1
|
Olaya‐Abril A, Biełło K, Rodríguez‐Caballero G, Cabello P, Sáez LP, Moreno‐Vivián C, Luque‐Almagro VM, Roldán MD. Bacterial tolerance and detoxification of cyanide, arsenic and heavy metals: Holistic approaches applied to bioremediation of industrial complex wastes. Microb Biotechnol 2024; 17:e14399. [PMID: 38206076 PMCID: PMC10832572 DOI: 10.1111/1751-7915.14399] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Cyanide is a highly toxic compound that is found in wastewaters generated from different industrial activities, such as mining or jewellery. These residues usually contain high concentrations of other toxic pollutants like arsenic and heavy metals that may form different complexes with cyanide. To develop bioremediation strategies, it is necessary to know the metabolic processes involved in the tolerance and detoxification of these pollutants, but most of the current studies are focused on the characterization of the microbial responses to each one of these environmental hazards individually, and the effect of co-contaminated wastes on microbial metabolism has been hardly addressed. This work summarizes the main strategies developed by bacteria to alleviate the effects of cyanide, arsenic and heavy metals, analysing interactions among these toxic chemicals. Additionally, it is discussed the role of systems biology and synthetic biology as tools for the development of bioremediation strategies of complex industrial wastes and co-contaminated sites, emphasizing the importance and progress derived from meta-omic studies.
Collapse
Affiliation(s)
- Alfonso Olaya‐Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Karolina Biełło
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Gema Rodríguez‐Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Lara P. Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Conrado Moreno‐Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Víctor Manuel Luque‐Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| |
Collapse
|
2
|
Kazakova J, Villar-Navarro M, Ramos-Payán M, Aranda-Merino N, Román-Hidalgo C, Bello-López MÁ, Fernández-Torres R. Monitoring of pharmaceuticals in aquatic biota (Procambarus clarkii) of the Doñana National Park (Spain). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113314. [PMID: 34298344 DOI: 10.1016/j.jenvman.2021.113314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
In this work the presence of different pharmaceuticals at Doñana National Park (Spain) and their main entry sources (input source or entry points) have been stated over the 2011-2016 years period. Twenty-three selected pharmaceuticals (corresponding to eight therapeutic families) were evaluated in crayfish and water samples from Doñana National Park (Spain) (six sampling points selected in order to cover different possible pollution sources into and surrounding the Park). The multiresidue determination was carried out using enzymatic-microwave assisted extraction prior to high performance liquid chromatography mass spectrometry detection. Sulphonamides (sulfadiazine, sulfamerazine, sulfamethazine, and sulfamethoxazole); trimethoprim, an antibiotic that is frequently co-administered with sulfamethoxazole; amphenicols (chloramphenicol, florfenicol and thiamphenicol); fluoroquinolones (ciprofloxacin, enrofloxacin, flumequine, danofloxacin, gatifloxacin, norfloxacin, marbofloxacin and grepafloxacin); penicillins (amoxicillin); tetracyclines (chlortetracycline and oxytetracycline); non-steroidal anti-inflammatory drugs (salicylic acid and ibuprofen); beta-blocker drugs (atenolol); and antiepileptics (carbamazepine) were analysed. Ciprofloxacin, ibuprofen, salicylic acid, flumequine, and carbamazepine were detected and/or quantified at some of the selected sampling points. A clear ecotoxicological risk to the ecosystem was demonstrated from the occurrence of ciprofloxacin in samples obtained after the punctual and massive presence of people inside the Park. Furthermore, flumequine and carbamazepine have been detected in Procambarus clarkii specimens in concentrations around 30 ng g-1 and 14 ng g-1, respectively, and their occurrence in the specimens could indicate the persistence of the discharge sources. The main source of pharmaceuticals into the Park might be the livestock farming activities, and the influence of urban wastewaters from surrounding villages does not seem to be very important.
