficiency by 8.79%, 1.40%, and 0.07%, respectively, which indicates that the addition of a small quantity of Ce-Mn catalyst does not facilitate the degradation of PCDD/Fs. The addition of the catalyst significantly decreases the degradation efficiency of low-chlorinated homologs but has a relatively small effect on that of high-chlorinated homologs. Therefore, it is concluded that Ce-Mn catalysts are more likely to promote resynthesis than degradation of PCDD/Fs.
Collapse
Affiliation(s)
- Tong Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210046, PR China
| | - Yuchen Yang
- School of Environment, Nanjing Normal University, Nanjing, 210046, PR China
| | - Kai Zhou
- School of Environment, Nanjing Normal University, Nanjing, 210046, PR China
| | - Bo Liu
- School of Environment, Nanjing Normal University, Nanjing, 210046, PR China
| | - Ganpei Tian
- School of Environment, Nanjing Normal University, Nanjing, 210046, PR China
| | - Wu Zuo
- Jiangsu Provincial Environmental Engineering Technology Co., Ltd., Nanjing, 210000, China
| | - Haiyun Zhou
- Jiangsu Provincial Environmental Engineering Technology Co., Ltd., Nanjing, 210000, China
| | - Bo Bian
- School of Environment, Nanjing Normal University, Nanjing, 210046, PR China.
| |
Collapse
|
3
|
Theoretical Perspectives on the Gas-Phase Oxidation Mechanism and Kinetics of Carbazole Initiated by OH Radical in the Atmosphere. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Carbazole is one of the typical heterocyclic aromatic compounds (NSO-HETs) observed in polluted urban atmosphere, which has become a serious environmental concern. The most important atmospheric loss process of carbazole is the reaction with OH radical. The present work investigated the mechanism of OH-initiated atmospheric oxidation degradation of carbazole by using density functional theory (DFT) calculations at the M06-2X/6-311++G(3df,2p)//M06-2X/6-311+G(d,p) level. The rate constants were determined by the Rice–Ramsperger–Kassel–Marcus (RRKM) theory. The lifetime of carbazole determined by OH was compared with other typical NSO-HETs. The theoretical results show that the degradation of carbazole initiated by OH radical includes four types of reactions: OH additions to “bend” C atoms, OH additions to “benzene ring” C atoms, H abstractions from C-H bonds and the H abstraction from N-H bond. The OH addition to C1 atom and the H abstraction from N-H bond are energetically favorable. The main oxidation products are hydroxycarbazole, dialdehyde, carbazolequinone, carbazole-ol, hydroxy-carbazole-one and hydroperoxyl-carbazole-one. The calculated overall rate constant of carbazole oxidation by OH radical is 6.52 × 10−12 cm3 molecule−1 s−1 and the atmospheric lifetime is 37.70 h under the condition of 298 K and 1 atm. The rate constant of carbazole determined by OH radical is similar with that of dibenzothiophene oxidation but lower than those of pyrrole, indole, dibenzofuran and fluorene. This work provides a theoretical investigation of the oxygenated mechanism of NSO-HETs in the atmosphere and should help to clarify their potential health risk for determining the reaction pathways and environmental influence of carbazole.
Collapse
|
4
|
Huang Y, Zhang X, Li C, Zhao Y, Zhang YN, Qu J. Atmospheric persistence and toxicity evolution for fluorinated biphenylethyne liquid crystal monomers unveiled by in silico methods. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127519. [PMID: 34879516 DOI: 10.1016/j.jhazmat.2021.127519] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/14/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
It is essential to understand the atmospheric fate of liquid crystal monomers (LCMs), an important component in liquid crystal displays (LCDs); however, limited information is available at present. In this study, the atmospheric reaction mechanism, kinetics and toxicity evolution of three fluorinated biphenylethyne LCMs (1,2,3-trifluoro-5-(2-(4-methylphenyl)ethynyl)benzene (m-TEB), 1,2,3-trifluoro-5-(2-(4-ethylphenyl)ethynyl)benzene (e-TEB), 1,2,3-trifluoro-5-(2-(4-propylphenyl)ethynyl)benzene (p-TEB)) are investigated by theoretical calculations. Results show that the initial reactions of·OH addition to -C ≡ C- groups and hydrogen abstraction from alkyl groups (-CH3, -C2H5, -C3H7) are dominant pathways. The resulting transformation products (TPs) for m-TEB are mainly highly oxidized multi-functional compounds such as benzil-based compounds, benzoic acid, alcohols, aldehydes, diketone and epoxy compounds. Results also show that some TPs exhibit higher aquatic toxicity than the parent. The calculated rate constants of m-TEB, e-TEB and p-TEB with·OH at 298 K are in the ranges of (1.3 -8.6) × 10-12 cm3 molecule-1 s-1, and the corresponding atmospheric half-lives are 3.8-9.3, 2.2-5.4 and 0.6-1.4 days, respectively. This evidences that m-TEB and e-TEB may have atmospheric persistence and could undergo long-range transport. The results herein could be helpful for clarifying the atmospheric fates, persistence and risks of fluorinated LCMs with ethynyl benzene center.
