1
|
Soliman H, Ismaeil M, Soussa H, El-Sayed WS. Unveiling organohalide respiration potential in River Nile sediments via 16S rRNA gene amplicon sequencing of endogenous bacterial communities. BMC Microbiol 2025; 25:186. [PMID: 40165092 PMCID: PMC11956321 DOI: 10.1186/s12866-025-03864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Industrial waste, agricultural runoff and untreated sewage contaminate the Nile, leaving a toxic legacy in its sediments. Organohalides-polluted sediment in particular poses serious public health risks and detrimental effects on aquatic life. Sediment microbiomes may harbor bacterial strains that could be utilized in bioremediation of such toxic pollutants. MATERIAL AND METHODS Two microbiomes from polluted River Nile sediments were analyzed by using 16S rRNA gene amplicon sequencing. In addition, PICRUSt analysis based on 16S rRNA data was used to explore the organohalide respiring bacteria (OHRB) genera and their corresponding organohalide respiration (OHR) activity. Microcosm studies were performed to validate the potential for dechlorination activity of River Nile sediment. Dechlorination of the parent chloroethenes into daughter end product were detected by gas chromatography coupled with flame ionization detection analysis. RESULTS Analysis of 16S rRNA gene amplicon sequences using the EZ-biocloud server identified Proteobacteria as the dominant phylum in both microbiomes, with Bacteroidetes and Chloroflexi prevalent in RNS1 sediment and Chlorobi in RNS2 sediment. EZ-biocloud and PCR analyses detected several potential OHRB genera, including Dehalococcoides, Dehalogenimonas, Desulfomonile, Desulfovibrio, and Geobacter, suggesting potential OHR activity. Further evidence for potential OHR activity was provided by PICRUSt functional prediction analysis, which suggested the presence of reductive dehalogenases as functional biomarkers associated with OHR in the sediment samples. Specifically, PICRUSt analysis predicted the presence of potential genes of tetrachloroethene reductive dehalogenase and 3-chloro-4-hydroxyphenylacetate reductive dehalogenase, previously linked to OHR. Microcosm studies confirmed the dechlorination potential of tetrachloroethene to dichloroethene. CONCLUSION This study demonstrates that River Nile sediment in industrialized area harbors distinct microbiomes enclosing various OHRB genera, providing substantial evidence for potential reductive dechlorination activity. It also provides potential functional biomarkers for OHR activity.
Collapse
Affiliation(s)
- Hwayda Soliman
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed Ismaeil
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Hoda Soussa
- Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt
| | - Wael S El-Sayed
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Zeppilli M, Matturro B. Bioremediation Experience Collected in "Bioengineering in Remediation of Polluted Environments": A Closing Perspective by Guest Editors. Bioengineering (Basel) 2025; 12:122. [PMID: 40001642 PMCID: PMC11852182 DOI: 10.3390/bioengineering12020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
The article collection entitled "Bioengineering in Remediation of Polluted Environments" was launched in September 2021 [...].
Collapse
Affiliation(s)
- Marco Zeppilli
- Department of Chemistry, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy
- National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
3
|
Matturro B, Di Franca ML, Tonanzi B, Cruz Viggi C, Aulenta F, Di Leo M, Giandomenico S, Rossetti S. Enrichment of Aerobic and Anaerobic Hydrocarbon-Degrading Bacteria from Multicontaminated Marine Sediment in Mar Piccolo Site (Taranto, Italy). Microorganisms 2023; 11:2782. [PMID: 38004793 PMCID: PMC10673493 DOI: 10.3390/microorganisms11112782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Marine sediments act as a sink for the accumulation of various organic contaminants such as polychlorobiphenyls (PCBs). These contaminants affect the composition and activity of microbial communities, particularly favoring those capable of thriving from their biodegradation and biotransformation under favorable conditions. Hence, contaminated environments represent a valuable biological resource for the exploration and cultivation of microorganisms with bioremediation potential. In this study, we successfully cultivated microbial consortia with the capacity for PCB removal under both aerobic and anaerobic conditions. The source of these consortia was a multicontaminated marine sediment collected from the Mar Piccolo (Taranto, Italy), one of Europe's most heavily polluted sites. High-throughput sequencing was employed to investigate the dynamics of the bacterial community of the marine sediment sample, revealing distinct and divergent selection patterns depending on the imposed reductive or oxidative conditions. The aerobic incubation resulted in the rapid selection of bacteria specialized in oxidative pathways for hydrocarbon transformation, leading to the isolation of Marinobacter salinus and Rhodococcus cerastii species, also known for their involvement in aerobic polycyclic aromatic hydrocarbons (PAHs) transformation. On the other hand, anaerobic incubation facilitated the selection of dechlorinating species, including Dehalococcoides mccartyi, involved in PCB reduction. This study significantly contributes to our understanding of the diversity, dynamics, and adaptation of the bacterial community in the hydrocarbon-contaminated marine sediment from one sampling point of the Mar Piccolo basin, particularly in response to stressful conditions. Furthermore, the establishment of consortia with biodegradation and biotransformation capabilities represents a substantial advancement in addressing the challenge of restoring polluted sites, including marine sediments, thus contributing to expanding the toolkit for effective bioremediation strategies.