Collapse
Affiliation(s)
- Julia Kazakova
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n., 41012, Seville, Spain
| | - Mercedes Villar-Navarro
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n., 41012, Seville, Spain
| | - María Ramos-Payán
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n., 41012, Seville, Spain
| | - Noemí Aranda-Merino
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n., 41012, Seville, Spain
| | - Cristina Román-Hidalgo
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n., 41012, Seville, Spain
| | - Miguel Ángel Bello-López
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n., 41012, Seville, Spain.
| | - Rut Fernández-Torres
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, c/Prof. García González, s/n., 41012, Seville, Spain.
| |
Collapse
|
3
|
Herruzo-Ruiz AM, Fuentes-Almagro CA, Jiménez-Pastor JM, Pérez-Rosa VM, Blasco J, Michán C, Alhama J. Meta-omic evaluation of bacterial microbial community structure and activity for the environmental assessment of soils: overcoming protein extraction pitfalls. Environ Microbiol 2021; 23:4706-4725. [PMID: 34258847 DOI: 10.1111/1462-2920.15673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 11/27/2022]
Abstract
Microorganisms play unique, essential and integral roles in the biosphere. This work aims to assess the utility of soil's metaomics for environmental diagnosis. Doñana National Park (DNP) was selected as a natural lab since it contains a strictly protected core that is surrounded by numerous threats of pollution. Culture-independent high-throughput molecular tools were used to evaluate the alterations of the global structure and metabolic activities of the microbiome. 16S rRNA sequencing shows lower bacterial abundance and diversity in areas historically exposed to contamination that surround DNP. For metaproteomics, an innovative post-alkaline protein extraction protocol was developed. After NaOH treatment, successive washing with Tris-HCl buffer supplemented with glycerol was essential to eliminate interferences. Starting from soils with different physicochemical characteristics, the method renders proteins with a remarkable resolution on SDS-PAGE gels. The proteins extracted were analysed by using an in-house database constructed from the rRNA data. LC-MS/MS analysis identified 2182 non-redundant proteins with 135 showing significant differences in relative abundance in the soils around DNP. Relevant global biological processes were altered in response to the environmental changes, such as protective and antioxidant mechanisms, translation, folding and homeostasis of proteins, membrane transport and aerobic respiratory metabolism.
Collapse
Affiliation(s)
- Ana M Herruzo-Ruiz
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| | | | - José M Jiménez-Pastor
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| | - Víctor M Pérez-Rosa
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, Puerto Real, E-11510, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| | - José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| |
Collapse
|
4
|
Dong Z, Haines S, Coates D. Proteomic Profiling of Stem Cell Tissues during Regeneration of Deer Antler: A Model of Mammalian Organ Regeneration. J Proteome Res 2020; 19:1760-1775. [DOI: 10.1021/acs.jproteome.0c00026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhen Dong
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Stephen Haines
- Proteins & Metabolites, AgResearch Lincoln Research Centre, Lincoln, New Zealand
| | - Dawn Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Morales-Prieto N, López de Lerma N, Pacheco IL, Huertas-Abril PV, Pérez J, Peinado R, Abril N. Protective effect of Pedro-Ximénez must against p,p'-DDE-induced liver damages in aged Mus spretus mice. Food Chem Toxicol 2020; 136:110984. [PMID: 31765701 DOI: 10.1016/j.fct.2019.110984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
|
6
|
Michán C, Chicano-Gálvez E, Fuentes-Almagro CA, Alhama J. Redox and global interconnected proteome changes in mice exposed to complex environmental hazards surrounding Doñana National Park. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:427-439. [PMID: 31158671 DOI: 10.1016/j.envpol.2019.05.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Natural environments are receiving an increasing number of contaminants. Therefore, the evaluation and identification of early responses to pollution in these complex habitats is an urgent and challenging task. Doñana National Park (DNP, SW Spain) has been widely used as a model area for environmental studies because, despite its strictly protected core, it is surrounded by numerous threat sources from agricultural, mining and industrial activities. Since many pollutants often induce oxidative stress, redox proteomics was used to detect redox-based variations within the proteome of Mus spretus mice captured in DNP and the surrounding areas. Functional analysis showed that most differentially oxidized proteins are involved in the maintenance of homeostasis, by eliciting mechanisms to respond to toxic substances and oxidative stress, such as antioxidant and biotransformation processes, immune and inflammatory responses, and blood coagulation. Furthermore, changes in the overall protein abundance were also analysed by label-free quantitative proteomics. The upregulation of phase I and II biotransformation enzymes in mice from Lucio del Palacio may be an alert for organic pollution in the area located at the heart of DNP. Metabolic processes involved in protein turnover (proteolysis, amino acid catabolism, new protein biosynthesis and folding) were activated in response to oxidative damage to these biomolecules. Consequently, aerobic respiratory metabolism increased to address the greater ATP demands. Alterations of cholesterol metabolism that could cause hepatic steatosis were also detected. The proteomic detection of globally altered metabolic and physiological processes offers a complete view of the main biological changes caused by environmental pollution in complex habitats.
