1
|
Wang J, Jiang J, Zhao H, Li Z, Li X, Azam S, Qu B. Phototransformation of halobenzoquinones in aqueous solution under the simulate sunlight: Kinetics, mechanism and products. CHEMOSPHERE 2024; 352:141318. [PMID: 38311038 DOI: 10.1016/j.chemosphere.2024.141318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
Halobenzoquinones (HBQs) are a novel family of unregulated disinfection byproducts (DBPs). Little is known about their phototransformation activities in natural water. Here, five HBQs with various halogenated substituent types, numbers, and structures positions were selected to investigate the kinetics of degradation in aqueous solutions at various concentrations and in the presence of common environmental variables (Cl-, NO2-, and humic acid). The results indicated that dichloride and dibromo-substituted HBQs were photolyzed, whereas tetrachloro-substituted HBQs showed little degradation. The photolysis rate constant (k) of HBQs decreased with increasing initial concentration. The presence of NO2- and Cl- promoted the degradation of HBQs mainly through the formation of hydroxyl radical (•OH), which were confirmed by electron paramagnetic resonance (EPR). In contrast, humic acid played a negative role on HBQs transformation due to the adsorption and quenching reactions. Possible conversion pathways for HBQs were proposed based on the identification of two major photodegradation products, hydroxylated HBQs and halogenated-benzenetriol, as well as reactive free radicals. This study provided meaningful insights into the environmental fates and risk assessments of HBQs in natural aquatic system.
Collapse
Affiliation(s)
- Jingyao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingqiu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Zhansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shafiul Azam
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116024, China.
| |
Collapse
|
2
|
Ma J, Ding Y, Chi L, Yang X, Zhong Y, Wang Z, Shi Q. Degradation of benzotriazole by sulfate radical-based advanced oxidation process. ENVIRONMENTAL TECHNOLOGY 2021; 42:238-247. [PMID: 31145672 DOI: 10.1080/09593330.2019.1625959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Benzotriazole (BTA) is a recalcitrant contaminant that is widely distributed in aquatic environments. This study explored the effectiveness of sulfate radical-based advanced oxidation process in degrading BTA (SR-AOP). The sulfate radical was generated by heat activation of persulfate (PS). Our results show alkaline pH promoted the BTA degradation. The solution pH also affected the speciation of total radicals. Sulfate radical ( S O 4 ⋅ - ) predominated at acidic pH while hydroxyl radical (HO•) predominated at basic pH. High temperature, high PS concentration and low BTA concentration promoted the BTA degradation. Influence of water matrix constituents on the reaction kinetics was assessed. We found that ≤10 mM of Cl- promoted the reaction, but 100 mM Cl- inhibited it. H C O 3 - was similar to Cl-. Br- and C O 3 2 - inhibited the reaction while S O 4 2 - did not affect the reaction. N O 3 - of ≤10 mM did not affect the reaction, but 100 mM of N O 3 - inhibited it. Eleven degradation intermediates were identified using ultra-high solution Orbitrap mass spectrometry. Based on the intermediates identified, possible reaction pathways were proposed. Overall, SR-AOP can effectively mineralize BTA, but water matrix constituents greatly influenced the reaction kinetics and thus should be carefully considered for its practical application. Abbreviations: BTA, benzotriazole; PS, persulfate; PMS, peroxymonosulfate; SPC, sodium percarbonate; AOP, advanced oxidation process; PS-AOP, persulfate-based advanced oxidation process; SR-AOP, sulfate radical-based advanced oxidation process; TAP, thermally activated persulfate; TOC, total organic carbon; TBA, tert-butyl alcohol.