Collapse
Affiliation(s)
- Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Maria Letizia Di Franca
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| | - Barbara Tonanzi
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Magda Di Leo
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| | - Santina Giandomenico
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| |
Collapse
|
4
|
Liu X, Zhang L, Shen R, Lu Q, Zeng Q, Zhang X, He Z, Rossetti S, Wang S. Reciprocal Interactions of Abiotic and Biotic Dechlorination of Chloroethenes in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14036-14045. [PMID: 37665676 DOI: 10.1021/acs.est.3c04262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Chloroethenes (CEs) as common organic pollutants in soil could be attenuated via abiotic and biotic dechlorination. Nonetheless, information on the key catalyzing matter and their reciprocal interactions remains scarce. In this study, FeS was identified as a major catalyzing matter in soil for the abiotic dechlorination of CEs, and acetylene could be employed as an indicator of the FeS-mediated abiotic CE-dechlorination. Organohalide-respiring bacteria (OHRB)-mediated dechlorination enhanced abiotic CEs-to-acetylene potential by providing dichloroethenes (DCEs) and trichloroethene (TCE) since chlorination extent determined CEs-to-acetylene potential with an order of trans-DCE > cis-DCE > TCE > tetrachloroethene/PCE. In contrast, FeS was shown to inhibit OHRB-mediated dechlorination, inhibition of which could be alleviated by the addition of soil humic substances. Moreover, sulfate-reducing bacteria and fermenting microorganisms affected FeS-mediated abiotic dechlorination by re-generation of FeS and providing short chain fatty acids, respectively. A new scenario was proposed to elucidate major abiotic and biotic processes and their reciprocal interactions in determining the fate of CEs in soil. Our results may guide the sustainable management of CE-contaminated sites by providing insights into interactions of the abiotic and biotic dechlorination in soil.
Collapse
Affiliation(s)
- Xiaokun Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Lian Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Rui Shen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Xiaojun Zhang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Simona Rossetti
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Via Salaria, 00185 Roma, Italy
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Li Q, Pei L, Huang Z, Shu W, Li Q, Song Y, Zhao H, Schäfer M, Nordhaus I. Ecological risk assessment of heavy metals in the sediments and their impacts on bacterial community structure: A case study of Bamen Bay in China. MARINE POLLUTION BULLETIN 2023; 186:114482. [PMID: 36565579 DOI: 10.1016/j.marpolbul.2022.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal pollution associated with human activity is of big concern in tropical bays. Microorganisms may be highly sensitive to heavy metals. Nonetheless, little is known about effects of heavy metals on microbial structure in tropical bay sediments. In this study, 16S rRNA gene sequencing and potential ecological risk index analysis were used to analyze the relationships between nine metals (arsenic, lead, cadmium, cobalt, chromium, copper, zinc, manganese, and nickel) and bacterial communities in the sediments of Bamen Bay, China. Our results showed that Bamen Bay was under a considerable ecological risk and cadmium had the highest monomial potential ecological risk. In addition, individual metal contamination correlated with bacterial community composition but not with bacterial α-diversity. Arsenic was the metal influencing bacterial community structure the most. Our findings provide a novel insight into the monitoring and remediation of heavy metal pollution in tropical bays.
Collapse
Affiliation(s)
- Qipei Li
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Lixin Pei
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Zanhui Huang
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Wei Shu
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Qiuli Li
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yanwei Song
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China.
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology and Environment, Hainan University, Haikou 570228, China.
| | - Marvin Schäfer
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen 28359, Germany
| | - Inga Nordhaus
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen 28359, Germany
| |
Collapse
|
6
|
Di Franca ML, Matturro B, Crognale S, Zeppilli M, Dell’Armi E, Majone M, Petrangeli Papini M, Rossetti S. Microbiome Composition and Dynamics of a Reductive/Oxidative Bioelectrochemical System for Perchloroethylene Removal: Effect of the Feeding Composition. Front Microbiol 2022; 13:951911. [PMID: 35923400 PMCID: PMC9340161 DOI: 10.3389/fmicb.2022.951911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Chlorinated solvents still represent an environmental concern that requires sustainable and innovative bioremediation strategies. This study describes the microbiome composition of a novel bioelectrochemical system (BES) based on sequential reductive/oxidative dechlorination for complete perchloroethylene (PCE) removal occurring in two separate but sequential chambers. The BES has been tested under various feeding compositions [i.e., anaerobic mineral medium (MM), synthetic groundwater (SG), and real groundwater (RG)] differing in presence of sulfate, nitrate, and iron (III). In addition, the main biomarkers of the dechlorination process have been monitored in the system under various conditions. Among them, Dehalococcoides mccartyi 16S rRNA and reductive dehalogenase genes (tceA, bvcA, and vcrA) involved in anaerobic dechlorination have been quantified. The etnE and etnC genes involved in aerobic dechlorination have also been quantified. The feeding composition affected the microbiome, in particular when the BES was fed with RG. Sulfuricurvum, enriched in the reductive compartment, operated with MM and SG, suggesting complex interactions in the sulfur cycle mostly including sulfur oxidation occurring at the anodic counter electrode (MM) or coupled to nitrate reduction (SG). Moreover, the known Mycobacterium responsible for natural attenuation of VC by aerobic degradation was found abundant in the oxidative compartment fed with RG, which was in line with the high VC removal observed (92 ± 2%). D. mccartyi was observed in all the tested conditions ranging from 8.78E + 06 (with RG) to 2.35E + 07 (with MM) 16S rRNA gene copies/L. tceA was found as the most abundant reductive dehalogenase gene in all the conditions explored (up to 2.46 E + 07 gene copies/L in MM). The microbiome dynamics and the occurrence of biomarkers of dechlorination, along with the kinetic performance of the system under various feeding conditions, suggested promising implications for the scale-up of the BES, which couples reductive with oxidative dechlorination to ensure the complete removal of highly chlorinated ethylene and mobile low-chlorinated by-products.