Collapse
Affiliation(s)
- Yu Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, 2555 Jingyue St., Changchun 130117, Jilin Province, China
| | - Xiao Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, 2555 Jingyue St., Changchun 130117, Jilin Province, China
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, 2555 Jingyue St., Changchun 130117, Jilin Province, China.
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, 2555 Jingyue St., Changchun 130117, Jilin Province, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, 2555 Jingyue St., Changchun 130117, Jilin Province, China
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, 2555 Jingyue St., Changchun 130117, Jilin Province, China
| |
Collapse
|
5
|
Ye C, Ma X, Deng J, Li X, Li Q, Dietrich AM. Degradation of saccharin by UV/H 2O 2 and UV/PS processes: A comparative study. CHEMOSPHERE 2022; 288:132337. [PMID: 34592214 DOI: 10.1016/j.chemosphere.2021.132337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Artificial sweeteners have raised emerging concern due to their potential threats to human health, which were frequently detected in aquatic environment with median concentrations. Although current researches have widely reported that ultraviolet light-activated persulfate process (UV/PS) was superior to UV/H2O2 process for the degradation of refractory organic contaminants, UV/H2O2 process presented a more satisfactory saccharin (SAC) removal efficiency than UV/PS process, completely degraded 20 mg/L SAC within 45 min. Hence, quenching and probe experiments were employed to investigate the difference between hydroxyl radical (OH)- and sulfate radical (SO4-)-mediated oxidation mechanisms, which revealed the higher reactivity of OH (1.37-1.56 × 109 M-1 s-1) toward SAC than SO4- (3.84-4.13 × 108 M-1 s-1). A combination of density functional theory calculation and transformation products identification disclosed that OH preferred to attack the benzene ring of SAC via hydrogen atom transfer pathway, whereas SO4- oxidation was conducive to the cleavage of -C-NH2 bond. Increasing oxidant concentration significantly accelerated SAC degradation in both processes, while UV/H2O2 process consumed lower electrical energy with respect to UV/PS process. Additionally, UV/H2O2 system presented excellent adaptability and stability under various water matrices parameters (e.g. pH, anions and humic acid). While both UV/H2O2 and UV/PS processes promoted the generation of disinfection by-products (DBPs) during subsequent chlorination, and prolonging pretreatment time posed positive effect on reducing the formation of DBPs. Overall, the results clearly demonstrate the high efficiency, economy and practicality of UV/H2O2 process in the remediation of SAC-contaminated water.
Collapse
Affiliation(s)
- Cheng Ye
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Xiaoyan Ma
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China
| | - Andrea M Dietrich
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
6
|
Huang C, Zeng Y, Luo X, Ren Z, Tian Y, Mai B. Comprehensive exploration of the ultraviolet degradation of polychlorinated biphenyls in different media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142590. [PMID: 33059143 DOI: 10.1016/j.scitotenv.2020.142590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
As one of the most important natural transformation processes, photodegradation deserves more attention and research. In the current work, we comprehensively explored the photochemical behaviors of polychlorinated biphenyls (PCBs) in n-hexane (Hex), methanol/water, and silica gel under UV-irradiation. Photodegradation rates were found to be faster in methanol/water than in Hex. All of the three photochemical systems generated sigmatropic rearrangement products. The dominant photodegradation pathways were dechlorination, dechlorination/methoxylation/hydroxylation, and hydroxylation in Hex, methanol/water, and silica gel systems, respectively. Furthermore, some new photodegradation products, such as polychlorinated biphenyl ethers, polychlorinated dibenzofurans, polychlorinated biphenylenes, and methylated polychlorinated biphenyls, are reported for the first time. These findings would provide deeper insight into the phototransformation behaviors of PCBs.