Collapse
Affiliation(s)
- Carmen Michán
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | | | | | - José Alhama
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain.
| |
Collapse
|
7
|
Quina AS, Durão AF, Muñoz-Muñoz F, Ventura J, da Luz Mathias M. Population effects of heavy metal pollution in wild Algerian mice (Mus spretus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:414-424. [PMID: 30639867 DOI: 10.1016/j.ecoenv.2018.12.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Heavy metal mining is one of the largest sources of environmental pollution. The analysis of different types of biomarkers in sentinel species living in contaminated areas provides a measure of the degree of the ecological impact of pollution and is thus a valuable tool for human and environmental risk assessments. In previous studies we found that specimens from two populations of the Algerian mice (Mus spretus) living in two abandoned heavy metal mines (Aljustrel and Preguiça, Portugal) had higher body burdens of heavy metals, which led to alterations in enzymatic activities and in haematological, histological and genotoxic parameters, than mice from a nearby reference population. We have now analysed individuals from the same sites at the biometric and genetic levels to get a broader portrayal of the impact of heavy metal pollution on biodiversity, from molecules to populations. Size and shape variations of the mouse mandible were searched by implementing the geometric morphometric method. Population genetic differentiation and diversity parameters (φST estimates; nucleotide and haplotype diversities) were studied using the mitochondrial cytochrome b gene (Cytb) and the control region (CR). The morphometric analyses revealed that animals from the three sites differed significantly in the shape of the mandible, but mandibular shape varied in a more resembling way within individuals of both mine sites, which is highly suggestive for an effect of environmental quality on normal development pathways in Algerian mice. Also, antisymmetry in mandible size and shape was detected in all populations, making these traits not reliable indicators of developmental instability. Overall little genetic differentiation was found among the three populations, although pairwise φST comparisons revealed that the Aljustrel and the Preguiça populations were each differentiated from the other two populations in Cytb and in CR, respectively. Genetic diversity parameters revealed higher genetic diversity for Cytb in the population from Aljustrel, while in the population from Preguiça diversity of the two markers changed in opposite directions, higher genetic diversity in CR and lower in Cytb, compared to the reference population. Demographic changes and increased mutation rates may explain these findings. We show that developmental patterns and genetic composition of wild populations of a small mammal can be affected by chronic heavy metal exposure within a relatively short time. Anthropogenic stress may thus influence the evolutionary path of natural populations, with largely unpredictable ecological costs.
Collapse
Affiliation(s)
- Ana Sofia Quina
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa (FCUL), Lisboa, Portugal; Centro de Estudos do Ambiente e do Mar - Lisboa (CESAM; FCUL), Lisboa, Portugal.
| | - Ana Filipa Durão
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa (FCUL), Lisboa, Portugal
| | - Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
| | - Maria da Luz Mathias
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa (FCUL), Lisboa, Portugal; Centro de Estudos do Ambiente e do Mar - Lisboa (CESAM; FCUL), Lisboa, Portugal
| |
Collapse
|
8
|
Alhama J, Fuentes-Almagro CA, Abril N, Michán C. Alterations in oxidative responses and post-translational modification caused by p,p´-DDE in Mus spretus testes reveal Cys oxidation status in proteins related to cell-redox homeostasis and male fertility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:656-669. [PMID: 29723838 DOI: 10.1016/j.scitotenv.2018.04.305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
The major derivate of DDT, 1,1-dichloro-2,2-bis (p-chlorophenyl) ethylene (p,p´-DDE), is a persistent pollutant previously associated with oxidative stress. Additionally, p,p´-DDE has been linked to several metabolic alterations related to sexual function in rodents. In this study, we analysed the effects of a non-lethal p,p´-DDE dose to Mus spretus mice in testes, focusing on oxidative damage to biomolecules, defence mechanisms against oxidative stress and post-translational protein modifications. No increase in lipid or DNA oxidation was observed, although antioxidative enzymatic defences and redox status of glutathione were altered in several ways. Global protein carbonylation and phosphorylation were significantly reduced in testes from p,p´-DDE-exposed mice; however, the total redox state of Cys thiols did not exhibit a defined pattern. We analysed the reversible redox state of specific Cys residues in detail with differential isotopic labelling and a shotgun labelling-based MS/MS proteomic approach for identification and quantification of altered peptides. Our results show that Cys residues are significantly affected by p,p´-DDE in several proteins related to oxidative stress and/or male fertility, particularly those participating in fertilization, sperm capacitation and blood coagulation. These molecular changes could explain the sexual abnormalities previously described in p,p´-DDE exposed organisms.