Collapse
Affiliation(s)
- Maria L. Di Franca
- Water Research Institute-National Research Council (IRSA-CNR), Rome, Italy
| | - Bruna Matturro
- Water Research Institute-National Research Council (IRSA-CNR), Rome, Italy
| | - Simona Crognale
- Water Research Institute-National Research Council (IRSA-CNR), Rome, Italy
| | - Marco Zeppilli
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | - Mauro Majone
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | - Simona Rossetti
- Water Research Institute-National Research Council (IRSA-CNR), Rome, Italy
| |
Collapse
|
7
|
Dehalogenation of Chlorinated Ethenes to Ethene by a Novel Isolate, " Candidatus Dehalogenimonas etheniformans". Appl Environ Microbiol 2022; 88:e0044322. [PMID: 35674428 DOI: 10.1128/aem.00443-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dehalococcoides mccartyi strains harboring vinyl chloride (VC) reductive dehalogenase (RDase) genes are keystone bacteria for VC detoxification in groundwater aquifers, and bioremediation monitoring regimens focus on D. mccartyi biomarkers. We isolated a novel anaerobic bacterium, "Candidatus Dehalogenimonas etheniformans" strain GP, capable of respiratory dechlorination of VC to ethene. This bacterium couples formate and hydrogen (H2) oxidation to the reduction of trichloro-ethene (TCE), all dichloroethene (DCE) isomers, and VC with acetate as the carbon source. Cultures that received formate and H2 consumed the two electron donors concomitantly at similar rates. A 16S rRNA gene-targeted quantitative PCR (qPCR) assay measured growth yields of (1.2 ± 0.2) × 108 and (1.9 ± 0.2) × 108 cells per μmol of VC dechlorinated in cultures with H2 or formate as electron donor, respectively. About 1.5-fold higher cell numbers were measured with qPCR targeting cerA, a single-copy gene encoding a putative VC RDase. A VC dechlorination rate of 215 ± 40 μmol L-1 day-1 was measured at 30°C, with about 25% of this activity occurring at 15°C. Increasing NaCl concentrations progressively impacted VC dechlorination rates, and dechlorination ceased at 15 g NaCl L-1. During growth with TCE, all DCE isomers were intermediates. Tetrachloroethene was not dechlorinated and inhibited dechlorination of other chlorinated ethenes. Carbon monoxide formed and accumulated as a metabolic by-product in dechlorinating cultures and impacted reductive dechlorination activity. The isolation of a new Dehalogenimonas species able to effectively dechlorinate toxic chlorinated ethenes to benign ethene expands our understanding of the reductive dechlorination process, with implications for bioremediation and environmental monitoring. IMPORTANCE Chlorinated ethenes are risk drivers at many contaminated sites, and current bioremediation efforts focus on organohalide-respiring Dehalococcoides mccartyi strains to achieve detoxification. We isolated and characterized the first non-Dehalococcoides bacterium, "Candidatus Dehalogenimonas etheniformans" strain GP, capable of metabolic reductive dechlorination of TCE, all DCE isomers, and VC to environmentally benign ethene. In addition to hydrogen, the new isolate utilizes formate as electron donor for reductive dechlorination, providing opportunities for more effective electron donor delivery to the contaminated subsurface. The discovery that a broader microbial diversity can achieve detoxification of toxic chlorinated ethenes in anoxic aquifers illustrates the potential of naturally occurring microbes for biotechnological applications.
Collapse
|
8
|
Lu Q, Liu J, He H, Liang Z, Qiu R, Wang S. Waste activated sludge stimulates in situ microbial reductive dehalogenation of organohalide-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125189. [PMID: 33858119 DOI: 10.1016/j.jhazmat.2021.125189] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Due to its enriched organic matter, nutrients and growth cofactors, as well as a diverse range of microorganisms, waste activated sludge (WAS) might be an ideal additive to stimulate organohalide respiration for in situ bioremediation of organohalide-contaminated sites. In this study, we investigated the biostimulation and bioaugmentation impacts of WAS-amendment on the performance and microbiome in tetrachloroethene (PCE) and polychlorinated biphenyls (PCBs) dechlorinating microcosms. Results demonstrated that WAS-amendment increased PCE- and PCBs-dechlorination rate as much as 6.06 and 10.67 folds, respectively. The presence of WAS provided a favorable growth niche for organohalide-respiring bacteria (OHRB), including redox mediation and generation of electron donors and carbon sources. Particularly for the PCE dechlorination, indigenous Geobacter and WAS-derived Dehalococcoides were identified to play key roles in PCE-to-dichloroethene (DCE) and DCE-to-ethene dechlorination, respectively. Similar biostimulation and bioaugmentation effects of WAS-amendment were observed on both PCE- and PCBs-dechlorination in three different soils, i.e., laterite, brown loam and paddy soil. Risk assessment suggested low potential ecological risk of WAS amendment in remediation of organohalide-contaminated soil. Overall, this study provided an economic and efficient strategy to stimulate the organohalide respiration-based bioremediation in field applications.
Collapse
Affiliation(s)
- Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Jinting Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Haozheng He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Rongliang Qiu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
9
|
Khalid F, Hashmi MZ, Jamil N, Qadir A, Ali MI. Microbial and enzymatic degradation of PCBs from e-waste-contaminated sites: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10474-10487. [PMID: 33411303 DOI: 10.1007/s11356-020-11996-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/07/2020] [Indexed: 05/21/2023]
Abstract
Electronic waste is termed as e-waste and on recycling it produces environmental pollution. Among these e-waste pollutants, polychlorinated biphenyls (PCBs) are significantly important due to ubiquitous, organic in nature and serious health and environmental hazards. PCBs are used in different electrical equipment such as in transformers and capacitors for the purposes of exchange of heat and hydraulic fluids. Bioremediation is a reassuring technology for the elimination of the PCBs from the environment. In spite of their chemical stability, there are several microbes which can bio-transform or mineralize the PCBs aerobically or anaerobically. In this review paper, our objective was to summarize the information regarding PCB-degrading enzymes and microbes. The review suggested that the most proficient PCB degraders during anaerobic condition are Dehalobacter, Dehalococcoides, and Desulfitobacterium and in aerobic condition are Burkholderia, Achromobacter, Comamonas, Ralstonia, Pseudomonas, Bacillus, and Alcaligenes etc., showing the broadest substrate among bacterial strains. Enzymes found in soil such as dehydrogenases and fluorescein diacetate (FDA) esterases have the capability to breakdown PCBs. Biphenyl upper pathway involves four enzymes: dehydrogenase (bphB), multicomponent dioxygenase (bphA, E, F, and G), second dioxygenase (bphC), hydrolase, and (bphD). Biphenyl dioxygenase is considered as the foremost enzyme used for aerobic degradation of PCBs in metabolic pathway. It has been proved that several micro-organisms are responsible for the PCB metabolization. The review provides novel strategies for e-waste-contaminated soil management.