Collapse
Affiliation(s)
- Chenchen Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zihe Ren
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yankuan Tian
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
7
|
Chen J, Wu N, Qu R, Xu X, Shad A, Pan X, Yao J, Bin-Jumah M, Allam AA, Wang Z, Zhu F. Photodegradation of polychlorinated diphenyl sulfides (PCDPSs) under simulated solar light irradiation: Kinetics, mechanism, and density functional theory calculations. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122876. [PMID: 32768816 DOI: 10.1016/j.jhazmat.2020.122876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The direct photolysis of 25 individual polychlorinated diphenyl sulfides (PCDPSs) substituted with 1-7 chlorine atoms was investigated using a 500-W Xe lamp. Photolysis of PCDPSs followed pseudo-first-order kinetics, with the higher chlorinated diphenyl sulfides generally degrading faster than the lower chlorinated congeners. A quantitative structure-activity relationship model to predict the photolysis rates of PCDPSs was developed using 16 fundamental quantum chemical descriptors. We found that the substitution pattern for chlorine atoms, the dipole moment, and ELUMO - EHOMO were major factors in the photolysis of PCPDSs. The reaction kinetics, products, and photodegradation pathways of 2,2',3',4,5-pentachlorodiphenyl sulfide (PeCDPS) suggest hydroxylation, direct photooxidation, the C-S bond cleavage reaction, and hydroxyl substitution were mainly involved in the photodegradation process, leading to the formation of 13 intermediates, detected by an electrospray time-of-flight mass spectrometer. The initial reaction sites of PCDPSs under photolysis were rationalized by density functional theory calculations. Anions (Cl-, SO42-, NO3-, and HCO3-) and Co2+ had no influence on the removal of PeCDPS, while Fe3+, Cu2+, and HA decreased the photolysis efficiency of PeCDPS. This report is the first to develop a logk quantitative structure-property relationships (QSPR) model of 25 PCDPSs and to describe mechanistic pathways for the photolysis of PeCDPS.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Xinxin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Asam Shad
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Xiaoxue Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Jiayi Yao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - May Bin-Jumah
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China.
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, NO.172 Jiangsu Road, Jiangsu Nanjing 210023, PR China.
| |
Collapse
|
8
|
Wei W, Sivanantham S, Malingre L, Ramalho O, Mandin C. Predicting the rate constants of semivolatile organic compounds with hydroxyl radicals and ozone in indoor air. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115050. [PMID: 32652384 DOI: 10.1016/j.envpol.2020.115050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Semivolatile organic compounds (SVOCs) in air can react with hydroxyl radicals (OH), nitrate radicals (NO3) and ozone (O3). Two questions regarding SVOC reactivity with OH, NO3 and O3 in the gas and particle phases remain to be addressed: according to the existing measurements in the literature, which are the most reactive SVOCs in air, and how can the SVOC reactivity in the gas and particle phases be predicted? In the present study, a literature review of the second-order rate constant (k) was carried out to determine the SVOC reactivity with OH, NO3 and O3 in the gas and particle phases in ambient and indoor air at room temperature. Measured k values were available in the literature for 90 polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organophosphates, dioxins, di(2-ethylhexyl)phthalate (DEHP) and pesticides including pyrifenox, carbamates and terbuthylazine. PAHs and organophosphates were found to be more reactive than dioxins and PCBs. Based on the obtained data, quantitative structure-activity relationship (QSAR) models were developed to predict the k value using quantum chemical, molecular, physical property and environmental descriptors. Eight linear and nonlinear statistical models were employed, including regression models, bagging, random forest and gradient boosting. QSAR models were developed for SVOC/OH reactions in the gas and particle phases and SVOC/O3 reactions in the particle phase. Models for SVOC/NO3 and SVOC/O3 reactions in the gas phase could not be developed due to the lack of measured k values for model training. The least absolute shrinkage and selection operator (LASSO) regression and random forest models were identified as the most effective models for SVOC reactivity prediction according to a comparison of model performance metrics.
Collapse
Affiliation(s)
- Wenjuan Wei
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447, Marne La Vallée Cedex 2, France.