Collapse
Affiliation(s)
- José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Carlos A Fuentes-Almagro
- Servicio Central de Apoyo a la Investigación (SCAI), Unidad de Proteómica, Universidad de Córdoba, Campus de Rabanales, Edificio Ramón y Cajal, E-14071 Córdoba, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain.
| |
Collapse
|
9
|
Morales-Prieto N, Ruiz-Laguna J, Sheehan D, Abril N. Transcriptome signatures of p,p´-DDE-induced liver damage in Mus spretus mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:150-167. [PMID: 29554563 DOI: 10.1016/j.envpol.2018.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/19/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
The use of DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) in some countries, although regulated, is contributing to an increased worldwide risk of exposure to this organochlorine pesticide or its derivative p,p'-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene]. Many studies have associated p,p'-DDE exposure to type 2 diabetes, obesity and alterations of the reproductive system, but their molecular mechanisms of toxicity remain poorly understood. We have addressed this issue by using commercial microarrays based on probes for the entire Mus musculus genome to determine the hepatic transcriptional signatures of p,p'-DDE in the phylogenetically close mouse species Mus spretus. High-stringency hybridization conditions and analysis assured reliable results, which were also verified, in part, by qRT-PCR, immunoblotting and/or enzymatic activity. Our data linked 198 deregulated genes to mitochondrial dysfunction and perturbations of central signaling pathways (kinases, lipids, and retinoic acid) leading to enhanced lipogenesis and aerobic glycolysis, inflammation, cell proliferation and testosterone catabolism and excretion. Alterations of transcript levels of genes encoding enzymes involved in testosterone catabolism and excretion would explain the relationships established between p,p´-DDE exposure and reproductive disorders, obesity and diabetes. Further studies will help to fully understand the molecular basis of p,p´-DDE molecular toxicity in liver and reproductive organs, to identify effective exposure biomarkers and perhaps to design efficient p,p'-DDE exposure counteractive strategies.
Collapse
Affiliation(s)
- Noelia Morales-Prieto
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Julia Ruiz-Laguna
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - David Sheehan
- College of Arts and Science, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain.
| |
Collapse
|
10
|
Morales-Prieto N, Abril N. REDOX proteomics reveals energy metabolism alterations in the liver of M. spretus mice exposed to p, p'-DDE. CHEMOSPHERE 2017; 186:848-863. [PMID: 28826133 DOI: 10.1016/j.chemosphere.2017.08.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/27/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
The toxicity induced by the pesticide 2,2-bis(p-chlorophenyl)-1,1,1,-trichloroethane (DDT) and its derivative 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE) has been associated with mitochondrial dysfunction, uncoupling of oxidative phosphorylation and respiratory chain electron transport, intracellular ion imbalance, generation of reactive oxygen species and impairment of the antioxidant defense system. A disruption in the cellular redox status causes protein Cys-based regulatory shifts that influence the activity of many proteins and trigger signal transduction alterations. Here, we analyzed the ability of p,p'-DDE to alter the activities of hepatic antioxidants and glycolytic enzymes to investigate the oxidative stress generation in the liver of p,p'-DDE-fed M. spretus mice. We also determined the consequences of the treatment on the redox status in the thiol Cys groups. The data indicate that the liver of p,p'-DDE exposed mice lacks certain protective enzymes, and p,p'-DDE caused a metabolic reprogramming that increased the glycolytic rate and disturbed the metabolism of lipids. Our results suggested that the overall metabolism of the liver was altered because important signaling pathways are controlled by p,p'-DDE-deregulated proteins. The histological data support the proposed metabolic consequences of the p,p'-DDE exposure.
Collapse
Affiliation(s)
- Noelia Morales-Prieto
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, España, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, España, Spain.