Collapse
Affiliation(s)
- Foqia Khalid
- College of Earth and Environmental Science, University of the Punjab, Lahore, Pakistan
| | - Muhammad Zaffar Hashmi
- Department of Chemistry, COMSATS University Islamabad, Islamabad, 44000, Pakistan.
- Pakistan Academy of Science, 3-Constitution Avenue Sector G-5/2, Islamabad, Pakistan.
| | - Nadia Jamil
- College of Earth and Environmental Science, University of the Punjab, Lahore, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Science, University of the Punjab, Lahore, Pakistan
| | - Muhammad Ishtiaq Ali
- Department of Microbiology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| |
Collapse
|
10
|
Matturro B, Rossetti S, Leitão P. CAtalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) for Complex Environmental Samples. Methods Mol Biol 2021; 2246:129-140. [PMID: 33576987 DOI: 10.1007/978-1-0716-1115-9_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
CARD-FISH technique allows us to increase microbial cell detection compared to traditional FISH assays. Specific nonfluorescent oligonucleotide probes targeting 16S rRNA genes are employed and are chemically activated by the binding of tyramide molecules, with the latter able to generate a cascade of fluorescence signals, improving sensitivity and reducing background noise. The technique has been successfully applied for the detection of microorganisms in different environmental matrices and under different growth conditions (including those where cells are characterized by low physiological activity and low ribosome content). This chapter presents a straightforward procedure to execute CARD-FISH analysis, from sample preparation and fixation, to microscopic visualization, along with relevant technical notes.
Collapse
Affiliation(s)
- Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo St. (RM), 00015, Italy.
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo St. (RM), 00015, Italy
| | - Patrícia Leitão
- Cento de Recursos Naturais e Ambiente (CERENA), Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Tang S, Song X, Wang Q, Wang S. Effects of two surfactants on microbial diversity of a PCE-degrading microbial consortium. CHEMOSPHERE 2020; 261:127685. [PMID: 32771713 DOI: 10.1016/j.chemosphere.2020.127685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/23/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
The effects of two representative surfactants, Rhamnolipids and Tween 80, on the microbial diversity of a PCE-degrading consortium during surfactant-enhanced biodegradation, were explored. The biodegradation efficiency was increased from 47.25% to 73.44%, and 47.25%-66.69%, with the addition of Rhamnolipid at 10 mg/L and Tween 80 at 50 mg/L, respectively. PCE biodegradation kinetics can be described by the pseudo-first-order reaction model for both scenarios. Analyses of alpha and beta indices of the microbial consortium showed that the microbial diversity of both groups exposed to either surfactant was not significantly different from the PCE only group. However, the bacterial abundance in the consortium changed significantly at both the phylum and genus levels. The results demonstrated that the composition of the PCE-degrading consortium is relatively stable, but the exposure to both surfactants results in the enrichment of some genera, which could contribute to the increased biodegradation efficiency.
Collapse
Affiliation(s)
- Shiyue Tang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing, 210008, China
| | - Qing Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing, 210008, China; National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, China.
| | - Shui Wang
- Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Road, Nanjing, Jiangsu 210036, China
| |
Collapse
|
12
|
Jroundi F, Martinez-Ruiz F, Merroun ML, Gonzalez-Muñoz MT. Exploring bacterial community composition in Mediterranean deep-sea sediments and their role in heavy metal accumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135660. [PMID: 31791772 DOI: 10.1016/j.scitotenv.2019.135660] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
The role of microbial processes in bioaccumulation of major and trace elements has been broadly demonstrated. However, microbial communities from marine sediments have been poorly investigated to this regard. In marine environments, particularly under high anthropogenic pressure, heavy metal accumulation increases constantly, which may lead to significant environmental issues. A better knowledge of bacterial diversity and its capability to bioaccumulate metals is essential to face environmental quality assessment. The oligotrophic westernmost Mediterranean, which is highly sensitive to environmental changes and subjected to increasing anthropogenic pressure, was selected for this study. A sediment core spanning the last two millennia was sampled at two intervals, with ages corresponding to 140 (S1) and 1400 (S2) yr BP. High-throughput sequencing showed an abundance of Bacillus, Micrococcus, unclassified members of Planococcaceae, Anaerolineaceae, Planctomycetaceae, Microlunatus, and Microbacterium in both intervals, with slight differences in their abundance, along with newly detected ones in S2, i.e., Propionibacterium, Fictibacillus, Thalassobacillus, and Bacteroides. Canonical correspondence analysis (CCA) and co-occurrence patterns confirmed strong correlations among the taxa and the environmental parameters, suggesting either shared and preferred environmental conditions, or the performance of functions similar to or complementary to each other. These results were further confirmed using culture-dependent methods. The diversity of the culturable bacterial community revealed a predominance of Bacillus, and Micrococcus or Kocuria. The interaction of these bacterial communities with selected heavy metals (Cu, Cr, Zn and Pb) was also investigated, and their capacity of bioaccumulating metals within the cells and/or in the extracellular polymeric substances (EPS) is demonstrated. Interestingly, biomineralization of Pb resulted in the precipitation of Pb phosphates (pyromorphite). Our study supports that remnants of marine bacterial communities can survive in deep-sea sediments over thousands of years. This is extremely important in terms of bioremediation, in particular when considering possible environmentally friendly strategies to bioremediate inorganic contaminants.