| | - Sutharsini Sivanantham
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447, Marne La Vallée Cedex 2, France
| | - Laeticia Malingre
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447, Marne La Vallée Cedex 2, France
| | - Olivier Ramalho
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447, Marne La Vallée Cedex 2, France
| | - Corinne Mandin
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447, Marne La Vallée Cedex 2, France
| |
Collapse
|
9
|
Gao R, Liu B, Zhan L, Guo J, Zhang J, Xu Z. In-situ debromination mechanism based on self-activation and catalysis of Ca(OH) 2 during pyrolysis of waste printed circuit boards. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122447. [PMID: 32193111 DOI: 10.1016/j.jhazmat.2020.122447] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Completely and deeply removed bromide from waste printed circuit boards (WPCBs) is necessary due to their toxicity and carcinogenicity. To achieve this purpose, calcium hydroxide (Ca(OH)2) as a debromination agent was added during pyrolysis process of WPCBs. The results showed that hydrogen bromide (HBr), 4-bromophenol, 2-bromophenol and 2,4-dibromophenol were the main bromide species in pyrolysis products. The Ca(OH)2 plays a significant role for removing HBr and organic bromide, but not affects products yield. Optimal removal efficiency for 4-bromophenol, 2-bromophenol and 2,4-dibromophenol reached 87.5 %, 74.6 % and 54.5 %, respectively. And debromination efficiency was related to the steric hindrance caused by bromide atoms. The Ca(OH)2 can be activated by captured HBr and its thermal decomposition. And the newly-generated calcium bromide and calcium oxide significantly facilitate debromination due to their high surface energy and reactivity. The debromination mechanism was clarified by experiments coupled with computational chemistry: the coordination of bromide and calcium to form [Ph-Br···Ca2+] or [Ph-Br···Caatom]. Then, electrons were delivered form bromide atom to Ca2+ or Caatom, which resulted in the stretch and weaken the C-Br bond. Hence, the C-Br bond was more easily to break. This work can provide support for designing novel and efficient debromination agents applied for high-temperature system.
Collapse
Affiliation(s)
- Ruitong Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Binyang Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Lu Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jie Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Jie Zhang
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
10
|
Liao Z, Zeng M, Wang L. Atmospheric oxidation mechansim of polychlorinated biphenyls (PCBs) initiated by OH radicals. CHEMOSPHERE 2020; 240:124756. [PMID: 31563106 DOI: 10.1016/j.chemosphere.2019.124756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 05/16/2023]
Abstract
Long-range atmospheric transport (LRAT) is the main route for circulating polychlorinated biphenyls (PCBs) from sources to sinks. In the atmosphere, PCBs containing six and less chlorine substitutions exist mainly as vapour, which can be oxidized by OH radical. Here, using quantum chemistry and transition state theory, we calculated the rate coefficients for reactions of OH radical with selected PCBs. The predicted rate coefficients agree with the available experimental values within a factor of 3. Calculations show that all PCBs considered here are persistent with their half-lives longer than 24 h. Reactions of PCBs with OH radical start with OH addition to the phenyl rings, forming PCB-n-OH adducts. Fate of biphenyl-n-OH (BP-n-OH, n = 2, 3, 4) adducts in the atmosphere is investigated. Calculations show that these radical adducts react similarly to benzene-OH adducts, forming hydroxybiphenyl (HO-BP) as main product and bicyclic radicals as minor products in their reaction with O2. Effective rates of reaction with O2 in the atmosphere are relatively slow, ∼1400, ∼45000, and ∼800 s-1 for BP-2-OH, BP-3-OH, and BP-4-OH, respectively. This suggests considerable reactions between BP-n-OH adducts and NO2, forming nitrobiphenyls. The bicyclic radicals from BP-n-OH + O2 would further transform to highly oxidized products as observed in a previous study. PCB-OH adducts react similarly as BP-n-OH radicals. For the three PCB-OH radicals considered here, their reactions with O2 also form HO-PCBs and bicyclic radicals.
Collapse
Affiliation(s)
- Zhihong Liao
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Min Zeng
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Liming Wang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Li C, Liu J, Wu N, Pan X, Feng J, Al-Basher G, Allam AA, Qu R, Wang Z. Photochemical formation of hydroxylated polychlorinated biphenyls (OH-PCBs) from decachlorobiphenyl (PCB-209) on solids/air interface. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120758. [PMID: 31207486 DOI: 10.1016/j.jhazmat.2019.120758] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
In this work, the photochemical transformation of decachlorobiphenyl (PCB-209) on the surface of several solid particles were systematically evaluated under simulated solar irradiation. The degradation kinetics of PCB-209 were first investigated using silica as a model aerosol particulate. It was found that PCB-209 photodegradation was enhanced at small silica particle size, low surface coverage and low humidity. Electron paramagnetic resonance (EPR) analysis and radicals quenching experiments demonstrated that hydroxyl radicals contributed to PCB-209 degradation. Stepwise hydrodechlorination, hydroxyl addition and cleavage of the CC bridge bond were mainly observed in the reaction process, leading to the formation of lower chlorinated PCBs, hydroxylated PCBs (OH-PCBs) and chlorophenols. Based on density functional theory (DFT) calculation, the dissociation energy of the CCl bond requires 354.81-359.79 kJ/mol energy that corresponds to a wavelength of less than 322 nm. And the minimum activation energy of OH radicals attack on PCB-209 is only 18.12 kJ/mol. Photochemical transformation of PCB-209 can also occur on the surface of natural particles, but the rates were inhibited as compared to silica. The hydroxylation and hydrodechlorination products of PCB-209 were detected in all natural particles. This study would make significant contribution to understanding the fate of PCBs in solids/air interface.