| |
Collapse
|
11
|
Shao Y, Yin X, Kang D, Shen B, Zhu Z, Li X, Li H, Xie L, Wang G, Liang Y. An integrated strategy for the quantitative analysis of endogenous proteins: A case of gender-dependent expression of P450 enzymes in rat liver microsome. Talanta 2017; 170:514-522. [DOI: 10.1016/j.talanta.2017.04.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/14/2017] [Accepted: 04/21/2017] [Indexed: 12/17/2022]
|
12
|
Fernández-Cisnal R, García-Sevillano MA, Gómez-Ariza JL, Pueyo C, López-Barea J, Abril N. 2D-DIGE as a proteomic biomarker discovery tool in environmental studies with Procambarus clarkii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:813-827. [PMID: 28159302 DOI: 10.1016/j.scitotenv.2017.01.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
UNLABELLED A 2D-DIGE/MS approach was used to assess protein abundance differences in the red swamp crayfish Procambarus clarkii from polluted aquatic ecosystems of Doñana National Park and surrounding areas with different pollution loads. Procambarus clarkii accumulated metals in the digestive glands and gills reflecting sediment concentrations. We first stated that, probably related to elements accumulation, pollution increased oxidative damage in P. clarkii tissues, as shown by the thiol oxidation status of proteins and MDA levels. In these animals, the altered redox status might be responsible for the deregulated abundance of proteins involved in cellular responses to oxidative stress including protein folding, mitochondrial imbalance and inflammatory processes. Interestingly, polluted P. clarkii crayfish also displayed a metabolic shift to enhanced aerobic glycolysis, most likely aimed at generating ATP and reduction equivalents in an oxidative stress situation that alters mitochondrial integrity. The deregulated proteins define the physiological processes affected by pollutants in DNP and its surrounding areas and may help us to unravel the molecular mechanisms underlying the toxicity of environmental pollutants. In addition, these proteins might be used as exposure biomarkers in environmental risk assessment. The results obtained might be extrapolated to many other locations all over the world and have the added value of providing information about the molecular responses of this environmentally and economically interesting animal. SIGNIFICANCE Metal content in digestive gland and gills of P. clarkii crayfish reflects their contents in sediments at sites of Doñana National Park and its surroundings. Accumulation of essential and toxic transition metals is paralleled by clear signs of oxidative stress to lipids and proteins and by significant deregulation of many proteins involved in protein folding, mitochondrial respiratory imbalance and inflammatory response. These results indicate that P. clarkii is an excellent bioindicator to be used in aquatic ecosystems quality monitoring. Additionally, results evidence that the anthropogenic activities carried out around Doñana National Park represent an extremely serious threat to this unique Biosphere Reserve and pose a risk to the environment and their inhabitants health. The identified deregulated proteins provide information about the metabolic pathways and/or physiological processes affected by pollutant-elicited oxidative stress, may also be useful as biomarkers of environmental pollution and have the added value of providing information about the molecular responses of this environmentally and economically interesting animal.
Collapse
Affiliation(s)
- Ricardo Fernández-Cisnal
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Miguel A García-Sevillano
- Department of Chemistry and Materials Science, Faculty of Experimental Science and Agrifood Campus of International Excellence (ceiA3), University of Huelva, El Carmen Campus, 21007 Huelva, Spain
| | - José L Gómez-Ariza
- Department of Chemistry and Materials Science, Faculty of Experimental Science and Agrifood Campus of International Excellence (ceiA3), University of Huelva, El Carmen Campus, 21007 Huelva, Spain
| | - Carmen Pueyo
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Juan López-Barea
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain..
| |
Collapse
|
13
|
Guo X, Xu J, Cui X, Chen H, Qi H. iTRAQ-based Protein Profiling and Fruit Quality Changes at Different Development Stages of Oriental Melon. BMC PLANT BIOLOGY 2017; 17:28. [PMID: 28129739 PMCID: PMC5273850 DOI: 10.1186/s12870-017-0977-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/17/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Oriental melon is one of the most popular crops for its nutritional and flavour quality. Components that determine melon quality, such as sugar, colour, texture, flavour and aroma, among other factors, accumulate in different developmental stages. Thus, correlating the proteomic profiles with the biochemical and physiological changes occurring in the oriental melon is very important for advancing our understanding of oriental melon quality in the ripening processes. RESULTS iTRAQ-based protein profiling was conducted on 'YuMeiren' oriental melon fruit at different developmental stages. Physiological quality indices, including firmness, rind colour, soluble solids content (SSC), ethylene production, sugar content and volatile compounds were also characterized during four maturity periods of the melon, including 5, 15, 25 and 35 days after anthesis (DAA). A principal component analysis (PCA) revealed that the aroma volatiles at 5 DAA and 15 DAA were similar and separated from that of 35 DAA. More than 5835 proteins were identified and quantified in the two biological repeats and divided into 4 clusters by hierarchical cluster analysis. A functional analysis was performed using Blast2GO software based on the enrichment of a GO analysis for biological process, molecular function and cellular components. The main KEGG pathways, such as glycolysis, α-linolenic acid and starch and sucrose metabolism, were analyzed. The gene family members corresponding to differentially expressed proteins, including lipoxygenase (CmLOX01-18) and alcohol acetyltransferase (CmAAT1-4) involved in the α-linolenic acid metabolic pathway, were verified with real-time qPCR. The results showed that the expression patterns of 64.7% of the genes were consistent with the expression patterns of the corresponding proteins. CONCLUSIONS This study combined the variation of the quality index and differentially expressed proteins of oriental melon at different developmental stages that laid the foundation for the subsequent protein and gene function validation.
