1
|
Dendooven E, Naessens T, Foubert K, Hermans N, Aerts O. Tert-butylhydroquinone and tert-butylcatechol positivity as warning lights of skin sensitization to tert-butylphenol derivatives in adhesives and diabetes devices. Contact Dermatitis 2024; 91:387-391. [PMID: 39168925 DOI: 10.1111/cod.14670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION Tert-butylphenol (TBP) derivatives, antioxidants in adhesives and diabetes devices, may provoke allergic contact dermatitis (ACD). OBJECTIVES The objective of this study is to report sensitization to TBP derivatives in medical devices and to highlight that tert-butylhydroquinone (BHQ) and tert-butylcatechol (TBC) are potential screeners in this regard. METHODS Fifteen patients with ACD from adhesives and diabetes devices were patch tested to different TBPs: BHQ 1% pet., TBC 0.25% pet., BHA 2% pet., BHT 2% pet., 4-tert-butylphenol (TBP) 1% pet. and 2,4-di-tert-butylphenol (di TBP) 1% pet. The culprit devices (medical adhesives, sanitary pads, diabetes devices) and TBP patch preparations were analysed using gas chromatography-mass spectrometry (GC-MS). RESULTS BHQ (9/13), TBC (7/13), and to a lesser extent BHT (3/15), BHA (2/15) and TBP (2/13) gave positive reactions. Seven patients had developed ACD from adhesives and diabetes devices, respectively, and one patient from sanitary pads. GC-MS analyses of the medical devices and patch test materials confirmed the presence of the patch-test positive TBPs, or chemically related derivatives, or, interestingly, tert-butylbenzoquinones (BBQ) were found, that is, spontaneously formed, highly reactive TBP metabolites, likely (pseudo-) cross reacting with the patch tested TBPs. CONCLUSION TBPs might be overlooked sensitizers in medical devices, and BHQ and TBC are potential screeners in this regard.
Collapse
Affiliation(s)
- Ella Dendooven
- Department of Dermatology, University Hospital Antwerp (UZA) and University of Antwerp (UA), Antwerp, Belgium
- Natural Products and Food Research and Analysis-Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tania Naessens
- Natural Products and Food Research and Analysis-Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kenn Foubert
- Natural Products and Food Research and Analysis-Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Nina Hermans
- Natural Products and Food Research and Analysis-Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Olivier Aerts
- Department of Dermatology, University Hospital Antwerp (UZA) and University of Antwerp (UA), Antwerp, Belgium
| |
Collapse
|
2
|
Cifre-Herrando M, Roselló-Márquez G, García-Antón J. Is photoelectrocatalysis an efficient process to degrade endocrine disruptors chemicals? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104420. [PMID: 38499263 DOI: 10.1016/j.etap.2024.104420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Endocrine disruptors chemicals (EDCs) pose significant health risks, including cancer, behavioral disorders, and infertility. In this study, we employed the photoelectrocatalysis (PEC) technique with optimized tungsten oxide (WO3) nanostructures as a photoanode to degrade three diverse EDCs: methiocarb, dimethyl phthalate, and 4-tert-butylphenol. PEC degradation tests were carried out for individual contaminants and a mixture of them, assessing efficiency across different EDC families. Ultra High-Performance Liquid Chromatography and Mass Spectrometry was used to control the course of the experiments. For individual solutions, 4-tert-butylphenol and methiocarb were 100% degraded at 1 hour of PEC degradation. Among the tested EDCs, dimethyl phthalate showed the highest resistance to degradation when treated individually. However, when assessed in a mixture with the other EDCs, the degradation efficiency of dimethyl phthalate increased compared to its individual treatment. Furthermore, four degradation intermediates were identified for each contaminant. Finally, toxicity tests revealed that the initial solution was more toxic than the samples treated for all the contaminants tested, except for the phthalate.