Collapse
Affiliation(s)
- Chenguang Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Jiaoqin Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Xiaoxue Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Jianfang Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Gadh Al-Basher
- King Saud University, College of Science, Zoology Department, P.O. Box 2455, Riyadh, 11451, Saudia Arabia
| | - Ahmed A Allam
- Beni-Suef University, Faculty of Science, Zoology Department, Beni-Suef, 65211, Egypt
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China.
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| |
Collapse
|
12
|
Rashidian N, Zahedi E, Shiroudi A. Kinetic and mechanistic insight into the OH-initiated atmospheric oxidation of 2,3,7,8-tetrachlorodibenzo-p-dioxin via OH-addition and hydrogen abstraction pathways: A theoretical investigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:106-114. [PMID: 31082585 DOI: 10.1016/j.scitotenv.2019.05.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
The 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most toxic polychlorinated dibenzo-p-dioxin. The OH-initiated oxidation of TCDD has been studied using the density functional, canonical transition state, and canonical Rice-Ramsperger-Kassel-Marcus theories. The kinetic data were corrected for quantum tunneling by the Wigner and Eckart models. All OH addition and hydrogen atom abstraction channels were thermodynamically exergonic. The kinetic and thermodynamic data analysis at the reliable level MPWB1K/MG3S//M06-2X/MG3S indicate that the addition of OH to the carbon atom adjacent to the oxygen atom in dioxin ring leads to the formation of predominant adduct. The calculated bimolecular rate constant for the formation of predominant adduct was ~5.97-6.75 × 10-13 cm3 molecule-1 s-1, its branching ratio was ~0.955, and the overall rate constant for the OH-initiated oxidation of TCDD was ~6.25-7.08 × 10-13 cm3 molecule-1 s-1. The atmospheric lifetime of TCDD determined by OH was ~8.17-9.26 days indicating the TCDD can be categorized as medium lifetime organic pollutant.
Collapse
Affiliation(s)
- Nooshin Rashidian
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Ehsan Zahedi
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran.
| | - Abolfazl Shiroudi
- Young Researchers and Elite Club, East Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Ge J, Huang D, Han Z, Wang X, Wang X, Wang Z. Photochemical behavior of benzophenone sunscreens induced by nitrate in aquatic environments. WATER RESEARCH 2019; 153:178-186. [PMID: 30711793 DOI: 10.1016/j.watres.2019.01.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Benzophenones (BPs), which are widely used UV filters, have aroused considerable public concern owing to their potential endocrine-disrupting activities. Herein, we systematically investigated their photochemical behavior and fate, which is mediated by nitrate in aquatic environments. The results showed that 10 μM of 3 BPs can be completely degraded within 4 h of simulated sunlight irradiation in a 10 mM nitrate solution at pH 8.0, and 2,4-dihydroxybenzophenone (BP-1) has a 31.6% mineralization rate after 12 h irradiation. Their photolytic rates (kobs) presented a significant linear correlation with the logarithmic values of the nitrate concentration for 0.1-10 mM (R2 > 0.98), and in three actual waters, the rates of BP-1 were also positively related to the intrinsic nitrate concentration. Furthermore, higher transformation rates under alkaline condition were observed, especially for BP-1, with its kobs at pH 10 being 8.3-fold higher than that at pH 6.0. Moreover, dissolved oxygen (DO) also has an impact on the reaction kinetics to some degree. According to the quenching experiments, we found that three reactive oxygen species (ROS), namely, •OH, •NO, and •NO2, participated in this photolysis of BPs, and the contribution of •OH accounted for 32.1%. Furthermore, we selected BP-1 as the model molecule to study the transformation pathways and toxicity changes in this system. Four main transformation pathways including hydroxylation, nitrosylation, nitration, and dimerization were proposed, based on liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) analysis and density functional theory (DFT). According to the toxicity test, the formed intermediates were more toxic to Photobacterium phosphoreum than the parent BP-1. Therefore, these results can help reveal primary phototransformation mechanisms and evaluate the potential ecological risks of BPs in aquatic environments.