Collapse
Affiliation(s)
- Fadwa Jroundi
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
| | - Francisca Martinez-Ruiz
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Av. de las Palmeras 4, 18100 (Armilla) Granada, Spain.
| | - Mohamed L Merroun
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
| | - María Teresa Gonzalez-Muñoz
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
| |
Collapse
|
13
|
Reductive/Oxidative Sequential Bioelectrochemical Process for Perchloroethylene Removal. WATER 2019. [DOI: 10.3390/w11122579] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An innovative bioelectrochemical reductive/oxidative sequential process was developed and tested on a laboratory scale to obtain the complete mineralization of perchloroethylene (PCE) in a synthetic medium. The sequential bioelectrochemical process consisted of two separate tubular bioelectrochemical reactors that adopted a novel reactor configuration, avoiding the use of an ion exchange membrane to separate the anodic and cathodic chamber and reducing the cost of the reactor. In the reductive reactor, a dechlorinating mixed inoculum received reducing power to perform the reductive dechlorination of perchloroethylene (PCE) through a cathode chamber, while the less chlorinated daughter products were removed in the oxidative reactor, which supported an aerobic dechlorinating culture through in situ electrochemical oxygen evolution. Preliminary fluid dynamics and electrochemical tests were performed to characterize both the reductive and oxidative reactors, which were electrically independent of each other, with each having its own counterelectrode. The first continuous-flow potentiostatic run with the reductive reactor (polarized at −450 mV vs SHE) resulted in obtaining 100% ± 1% removal efficiency of the influent PCE, while the oxidative reactor (polarized at +1.4 V vs SHE) oxidized the vinyl chloride and ethylene from the reductive reactor, with removal efficiencies of 100% ± 2% and 92% ± 1%, respectively.
Collapse
|
14
|
Ben Salem F, Ben Said O, Cravo-Laureau C, Mahmoudi E, Bru N, Monperrus M, Duran R. Bacterial community assemblages in sediments under high anthropogenic pressure at Ichkeul Lake/Bizerte Lagoon hydrological system, Tunisia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:644-656. [PMID: 31185353 DOI: 10.1016/j.envpol.2019.05.146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Bacterial communities inhabiting sediments in coastal areas endure the effect of strong anthropogenic pressure characterized by the presence of multiple contaminants. Understanding the effect of pollutants on the organization of bacterial communities is of paramount importance in order to unravel bacterial assemblages colonizing specific ecological niches. Here, chemical and molecular approaches were combined to investigate the bacterial communities inhabiting the sediments of the Ichkeul Lake/Bizerte Lagoon, a hydrological system under anthropogenic pressure. Although the microbial community of the Ichkeul Lake sediment was different to that of the Bizerte Lagoon, common bacterial genera were identified suggesting a lake-lagoon continuum probably due to the hydrology of the system exchanging waters according to the season. These genera represent bacterial "generalists" maintaining probably general biogeochemical functions. Linear discriminant analysis effect size (LEfSe) showed significant differential abundance distribution of bacterial genera according to the habitat, the pollution type and level. Further, correlation analyses identified specific bacterial genera which abundance was linked with pesticides concentrations in the lake, while in the lagoon the abundance of specific bacterial genera was found linked with the concentrations of PAHs (Polycyclic aromatic hydrocarbons) and organic forms of Sn. As well, bacterial genera which abundance was not correlated with the concentrations of pollutants were identified in both lake and lagoon. These findings represent valuable information, pointing out specific bacterial genera associated with pollutants, which represent assets for developing bacterial tools for the implementation, the management, and monitoring of bioremediation processes to mitigate the effect of pollutants in aquatic ecosystems.
Collapse
Affiliation(s)
- Fida Ben Salem
- Laboratoire de Biosurveillance de l'Environment, Faculté des Sciences de Bizerte, Tunisia; MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, Pau Cedex, 64013, France; Fédération de recherche MIRA, Université de Pau et des Pays de l'Adour, E2S-UPPA, France
| | - Olfa Ben Said
- Laboratoire de Biosurveillance de l'Environment, Faculté des Sciences de Bizerte, Tunisia; MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, Pau Cedex, 64013, France; Fédération de recherche MIRA, Université de Pau et des Pays de l'Adour, E2S-UPPA, France
| | - Cristiana Cravo-Laureau
- MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, Pau Cedex, 64013, France; Fédération de recherche MIRA, Université de Pau et des Pays de l'Adour, E2S-UPPA, France
| | - Ezzeddine Mahmoudi
- Laboratoire de Biosurveillance de l'Environment, Faculté des Sciences de Bizerte, Tunisia
| | - Noëlle Bru
- Laboratoire de Mathématiques et de leurs Applications, PAU UMR CNRS 5142, Université de Pau et des Pays de l'Adour, E2S-UPPA, France; Fédération de recherche MIRA, Université de Pau et des Pays de l'Adour, E2S-UPPA, France
| | - Mathilde Monperrus
- MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, Pau Cedex, 64013, France; Fédération de recherche MIRA, Université de Pau et des Pays de l'Adour, E2S-UPPA, France
| | - Robert Duran
- MELODY Group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, Pau Cedex, 64013, France; Fédération de recherche MIRA, Université de Pau et des Pays de l'Adour, E2S-UPPA, France.