Collapse
Affiliation(s)
- Xiaoou Guo
- College of Horticulture, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Collaborative innovation center of protected vegetable suround Bohai gulf region Shenyang, Shenyang Agricultural University, Liaoning, 110866 People’s Republic of China
| | - Jingjing Xu
- College of Horticulture, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Collaborative innovation center of protected vegetable suround Bohai gulf region Shenyang, Shenyang Agricultural University, Liaoning, 110866 People’s Republic of China
| | - Xiaohui Cui
- College of Horticulture, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Collaborative innovation center of protected vegetable suround Bohai gulf region Shenyang, Shenyang Agricultural University, Liaoning, 110866 People’s Republic of China
| | - Hao Chen
- College of Horticulture, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Collaborative innovation center of protected vegetable suround Bohai gulf region Shenyang, Shenyang Agricultural University, Liaoning, 110866 People’s Republic of China
| | - Hongyan Qi
- College of Horticulture, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Collaborative innovation center of protected vegetable suround Bohai gulf region Shenyang, Shenyang Agricultural University, Liaoning, 110866 People’s Republic of China
| |
Collapse
|
14
|
González-Domínguez R, Santos HM, Bebianno MJ, García-Barrera T, Gómez-Ariza JL, Capelo JL. Combined proteomic and metallomic analyses in Scrobicularia plana clams to assess environmental pollution of estuarine ecosystems. MARINE POLLUTION BULLETIN 2016; 113:117-124. [PMID: 27593851 DOI: 10.1016/j.marpolbul.2016.08.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 06/06/2023]
Abstract
Estuaries are very important ecosystems with great ecological and economic value, but usually highly impacted by anthropogenic pressure. Thus, the assessment of pollution levels in these habitats is critical in order to evaluate their environmental quality. In this work, we combined complementary metallomic and proteomic approaches with the aim to monitor the effects of environmental pollution on Scrobicularia plana clams captured in three estuarine systems from the south coast of Portugal; Arade estuary, Ria Formosa and Guadiana estuary. Multi-elemental profiling of digestive glands was carried out to evaluate the differential pollution levels in the three study areas. Then, proteomic analysis by means of two-dimensional gel electrophoresis and mass spectrometry revealed twenty-one differential proteins, which could be associated with multiple toxicological mechanisms induced in environmentally stressed organisms. Accordingly, it could be concluded that the combination of different omic approaches presents a great potential in environmental research.
Collapse
Affiliation(s)
- Raúl González-Domínguez
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, 21007 Huelva, Spain; Campus of Excellence International ceiA3, University of Huelva, Spain; Research Center of Health and Environment (CYSMA), University of Huelva, Campus de El Carmen, 21007 Huelva, Spain.
| | - Hugo Miguel Santos
- UCIBIO-REQUIMTE, Chemistry Department, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; ProteoMass Scientific Society, MadanPark, Rua dos Inventores s/n, Monte de Caparica, 2829-516 Caparica, Portugal.
| | - Maria João Bebianno
- CIMA, Faculty of Marine and Environmental Sciences, University of Algarve, Campus de Gambelas, 8005-135 Faro, Portugal.
| | - Tamara García-Barrera
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, 21007 Huelva, Spain; Campus of Excellence International ceiA3, University of Huelva, Spain; Research Center of Health and Environment (CYSMA), University of Huelva, Campus de El Carmen, 21007 Huelva, Spain.
| | - José Luis Gómez-Ariza
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, 21007 Huelva, Spain; Campus of Excellence International ceiA3, University of Huelva, Spain; Research Center of Health and Environment (CYSMA), University of Huelva, Campus de El Carmen, 21007 Huelva, Spain.
| | - José Luis Capelo
- UCIBIO-REQUIMTE, Chemistry Department, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; ProteoMass Scientific Society, MadanPark, Rua dos Inventores s/n, Monte de Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|