Collapse
Affiliation(s)
- Jiali Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Zerong Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Xiaolin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China.
| | - Xinghao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China.
| |
Collapse
|
14
|
Chen J, Wu N, Xu X, Qu R, Li C, Pan X, Wei Z, Wang Z. Fe(VI)-Mediated Single-Electron Coupling Processes for the Removal of Chlorophene: A Combined Experimental and Computational Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12592-12601. [PMID: 30299936 DOI: 10.1021/acs.est.8b01830] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Potassium ferrate [Fe(VI)] is a promising oxidant widely used in water treatment for the elimination of organic pollutants. In this work, the reaction kinetics, products, and mechanisms of the antimicrobial agent chlorophene (CP) undergoing Fe(VI) oxidation in aqueous solutions were investigated. CP is very readily degraded by Fe(VI), with the apparent second-order rate constant, k, being 423.2 M-1 s-1 at pH 8.0. A total of 22 oxidation products were identified using liquid chromatography-quadrupole time-of-flight-mass spectrometry , and their structures were further elucidated using tandem mass spectrometry. According to the extracted peak areas in mass spectra, the main reaction products were the coupling products (dimers, trimers, and tetramers) that formed via single-electron coupling. Theoretical calculations demonstrated that hydrogen abstraction should easily occur at the hydroxyl group to produce reactive CP· radicals for subsequent polymerization. Cleavage of the C-C bridge bond, electrophilic substitution, hydroxylation, ring opening, and decarboxylation were also observed during the Fe(VI) oxidation process. In addition, the degradation of CP by Fe(VI) was also effective in real waters, which provides a basis for potential applications.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , P. R. China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , P. R. China
| | - Xinxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , P. R. China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , P. R. China
| | - Chenguang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , P. R. China
| | - Xiaoxue Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , P. R. China
| | - Zhongbo Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , P. R. China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , P. R. China
| |
Collapse
|
15
|
Liu L, Kupiainen-Määttä O, Zhang H, Li H, Zhong J, Kurtén T, Vehkamäki H, Zhang S, Zhang Y, Ge M, Zhang X, Li Z. Clustering mechanism of oxocarboxylic acids involving hydration reaction: Implications for the atmospheric models. J Chem Phys 2018; 148:214303. [DOI: 10.1063/1.5030665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Oona Kupiainen-Määttä
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2a), FI-00014 Helsinki, Finland
| | - Haijie Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hao Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jie Zhong
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Theo Kurtén
- Institute for Atmospheric and Earth System Research/Chemistry, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2a), FI-00014 Helsinki, Finland
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2a), FI-00014 Helsinki, Finland
| | - Shaowen Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yunhong Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Maofa Ge
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zesheng Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
16
|
Recovery of metals from anodic dissolution slime of waste from electric and electronic equipment(WEEE) by extraction in ionic liquids. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-7225-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Shah S, Hao C. Quantum chemical investigation on photodegradation mechanisms of sulfamethoxypyridazine with dissolved inorganic matter and hydroxyl radical. J Environ Sci (China) 2017. [PMID: 28647269 DOI: 10.1016/j.jes.2016.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sulfamethoxypyridazine (SMP) is one of the commonly used sulfonamide antibiotics (SAs). SAs are mainly studied to undergo triplet-sensitized photodegradation in water under natural sunlight with other coexisting aquatic environmental organic pollutants. In this work, SMP was selected as a representative of SAs. We studied the mechanisms of triplet-sensitized photodegradation of SMP and the influence of selected dissolved inorganic matter, i.e., anions (Br-, Cl-, and NO3-) and cations ions (Ca2+, Mg2+, and Zn2+) on SMP photodegradation mechanism by quantum chemical methods. In addition, the degradation mechanisms of SMP by hydroxyl radical (OH) were also investigated. The creation of SO2 extrusion product was accessed with two different energy pathways (pathway-1 and pathway-2) by following two steps (step-I and step-II) in the triplet-sensitized photodegradation of SMP. Due to low activation energy, the pathway-1 was considered as the main pathway to obtain SO2 extrusion product. Step-II of pathway-1 was measured to be the rate-limiting step (RLS) of SMP photodegradation mechanism and the effect of the selected anions and cations was estimated for this step. All selected anions and cations promoted photodegradation of SMP by dropping the activation energy of pathway-1. The estimated low activation energies of different degradation pathways of SMP with OH radical indicate that OH radical is a very powerful oxidizing agent for SMP degradation via attack through benzene derivative and pyridazine derivative ring.