| |
Collapse
|
15
|
Santana-Santos MA, Ordaz A, Jan-Roblero J, Bastida González F, Zárate Segura PB, Guerrero-Barajas C. Tolerance of a sulfidogenic sludge to trichloroethylene at microcosms level as a basis for a long-term operation of reactors designed for its biodegradation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:461-471. [PMID: 30676262 DOI: 10.1080/10934529.2019.1567157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Trichloroethylene (TCE) is known as a toxic organic compound found as a pollutant in water streams around the world. The ultimate goal of the present work was to determine the TCE concentration that would be feasible to biodegrade on a long-term basis by a sulfidogenic sludge while maintaining sulfate reducing activity (SRA). Microcosms were prepared with sulfidogenic sludge obtained from a stabilized sulfidogenic UASB and amended with different TCE concentrations (100-300 µM) and two different proportions of volatile fatty acids (VFA) acetate, propionate and butyrate at COD of 2.5:1:1 and 1:1:1, respectively to evaluate the tolerance of the sludge. The overall results suggested that the continuous exposure of the microorganisms to TCE leads to inhibition of SRA; nonetheless, the SRA can be recovered after adequate supplementation of carbon sources and sulfate. The most suitable TCE concentration to operate on a long-term basis while preserving SRA was 26-35 mg L-1 (200-260 µM). A low level of expression of the mRNA of the sulfite reductase subunit alpha (dsrA) gene was obtained in the presence of the TCE and its intermediate products. This gene was associated to SRB belonging to the genera Desulfovibrio, Desulfosalsimonas, Desulfotomaculum, Desulfococcus, Desulfatiglans and Desulfomonas.
Collapse
Affiliation(s)
- Mario Alberto Santana-Santos
- a Laboratorio de Biotecnología Ambiental, Departamento de Bioprocesos , Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional , Mexico City 07340 , Mexico
| | - Alberto Ordaz
- b Escuela de Ingeniería y Ciencias , Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Estado de México, Carretera Lago de Guadalupe Km 3.5, Margarita Maza de Juárez, Atizapán de Zaragoza , Estado de México , Mexico
| | - Janet Jan-Roblero
- c Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas , Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n, Col. Santo Tomás , Mexico City , Mexico
| | - Fernando Bastida González
- d Laboratorio de Biología Molecular, Laboratorio Estatal de Salud Pública del Estado de México. Paseo Tollocan s/n, Col. La Moderna de la Cruz , Estado de México , Toluca , Mexico
| | - Paola B Zárate Segura
- e Laboratorio de Medicina Traslacional , Escuela Superior de Medicina. Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas , Mexico City , Mexico
| | - Claudia Guerrero-Barajas
- a Laboratorio de Biotecnología Ambiental, Departamento de Bioprocesos , Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional , Mexico City 07340 , Mexico
| |
Collapse
|
16
|
Hermon L, Denonfoux J, Hellal J, Joulian C, Ferreira S, Vuilleumier S, Imfeld G. Dichloromethane biodegradation in multi-contaminated groundwater: Insights from biomolecular and compound-specific isotope analyses. WATER RESEARCH 2018; 142:217-226. [PMID: 29885622 DOI: 10.1016/j.watres.2018.05.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Dichloromethane (DCM) is a widespread and toxic industrial solvent which often co-occurs with chlorinated ethenes at polluted sites. Biodegradation of DCM occurs under both oxic and anoxic conditions in soils and aquifers. Here we investigated in situ and ex situ biodegradation of DCM in groundwater sampled from the industrial site of Themeroil (France), where DCM occurs as a major co-contaminant of chloroethenes. Carbon isotopic fractionation (εC) for DCM ranging from -46 to -22‰ were obtained under oxic or denitrifying conditions, in mineral medium or contaminated groundwater, and for laboratory cultures of Hyphomicrobium sp. strain GJ21 and two new DCM-degrading strains isolated from the contaminated groundwater. The extent of DCM biodegradation (B%) in the aquifer, as evaluated by compound-specific isotope analysis (δ13C), ranged from 1% to 85% applying DCM-specific εC derived from reference strains and those determined in this study. Laboratory groundwater microcosms under oxic conditions showed DCM biodegradation rates of up to 0.1 mM·day-1, with concomitant chloride release. Dehalogenase genes dcmA and dhlA involved in DCM biodegradation ranged from below 4 × 102 (boundary) to 1 × 107 (source zone) copies L-1 across the contamination plume. High-throughput sequencing on the 16S rrnA gene in groundwater samples showed that both contaminant level and terminal electron acceptor processes (TEAPs) influenced the distribution of genus-level taxa associated with DCM biodegradation. Taken together, our results demonstrate the potential of DCM biodegradation in multi-contaminated groundwater. This integrative approach may be applied to contaminated aquifers in the future, in order to identify microbial taxa and pathways associated with DCM biodegradation in relation to redox conditions and co-contamination levels.
Collapse
Affiliation(s)
- L Hermon
- Université de Strasbourg, CNRS, GMGM UMR 7156, Department of Microbiology, Genomics and the Environment, Strasbourg, France; BRGM, Geomicrobiology and Environmental Monitoring Unit, Orléans, France
| | - J Denonfoux
- Service Recherche, Développement et Innovation-Communautés Microbiennes, GenoScreen Lille, France
| | - J Hellal
- BRGM, Geomicrobiology and Environmental Monitoring Unit, Orléans, France
| | - C Joulian
- BRGM, Geomicrobiology and Environmental Monitoring Unit, Orléans, France
| | - S Ferreira
- Service Recherche, Développement et Innovation-Communautés Microbiennes, GenoScreen Lille, France
| | - S Vuilleumier
- Université de Strasbourg, CNRS, GMGM UMR 7156, Department of Microbiology, Genomics and the Environment, Strasbourg, France
| | - G Imfeld
- Université de Strasbourg, CNRS/EOST, LHyGeS UMR 7517, Laboratory of Hydrology and Geochemistry of Strasbourg, Strasbourg, France.