Collapse
Affiliation(s)
- M Cifre-Herrando
- Ingeniería Electroquímica y Corrosión (IEC), Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València, C/Camino de Vera, Valencia 46022, Spain
| | - G Roselló-Márquez
- Ingeniería Electroquímica y Corrosión (IEC), Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València, C/Camino de Vera, Valencia 46022, Spain
| | - J García-Antón
- Ingeniería Electroquímica y Corrosión (IEC), Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València, C/Camino de Vera, Valencia 46022, Spain.
| |
Collapse
|
3
|
Chen Q, Lü F, Zhang H, He P. Where should Fenton go for the degradation of refractory organic contaminants in wastewater? WATER RESEARCH 2023; 229:119479. [PMID: 36521313 DOI: 10.1016/j.watres.2022.119479] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Fenton process has become a research hotspot due to the nonselective and efficient degradation of dissolved organic matter (DOM) by ·OH. However, there are still many challenges and bottlenecks for conventional Fenton (CF). This study provides the first comprehensive insight into the mechanisms of DOM degradation by the Fenton process, including the various subcategories of humic substances, emerging trace contaminants, including persistent organic pollutants, endocrine disrupting chemicals, and pharmaceuticals and personal care products, and the interference of humus and low molecular weight organic acids on the removal of trace contaminants. In addition, a statistical comparison of the economics of CF and three types of Fenton-like technologies (Photo-Fenton, Electro-Fenton, and Ultrasonic-Fenton) is conducted based on existing studies, which can be used as a reference for engineering applications. Moreover, a brief overview of the categories and characteristics of heterogeneous Fenton, which have been extensively studied in recent years, and a comparison of their catalysts are presented. In the end, the paper advances a possible future research direction.
Collapse
Affiliation(s)
- Qi Chen
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fan Lü
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China
| | - Hua Zhang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China
| | - Pinjing He
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China.
| |
Collapse
|
4
|
Comparative Study on UV-AOPs for Efficient Continuous Flow Removal of 4-tert-Butylphenol. Processes (Basel) 2021. [DOI: 10.3390/pr10010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the present study, UV-light-driven advanced oxidation processes (AOPs) have been employed for the degradation of 4-tert-Butylphenol (4-t-BP) in water under continuous flow conditions. The effects of varying space time (10, 20, 40, 60 and 120 min) and oxidant dosage (88.3 mg/L, 176.6 mg/L and 264 mg/L) were examined. 4-t-BP degradation efficiency in the UV-induced AOPs followed the order of UV/H2O2 (264.9 mg/L) ≈ UV/Fe2+/H2O2 > UV/Fe3+/H2O2 > UV/H2O2 (176.6 mg/L) > UV/H2O2 (88.3 mg/L) > UV/Fe-TiO2 > UV/TiO2 > UV, while UV/Fe3+/H2O2 was the most efficient process in terms of Total Organic Carbon (TOC) removal (at the space time of 60 min) among those tested. The combination of UV with 88.3 mg/L H2O2 enhanced pollutant removal from 51.29% to 93.34% after 10 min of irradiation. The presence of H2O2 contributed to the highest 4-t-BP and TOC removal values. Interestingly, the increase in space time from 20 to 60 min resulted in surpassing of the activity of the Fe-TiO2 over commercial TiO2, although it had an almost negligible positive impact on the performance of the UV/H2O2 system as well as H2O2 concentration. The results obtained showed that more than 80% of 4-t-BP could be successfully degraded by both heterogeneous and homogeneous AOPs after 60 min.
Collapse
|
5
|
Bell AM, Keltsch N, Schweyen P, Reifferscheid G, Ternes T, Buchinger S. UV aged epoxy coatings - Ecotoxicological effects and released compounds. WATER RESEARCH X 2021; 12:100105. [PMID: 34189451 PMCID: PMC8219897 DOI: 10.1016/j.wroa.2021.100105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Organic coatings can guarantee long-term protection of steel structures due to causing a physical barrier against water and oxygen. Because of their mechanical properties and resistances to heat and chemicals, epoxy resin-based coatings are widely used for corrosion protection. Despite of the aromatic backbone and the resulting susceptibility to UV degradation, epoxy resins are frequently used as binding agent in top layers of anti-corrosion coating systems. Consequently, these organic polymers are directly exposed to sunlight and thus UV radiation. The present study was designed to investigate if toxic effects of epoxy resin-based-coatings are changed by UV-A irradiation. For this purpose, two epoxide-based top coatings were examined with and without UV aging for their bacterial toxicity and estrogenicity. In addition, chemical analyses were performed to identify released compounds as well as photolytic degradation products and to assign toxic effects to individual substances. UV-A irradiation of epoxy resin based top coatings resulted in an overall decrease of acute and specific ecotoxicological effects but as well to the formation of toxic transformation products. Both, in leachates of untreated and UV-A irradiated coatings, 4tBP was identified as the main driver of estrogenicity and toxicity to luminescent bacteria. BPA and structural analogs contributing to estrogenic effects in leachates were formed by UV-A irradiation. The combination of HPTLC coupled bioassays and LC-MS analyses supported the identification of bioactive compounds in terms of an effect-directed analysis. The present findings indicate that epoxide-based coatings are less suitable for the application as top coatings and more UV stable coatings like aliphatic polyurethanes should be preferred.