Collapse
Affiliation(s)
- Shaheen Shah
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China; Department of Chemistry, Karakorum International University, Gilgit-Baltistan 15100, Pakistan
| | - Ce Hao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
18
|
Jin R, Zhan J, Liu G, Zhao Y, Zheng M, Yang L, Wang M. Profiles of polychlorinated biphenyls (PCBs) in cement kilns co-processing solid waste. CHEMOSPHERE 2017; 174:165-172. [PMID: 28161517 DOI: 10.1016/j.chemosphere.2017.01.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
Co-incineration of sewage sludge in cement kilns can be used for its disposal. In the present study, samples were collected from three cement production runs where sewage sludge and other wastes (e.g. municipal solid waste, waste acid and wet sewage sludge) were co-processed. The samples were analyzed for polychlorinated biphenyls (PCBs). The dioxin-like (dl)-PCB concentrations in the stack gases from run 1, 2, and 3 were 344.6, 548.7, and 104.3 pg m-3, respectively. The toxic equivalency (TEQs) values for runs 1, 2, and 3 were 5.6, 8.9, and 0.7 pg TEQ Nm-3, respectively. Calculation of net emissions for the three runs indicated that the co-incineration of other waste in addition to sewage sludge in cement kilns would not increase emission of the dl-PCBs. PCB concentrations in samples from the suspension boiler and humidifier tower, kiln-end bag filter, and cyclone preheater were much higher than those in samples from the kiln head area, indicating that these stages will be important for controlling PCB formation. Chlorinated biphenyl (CB)-77, CB-105 and CB-118 were the major dl-PCB congeners, CB-52, CB-101 were the major indicator PCB congeners, and tetra-CB to hexa-CB were the major homologues for the total input or output materials.
Collapse
Affiliation(s)
- Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayu Zhan
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing 100041, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuyang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Luo S, Wei Z, Spinney R, Yang Z, Chai L, Xiao R. A novel model to predict gas-phase hydroxyl radical oxidation kinetics of polychlorinated compounds. CHEMOSPHERE 2017; 172:333-340. [PMID: 28088023 DOI: 10.1016/j.chemosphere.2017.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/01/2017] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
In this study, a novel model based on aromatic meta-substituent grouping was presented to predict the second-order rate constants (k) for OH oxidation of PCBs in gas-phase. Since the oxidation kinetics are dependent on the chlorination degree and position, we hypothesized that it may be more accurate for k value prediction if we group PCB congeners based on substitution positions (i.e., ortho (o), meta (m), and para (p)). To test this hypothesis, we examined the correlation of polarizability (α), a quantum chemical based descriptor for k values, with an empirical Hammett constant (σ+) on each substitution position. Our result shows that α is highly linearly correlated to ∑σo,m,p+ based on aromatic meta-substituents leading to the grouping based predictive model. With the new model, the calculated k values exhibited an excellent agreement with experimental measurements, and greater predictive power than the quantum chemical based quantitative structure activity relationship (QSAR) model. Further, the relationship of α and ∑σo,m,p+ for PCDDs congeners, together with highest occupied molecular orbital (HOMO) distribution, were used to validate the aromatic meta-substituent grouping method. This newly developed model features a combination of good predictability of quantum chemical based QSAR model and simplicity of Hammett relationship, showing a great potential for fast and computational tractable prediction of k values for gas-phase OH oxidation of polychlorinated compounds.
Collapse
Affiliation(s)
- Shuang Luo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Zongsu Wei
- Grand Water Research Institute-Rabin Desalination Laboratory, Wolfson Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, 32000, Israel
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Zhihui Yang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Liyuan Chai
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.
| |
Collapse
|
20
|
Zeng X, Chen J, Qu R, Pan X, Wang Z. The OH-initiated atmospheric chemical reactions of polyfluorinated dibenzofurans and polychlorinated dibenzofurans: A comparative theoretical study. CHEMOSPHERE 2017; 168:10-17. [PMID: 27776226 DOI: 10.1016/j.chemosphere.2016.10.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
The atmospheric chemical reactions of some polyfluorinated dibenzofurans (PFDFs) and polychlorinated dibenzofurans (PCDFs), initiated by OH radical, were investigated by performing theoretical calculations using density functional theory (DFT) and B3LYP/6-311++G(2df,p) method. The obtained results indicate that OH addition reactions of PFDFs and PCDFs occurring at C1∼4 and CA sites are thermodynamic spontaneous changes and the branching ratio of the PF(C)DF-OH adducts is decided primarily by kinetic factor. The OH addition reactions of PFDFs taking place at fluorinated C1∼4 positions are kinetically comparable with those occurring at nonfluorinated C1∼4 positions, while OH addition reactions of PCDFs occurring at chlorinated C1∼4 sites are negligible. The total rate constants of the addition reactions of PFDFs or PCDFs become smaller with consecutive fluorination or chlorination, and substituting at C1 position has more adverse effects than substitution at other sites. The succedent O2 addition reactions of PF(C)DF-OH adducts are thermodynamic nonspontaneous processes under the atmospheric conditions, and have high Gibbs free energies of activation (ΔrG≠). The substituted dibenzofuranols are the primary oxidation products for PCDFs under the atmospheric conditions. However, other oxidative products may also be available for PFDFs besides substituted dibenzofuranols.