| |
Collapse
|
17
|
Wang YF, Zhu HW, Wang Y, Zhang XL, Tam NFY. Diversity and Dynamics of Microbial Community Structure in Different Mangrove, Marine and Freshwater Sediments During Anaerobic Debromination of PBDEs. Front Microbiol 2018; 9:952. [PMID: 29867858 PMCID: PMC5962692 DOI: 10.3389/fmicb.2018.00952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/24/2018] [Indexed: 01/11/2023] Open
Abstract
Little is known about the diversity and succession of indigenous microbial community during debromination of polybrominated diphenyl ethers (PBDEs). This study examined the diversity and dynamics of microbial community structure in eight saline (mangrove and marine) and freshwater sediment microcosms exhibiting different debrominating capabilities for hexa-BDE 153, a common congener in sediments, using terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses. The results showed that microbial community structure greatly differed between the saline and freshwater microcosms, likely leading to distinct variations in their debrominating capabilities and pathways. Higher relative abundances of Chloroflexi and Deltaproteobacteria succeed by Alphaproteobacteria and Betaproteobacteria were detected in the two mangrove microcosms with the fastest debrominating capabilities mainly via para pathway, respectively; the dominance of Alphaproteobacteria resulted in less accumulation of tetra-BDEs and more complete debromination of lower brominated congeners (from di- to tetra-BDEs). Meanwhile, the shifts in both microbial community structure and PBDE profiles were relatively small in the less efficient freshwater microcosms, with relatively more ortho and meta brominated products of BDE-153 resulted. Coincidently, one of the freshwater microcosms showed sudden increases of Chloroflexi and Deltaproteobacteria by the end of incubation, which synchronized with the increase in the removal rate of BDE-153. The significant relationship between microbial community structure and PBDEs was confirmed by redundancy analysis (18.7% of total variance explained, P = 0.002). However, the relative abundance of the well-known dechlorinator Dehalococcoides showed no clear correlation with the debrominating capability across different microcosms. These findings shed light in the significance of microbial community network in different saline environments on enhancement of PBDE intrinsic debromination.
Collapse
Affiliation(s)
- Ya Fen Wang
- Laboratory of Basin Hydrology and Wetland Eco-restoration, School of Environmental Studies, China University of Geosciences, Wuhan, China.,Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Hao Wen Zhu
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Ying Wang
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Xiang Ling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Nora Fung Yee Tam
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong.,State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
18
|
In silico characterization of a novel dehalogenase (DehHX) from the halophile Pseudomonas halophila HX isolated from Tuz Gölü Lake, Turkey: insights into a hypersaline-adapted dehalogenase. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1266-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
19
|
Obi CC, Adebusoye SA, Amund OO, Ugoji EO, Ilori MO, Hedman CJ, Hickey WJ. Structural dynamics of microbial communities in polycyclic aromatic hydrocarbon-contaminated tropical estuarine sediments undergoing simulated aerobic biotreatment. Appl Microbiol Biotechnol 2017; 101:4299-4314. [PMID: 28190100 DOI: 10.1007/s00253-017-8151-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/18/2017] [Accepted: 01/22/2017] [Indexed: 01/12/2023]
Abstract
Coastal sediments contaminated by polycyclic aromatic hydrocarbons (PAHs) can be candidates for remediation via an approach like land farming. Land farming converts naturally anaerobic sediments to aerobic environments, and the response of microbial communities, in terms of community structure alterations and corresponding effects on biodegradative activities, is unknown. A key goal of this study was to determine if different sediments exhibited common patterns in microbial community responses that might serve as indicators of PAH biodegradation. Sediments from three stations in the Lagos Lagoon (Nigeria) were used in microcosms, which were spiked with a mixture of four PAH, then examined for PAH biodegradation and for shifts in microbial community structure by analysis of diversity in PAH degradation genes and Illumina sequencing of 16S rRNA genes. PAH biodegradation was similar in all sediments, yet each exhibited unique microbiological responses and there were no microbial indicators of PAH bioremediation common to all sediments.
Collapse
Affiliation(s)
- Chioma C Obi
- Department of Microbiology, University of Lagos, Lagos, Nigeria.
- O.N. Allen Laboratory for Soil Microbiology, Department of Soil Science, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | - Esther O Ugoji
- Department of Microbiology, University of Lagos, Lagos, Nigeria
| | - Mathew O Ilori
- Department of Microbiology, University of Lagos, Lagos, Nigeria
| | | | - William J Hickey
- O.N. Allen Laboratory for Soil Microbiology, Department of Soil Science, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
20
|
Matturro B, Di Lenola M, Ubaldi C, Rossetti S. First evidence on the occurrence and dynamics of Dehalococcoides mccartyi PCB-dechlorinase genes in marine sediment during Aroclor1254 reductive dechlorination. MARINE POLLUTION BULLETIN 2016; 112:189-194. [PMID: 27522174 DOI: 10.1016/j.marpolbul.2016.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
The present study evaluates the PCB-dehalorespiring capabilities and dynamics of indigenous Dehalococcoides mccartyi population in a PCB contaminated marine sediment. Specialized PCB-dechlorinase genes pcbA1, pcbA4 and pcbA5 previously characterized in pure cultures of D. mccartyi, were here found for the first time in environmental samples. Reductive dechlorination was stimulated by spiking Aroclor1254 to the sediment and by imposing strictly anaerobic conditions both with and without bioaugmentation with a Dehalococcoides mccartyi enrichment culture. In line with the contaminant dechlorination kinetics, Dehalococcoides population increased during the entire incubation period showing growth yields of 4.94E+07 Dehalococcoides per μmolCl-1 and 7.30E+05 Dehalococcoides per μmolCl-1 in the marine sediment with and without bioaugmentation respectively. The pcbA4 and pcbA5 dechlorinase genes, and to a lesser extent pcbA1 gene, were enriched during the anaerobic incubation suggesting their role in Aroclor1254 dechlorination under salinity conditions.