Collapse
Affiliation(s)
| | | | | | | | | | - Sebastian Buchinger
- Corresponding author at: Federal Institute of Hydrology, Department G3 - Biochemistry, Ecotoxicology, Am Mainzer Tor 1, 56068 Koblenz, Germany.
| |
Collapse
|
6
|
Gu Y, Tobino T, Nakajima F. Determining the Relative Importance of Dietborne and Waterborne Toxicity of 4- tert-Butylphenol and 4- tert-Octylphenol to the Benthic Crustacean, Heterocypris incongruens. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7939-7948. [PMID: 34047553 DOI: 10.1021/acs.est.0c08164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic pollutants with high solid-water equilibrium partition coefficients are adsorbed into solid particles and are easily ingested by benthic organisms, potentially causing dietborne toxicity. Whether dietborne toxicity is more important than waterborne toxicity for such chemicals remains to be determined. In this study, we identify the most relevant uptake route for the toxicity of two alkylphenols, 4-tert-butylphenol (4tBP), and 4-tert-octylphenol (4tOP). To achieve this, 6-day toxicity tests under two exposure conditions, namely dietary exposure (clean water + contaminated food) and combined exposure (contaminated water + contaminated food) were conducted on a benthic ostracod, Heterocypris incongruens. The toxicologically important exposure routes were confirmed by the consistency of dietary and aqueous dose-response relationships under different exposure conditions. During the test, frequent renewal of water and food was performed to reduce variability in the exposure conditions. The results showed that, under the equilibrium condition, the dietary exposure route was toxicologically more important than the aqueous route for 4tBP, whereas the waterborne exposure route was more important than the dietary exposure route for 4tOP. This study provides a novel approach to identify the most relevant uptake pathways for chemical toxicity, which better explains the importance of exposure routes in toxicity effects.
Collapse
Affiliation(s)
- Yilu Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Tomohiro Tobino
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fumiyuki Nakajima
- Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Wu J, Gao Y, Qin Y, Li G, An T. Photochemical degradation of fragrance ingredient benzyl formate in water: Mechanism and toxicity assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111950. [PMID: 33493723 DOI: 10.1016/j.ecoenv.2021.111950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 05/24/2023]
Abstract
Recently, fragrance ingredients have attracted increasing attention due to their imperceptible risks accompanying the comfortable feeling. To understand transformation mechanisms and toxicity evolution of benzyl formate (BF) in environment, its photochemical degradation in water was thoroughly studied herein. Results showed that 83.5% BF was degraded under ultraviolet (UV) irradiation for 30 min. Laser flash photolysis and quenching experiments demonstrated that triplet excited state (3BF*), O2•-, and 1O2 were three main reactive species found during BF photodegradation. Eight degradation intermediates, including benzaldehyde, benzyl alcohol, o-cresol, bibenzyl, benzyl ether, 1,2-diphenylethanol, benzoic acid, and benzylhemiformal, were mainly formed as identified by LC-Q-TOF/MS and GC-MS analyses. Furthermore, the degradation mechanism was explained as the bond cleavage of 3BF* and BF•+, O2•-/1O2 oxidation, eaq- reduction, and •OH addition reactions. Aquatic assessment suggests that except benzyl alcohol, benzoic acid, and benzylhemiformal, all the products were persistent and could result in increased aquatic toxicity compared to original BF. Consequently, these degradation products may cause more toxicity to organisms if they remain accumulated in water environment for a long time.