Collapse
Affiliation(s)
- Xiaolan Zeng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; College of Chemistry and Chemical Engineering, Xinyang Normal University, Henan, Xinyang, 464000, China
| | - Jing Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaoxue Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
21
|
Yang Z, Luo S, Wei Z, Ye T, Spinney R, Chen D, Xiao R. Rate constants of hydroxyl radical oxidation of polychlorinated biphenyls in the gas phase: A single-descriptor based QSAR and DFT study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 211:157-164. [PMID: 26748251 DOI: 10.1016/j.envpol.2015.12.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
The second-order rate constants (k) of hydroxyl radical (·OH) with polychlorinated biphenyls (PCBs) in the gas phase are of scientific and regulatory importance for assessing their global distribution and fate in the atmosphere. Due to the limited number of measured k values, there is a need to model the k values for unknown PCBs congeners. In the present study, we developed a quantitative structure-activity relationship (QSAR) model with quantum chemical descriptors using a sequential approach, including correlation analysis, principal component analysis, multi-linear regression, validation, and estimation of applicability domain. The result indicates that the single descriptor, polarizability (α), plays an important role in determining the reactivity with a global standardized function of lnk = -0.054 × α ‒ 19.49 at 298 K. In order to validate the QSAR predicted k values and expand the current k value database for PCBs congeners, an independent method, density functional theory (DFT), was employed to calculate the kinetics and thermodynamics of the gas-phase ·OH oxidation of 2,4',5-trichlorobiphenyl (PCB31), 2,2',4,4'-tetrachlorobiphenyl (PCB47), 2,3,4,5,6-pentachlorobiphenyl (PCB116), 3,3',4,4',5,5'-hexachlorobiphenyl (PCB169), and 2,3,3',4,5,5',6-heptachlorobiphenyl (PCB192) at 298 K at B3LYP/6-311++G**//B3LYP/6-31 + G** level of theory. The QSAR predicted and DFT calculated k values for ·OH oxidation of these PCB congeners exhibit excellent agreement with the experimental k values, indicating the robustness and predictive power of the single-descriptor based QSAR model we developed.
Collapse
Affiliation(s)
- Zhihui Yang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Shuang Luo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Zongsu Wei
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Tiantian Ye
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Dong Chen
- Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana, 46805, USA
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.
| |
Collapse
|
22
|
AWAD ANDREWM, MARTINEZ ANDRES, MAREK RACHELF, HORNBUCKLE KERIC. Occurrence and Distribution of Two Hydroxylated Polychlorinated Biphenyl Congeners in Chicago Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2016; 3:47-51. [PMID: 30246046 PMCID: PMC6148743 DOI: 10.1021/acs.estlett.5b00337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We measured hydroxylated polychlorinated biphenyls (OH-PCBs) in both gas and particulate phases in 30 Chicago air samples, the first report of OH-PCBs in environmental air samples. Concentrations of 2OH-PCB2 and 6OH-PCB2 in both phases were similar to PCB2 measured in the same samples, from non-detect to 11 pgm-3 and 12 ngg-1 for the gas and particulate phases, respectively. We found that OH-PCB2s sorbed more to particulates than did PCB2; seasonal variability was larger than spatial variability across Chicago; and partial pressure and temperature strongly correlated with the two OH-PCBs (p<0.0001). Similar 6OH-PCB2:2OH-PCB2 ratios were found in our air samples and Aroclors, suggesting that Aroclors are a legacy source of OH-PCB2s to the atmosphere and appear to be volatilizing proportionally to PCBs in Aroclors. Although degradation by the hydroxyl radical has been proposed as an efficient loss process for airborne PCBs, we found no evidence that this mechanism results in the formation of OH-PCB2s.
Collapse
Affiliation(s)
- ANDREW M. AWAD
- Department of Civil and Environmental Engineering IIHR-Hydroscience and
Engineering. The University of Iowa, Iowa City, IA 52242 USA
| | - ANDRES MARTINEZ
- Department of Civil and Environmental Engineering IIHR-Hydroscience and
Engineering. The University of Iowa, Iowa City, IA 52242 USA
| | - RACHEL F. MAREK
- Department of Civil and Environmental Engineering IIHR-Hydroscience and
Engineering. The University of Iowa, Iowa City, IA 52242 USA
| | - KERI C. HORNBUCKLE
- Department of Civil and Environmental Engineering IIHR-Hydroscience and
Engineering. The University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|