Collapse
Affiliation(s)
- B Matturro
- Water Research Institute, IRSA-CNR, Via Salaria km 29,300, Monterotondo (RM), Italy
| | - M Di Lenola
- Water Research Institute, IRSA-CNR, Via Salaria km 29,300, Monterotondo (RM), Italy
| | - C Ubaldi
- ENEA, Technical Unit for Environmental Characterization, Prevention and Remediation, UTPRA, C. R. Casaccia, Italy
| | - S Rossetti
- Water Research Institute, IRSA-CNR, Via Salaria km 29,300, Monterotondo (RM), Italy.
| |
Collapse
|
21
|
Matturro B, Ubaldi C, Rossetti S. Microbiome Dynamics of a Polychlorobiphenyl (PCB) Historically Contaminated Marine Sediment under Conditions Promoting Reductive Dechlorination. Front Microbiol 2016; 7:1502. [PMID: 27708637 PMCID: PMC5030254 DOI: 10.3389/fmicb.2016.01502] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/08/2016] [Indexed: 11/13/2022] Open
Abstract
The toxicity of polychlorinated biphenyls (PCB) can be efficiently reduced in contaminated marine sediments through the reductive dechlorination (RD) process lead by anaerobic organohalide bacteria. Although the process has been extensively investigated on PCB-spiked sediments, the knowledge on the identity and metabolic potential of PCB-dechlorinating microorganisms in real contaminated matrix is still limited. Aim of this study was to explore the composition and the dynamics of the microbial communities of the marine sediment collected from one of the largest Sites of National Interest (SIN) in Italy (Mar Piccolo, Taranto) under conditions promoting the PCBs RD. A long-term microcosm study revealed that autochthonous bacteria were able to sustain the PCB dechlorination at a high extent and the successive addition of an external fermentable organic substrate (lactate) caused the further depletion of the high-chlorinated PCBs (up to 70%). Next Generation Sequencing was used to describe the core microbiome of the marine sediment and to follow the changes caused by the treatments. OTUs affiliated to sulfur-oxidizing ε-proteobacteria, Sulfurovum, and Sulfurimonas, were predominant in the original sediment and increased up to 60% of total OTUs after lactate addition. Other OTUs detected in the sediment were affiliated to sulfate reducing (δ-proteobacteria) and to organohalide respiring bacteria within Chloroflexi phylum mainly belonging to Dehalococcoidia class. Among others, Dehalococcoides mccartyi was enriched during the treatments even though the screening of the specific reductive dehalogenase genes revealed the occurrence of undescribed strains, which deserve further investigations. Overall, this study highlighted the potential of members of Dehalococcoidia class in reducing the contamination level of the marine sediment from Mar Piccolo with relevant implications on the selection of sustainable bioremediation strategies to clean-up the site.
Collapse
Affiliation(s)
- Bruna Matturro
- Water Research Institute - National Research Council, Monterotondo Italy
| | - Carla Ubaldi
- ENEA, Technical Unit for Environmental Characterization, Prevention and Remediation, Centro Ricerche Casaccia, Rome Italy
| | - Simona Rossetti
- Water Research Institute - National Research Council, Monterotondo Italy
| |
Collapse
|
22
|
Obi CC, Adebusoye SA, Ugoji EO, Ilori MO, Amund OO, Hickey WJ. Microbial Communities in Sediments of Lagos Lagoon, Nigeria: Elucidation of Community Structure and Potential Impacts of Contamination by Municipal and Industrial Wastes. Front Microbiol 2016; 7:1213. [PMID: 27547200 PMCID: PMC4974257 DOI: 10.3389/fmicb.2016.01213] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/21/2016] [Indexed: 01/13/2023] Open
Abstract
Estuarine sediments are significant repositories of anthropogenic contaminants, and thus knowledge of the impacts of pollution upon microbial communities in these environments is important to understand potential effects on estuaries as a whole. The Lagos lagoon (Nigeria) is one of Africa’s largest estuarine ecosystems, and is impacted by hydrocarbon pollutants and other industrial and municipal wastes. The goal of this study was to elucidate microbial community structure in Lagos lagoon sediments to identify groups that may be adversely affected by pollution, and those that may serve as degraders of environmental contaminants, especially polycyclic aromatic hydrocarbons (PAHs). Sediment samples were collected from sites that ranged in types and levels of anthropogenic impacts. The sediments were characterized for a range of physicochemical properties, and microbial community structure was determined by Illumina sequencing of the 16S rRNA genes. Microbial diversity (species richness and evenness) in the Apapa and Eledu sediments was reduced compared to that of the Ofin site, and communities of both of the former two were dominated by a single operational taxonomic unit (OTU) assigned to the family Helicobacteraceae (Epsilonproteobacteria). In the Ofin community, Epsilonproteobacteria were minor constituents, while the major groups were Cyanobacteria, Bacteroidetes, and Firmicutes, which were all minor in the Apapa and Eledu sediments. Sediment oxygen demand (SOD), a broad indicator of contamination, was identified by multivariate analyses as strongly correlated with variation in alpha diversity. Environmental variables that explained beta diversity patterns included SOD, as well as levels of naphthalene, acenaphthylene, cobalt, cadmium, total organic matter, or nitrate. Of 582 OTU identified, abundance of 167 was significantly correlated (false discovery rate q≤ 0.05) to environmental variables. The largest group of OTU correlated with PAH levels were PAH/hydrocarbon-degrading genera of the Oceanospirillales order (Gammaproteobacteria), which were most abundant in the hydrocarbon-contaminated Apapa sediment. Similar Oceanospirillales taxa are responsive to marine oil spills and thus may present a unifying theme in marine microbiology as bacteria adapted for degradation of high hydrocarbon loads, and may represent a potential means for intrinsic remediation in the case of the Lagos lagoon sediments.
Collapse
Affiliation(s)
- Chioma C Obi
- Department of Microbiology, University of LagosLagos, Nigeria; O.N. Allen Laboratory for Soil Microbiology, Department of Soil Science, University of Wisconsin-Madison, MadisonWI, USA
| | | | - Esther O Ugoji
- Department of Microbiology, University of Lagos Lagos, Nigeria
| | - Mathew O Ilori
- Department of Microbiology, University of Lagos Lagos, Nigeria
| | | | - William J Hickey
- O.N. Allen Laboratory for Soil Microbiology, Department of Soil Science, University of Wisconsin-Madison, Madison WI, USA
| |
Collapse
|