Collapse
Affiliation(s)
- Junji Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaxin Qin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
8
|
Zheng Q, Wu N, Qu R, Albasher G, Cao W, Li B, Alsultan N, Wang Z. Kinetics and reaction pathways for the transformation of 4-tert-butylphenol by ferrate(VI). JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123405. [PMID: 32659589 DOI: 10.1016/j.jhazmat.2020.123405] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
4-tert-butylphenol (4-tBP) is a phenolic endocrine disrupting chemical that has attracted great attention due to its wide occurrence, environmental persistence, and possible toxic effects. In this study, we systematically investigated the transformation of 4-tBP in ferrate (VI) oxidation process. The second-order reaction rate constant (kapp) of Fe(VI) with 4-tBP decreases with solution pH, and the kapp value was determined as 295 M-1·s-1 at pH 8.0. The removal efficiency of 4-tBP was slightly decreased by Mg2+ and HCO3-, while accelerated at varying degrees by the presence of Cu2+ and humic acid. Product analysis revealed that 4-tBP was mainly transformed into hydroxylation products, benzene-ring cleavage products, dimers and higher polymerization products via oxygen atom transfer, ring-opening of the benzene ring and radical coupling reaction. Furthermore, initial reactions of 4-tBP were rationalized by theoretical analysis of atom partial charges, frontier electron densities, and spin densities. Nearly complete removal of 4-tBP (20 μM) was achieved after 5 min of reaction in both ultrapure water and natural waters, demonstrating the feasibility of this Fe(VI) oxidation method in treating phenols-contaminated waters.
Collapse
Affiliation(s)
- Qing Zheng
- School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224003, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu Nanjing 210023, PR China.
| | - Gadah Albasher
- King Saud University, College of Science, Zoology Department, P.O. Box 2455, 10, Riyadh 11451, Saudi Arabia
| | - Wanming Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Beibei Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Nouf Alsultan
- King Saud University, College of Science, Zoology Department, P.O. Box 2455, 10, Riyadh 11451, Saudi Arabia
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| |
Collapse
|
9
|
Makhatova A, Ulykbanova G, Sadyk S, Sarsenbay K, Atabaev TS, Inglezakis VJ, Poulopoulos SG. Degradation and mineralization of 4-tert-butylphenol in water using Fe-doped TiO 2 catalysts. Sci Rep 2019; 9:19284. [PMID: 31848408 PMCID: PMC6917762 DOI: 10.1038/s41598-019-55775-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/30/2019] [Indexed: 11/25/2022] Open
Abstract
In the present work, the photocatalytic degradation and mineralization of 4-tert-butylphenol in water was studied using Fe-doped TiO2 nanoparticles under UV light irradiation. Fe-doped TiO2 catalysts (0.5, 1, 2 and 4 wt.%) were prepared using wet impregnation and characterized via SEM/EDS, XRD, XRF and TEM, while their photocatalytic activity and stability was attended via total organic carbon, 4-tert-butyl phenol, acetic acid, formic acid and leached iron concentrations measurements. The effect of H2O2 addition was also examined. The 4% Fe/TiO2 demonstrated the highest photocatalytic efficiency in terms of total organic carbon removal (86%). The application of UV/H2O2 resulted in 31% total organic carbon removal and 100% 4-t-butylphenol conversion, however combining Fe/TiO2 catalysts with H2O2 under UV irradiation did not improve the photocatalytic performance. Increasing the content of iron on the catalyst from 0.5 to 4% considerably decreased the intermediates formed and increased the production of carbon dioxide. The photocatalytic degradation of 4-tert-butylphenol followed pseudo-second order kinetics. Leaching of iron was observed mainly in the case of 4% Fe/TiO2, but it was considered negligible taking into account the iron load on catalysts. The electric energy per order was found in the range of 28-147 kWh/m3/order and increased with increasing the iron content of the catalyst.
Collapse
Affiliation(s)
- Ardak Makhatova
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
- Environmental Science & Technology Group (ESTg), Chemical and Materials Engineering Department, School of Engineering and Digital Sciences, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
| | - Gaukhar Ulykbanova
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
- Environmental Science & Technology Group (ESTg), Chemical and Materials Engineering Department, School of Engineering and Digital Sciences, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
| | - Shynggys Sadyk
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
| | - Kali Sarsenbay
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
| | - Timur Sh Atabaev
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
| | - Vassilis J Inglezakis
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
- Environmental Science & Technology Group (ESTg), Chemical and Materials Engineering Department, School of Engineering and Digital Sciences, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
| | - Stavros G Poulopoulos
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, 010000, Nur-Sultan, Kazakhstan.
- Environmental Science & Technology Group (ESTg), Chemical and Materials Engineering Department, School of Engineering and Digital Sciences, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan.
| |
Collapse
|
10
|
Cui S, Zhang X, Liu J, Zhou L, Shang Y, Zhang C, Liu W, Zhuang S. Natural sunlight-driven aquatic toxicity enhancement of 2,6-di-tert-butylphenol toward Photobacterium phosphoreum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:66-71. [PMID: 31071634 DOI: 10.1016/j.envpol.2019.04.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/03/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
The tert-butylphenols (TBPs) are one group of alkylated phenolic compounds with wide applications in UV absorbers and antioxidants. They are becoming contaminants of emerging concern with residues frequently detected in natural surface water or drinking water. The direct sunlight may photolyze TBPs in waters and affect their aquatic toxicities; however, such data are very limited. In the present study, we investigate the photodegradation of 2,6-DTBP by direct sunlight in water and compare the aquatic toxicities of 2,6-DTBP with that of its product toward Photobacterium phosphoreum. 2,6-DTBP is photodegraded by 71.31 ± 2.64% under simulated sunlight following a pseudo-first-order kinetics with rate constant (k) of 0.061 h-1. Density functional theory simulations at M06-2X/def2-SVP level reveal that the photodegradation occurred sequentially through oxidation, photo-isomerization and hydrogenation. The degradation product 2,5-DTBP is toxic to P. phosphoreum (EC50 3.389 × 10-5 mol/L) whereas 2,6-DTBP is not harmful (EC50 3.917 × 10-3 mol/L) as designated by the European Union Standard, indicating the enhanced toxicities driven by the direct sunlight photodegradation. We demonstrate the enhanced toxicities of 2,6-DTBP by natural sunlight, suggesting that negligence of photodegradation of TBPs-related contaminants will underestimate the comprehensive risk of these emerging contaminant in natural waters.
Collapse
Affiliation(s)
- Shixuan Cui
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaofang Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinsong Liu
- Zhejiang Province Environmental Monitoring Center, Hangzhou, 310005, China
| | - Lihong Zhou
- Institute of Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Yukun Shang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, TX, 77058, USA
| | - Weiping Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shulin Zhuang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Removal of Linear and Branched Alkylphenols with the Combined Use of Polyphenol Oxidase and Chitosan. Polymers (Basel) 2019; 11:polym11060931. [PMID: 31141977 PMCID: PMC6631719 DOI: 10.3390/polym11060931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022] Open
Abstract
Removal of linear and branched alkylphenols with different alkyl chain lengths or different branchings (normal, secondary, and tertiary), some of which are suspected as endocrine disrupting chemicals, from an aqueous medium were investigated through quinone oxidation by polyphenol oxidase (PPO) and subsequent quinone adsorption on chitosan beads or powders at pH 7.0 and 40 °C. PPO-catalyzed quinone oxidation increased with an increase in alkyl chain length of the alkylphenols used. Although a higher PPO dose was required for quinone oxidation of branched alkylphenols, they were completely or mostly removed by quinone adsorption on chitosan beads or powders. The apparent activity of PPO increased by a decrease in quinone concentration. On the other hand, in the homogeneous systems with solutions of chitosan and PPO at pH 6.0, longer reaction times were required to generate insoluble aggregates, and a small amount of quinone derivatives were left in the solution even under optimum conditions. These results support that the two-step reaction, that is, PPO-catalyzed quinone oxidation and subsequent quinone adsorption on chitosan beads or powders, in the heterogeneous system is a good procedure for removing linear and branched alkylphenols from aqueous medium.
Collapse
|
12
|
Chibwe L, Titaley IA, Hoh E, Massey Simonich SL. Integrated Framework for Identifying Toxic Transformation Products in Complex Environmental Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2017; 4:32-43. [PMID: 35600207 PMCID: PMC9119311 DOI: 10.1021/acs.estlett.6b00455] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Complex environmental mixtures consist of hundreds to thousands of unknown and unregulated organic compounds that may have toxicological relevance, including transformation products (TPs) of anthropogenic organic pollutants. Non-targeted analysis and suspect screening analysis offer analytical approaches for potentially identifying these toxic transformation products. However, additional tools and strategies are needed in order to reduce the number of chemicals of interest and focus analytical efforts on chemicals that may pose risks to humans and the environment. This brief review highlights recent developments in this field and suggests an integrated framework that incorporates complementary instrumental techniques, computational chemistry, and toxicity analysis, for prioritizing and identifying toxic TPs in the environment.
Collapse
Affiliation(s)
- Leah Chibwe
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Ivan A. Titaley
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Eunha Hoh
- Graduate School of Public Health, San Diego State University, San Diego, CA, 92182, USA
| | - Staci L. Massey Simonich
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|