Collapse
Affiliation(s)
- Jie Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Yi Ding
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Liping Chi
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Yingjie Zhong
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Zhiheng Wang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| |
Collapse
|
3
|
Ha HT, Huong NT, Lee BK, Duc DS, Dan LL, bao Trung V, Kien TT, Anh NH, Minh NQ, Minh TD. Ternary magnetic polymer cross-coupled in [γ-APTES]-dispersion to remove azole compound: economic research and educational policy management. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04238-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Wagner TV, Parsons JR, Rijnaarts HHM, de Voogt P, Langenhoff AAM. Benzotriazole removal mechanisms in pilot-scale constructed wetlands treating cooling tower water. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121314. [PMID: 31581006 DOI: 10.1016/j.jhazmat.2019.121314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The reuse of discharged cooling tower water (CTW) in the cooling tower itself could reduce fresh water intake and help mitigating fresh water scarcity problems. However, this requires desalination prior to its reuse, and hindering fractions, such as conditioning chemicals, should be removed before desalination to obtain a higher desalination efficiency. Constructed wetlands (CWs) can provide such a pre-treatment. In this study, the mechanisms underlying the removal of conditioning chemical benzotriazole (BTA) in CWs was studied using an innovative approach of differently designed pilot-scale CWs combined with batch removal experiments with substrate from these CWs. By performing these combined experiments, it was possible to determine the optimal CW design for BTA removal and the most relevant BTA removal processes in CWs. Adsorption yielded the highest contribution, and the difference in removal between different CW types was linked to their capability to aerobically biodegrade BTA. This knowledge on the main removal mechanisms for BTA allows for a CW design tailored for BTA removal. In addition, the outcomes of this research show that performing batch experiments with CW substrate allows one to determine the relevant removal mechanisms for a given compound which results in a better understanding of CW removal processes.
Collapse
Affiliation(s)
- Thomas V Wagner
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1092 GE Amsterdam, the Netherlands; Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV Wageningen, the Netherlands.
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1092 GE Amsterdam, the Netherlands
| | - Huub H M Rijnaarts
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV Wageningen, the Netherlands
| | - Pim de Voogt
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1092 GE Amsterdam, the Netherlands; KWR Water Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB Nieuwegein, the Netherlands
| | - Alette A M Langenhoff
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV Wageningen, the Netherlands
| |
Collapse
|
5
|
Gornik T, Vozic A, Heath E, Trontelj J, Roskar R, Zigon D, Vione D, Kosjek T. Determination and photodegradation of sertraline residues in aqueous environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113431. [PMID: 31677867 DOI: 10.1016/j.envpol.2019.113431] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Sertraline is an antidepressant drug that has been frequently reported in the aquatic environment and biota. While the research has mostly dealt with its occurrence and toxicity, there is a lack of information pertaining to its environmental transformation. The present study aimed to fill in these gaps by giving an insight into mechanisms of sertraline phototransformation in surface waters, which was recognized as the main transformation pathway for this contaminant. We performed photodegradation experiments in presence of photosensitizers or reaction quenchers to determine rate constants and used them to predict sertraline phototransformation kinetics by "Aqueous Photochemistry of Environmentally occurring Xenobiotics" (APEX) software. It was established that sertraline degrades by pseudo-first order kinetics mostly dominated by direct photolysis, while the presence of certain reactive species including •OH, CO3-• and 3CDOM* further accelerate the compound's breakdown rate. To validate the predicted results, sertraline-spiked surface water was irradiated by sunlight, where the half-life of sertraline at around 1.4 days was estimated. While following the photodegradation kinetics, we also identified five transformation products, of which three were determined in Slovenian surface waters. According to the ECOSAR toxicity prediction, these transformation products will either have comparable or lower toxicity than their parent compound.
Collapse
Affiliation(s)
- Tjasa Gornik
- Jozef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Anja Vozic
- University of Ljubljana, Faculty of Pharmacy, Department of Biopharmacy and Pharmacokinetics, Askerceva 7, Ljubljana, Slovenia
| | - Ester Heath
- Jozef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Jurij Trontelj
- University of Ljubljana, Faculty of Pharmacy, Department of Biopharmacy and Pharmacokinetics, Askerceva 7, Ljubljana, Slovenia
| | - Robert Roskar
- University of Ljubljana, Faculty of Pharmacy, Department of Biopharmacy and Pharmacokinetics, Askerceva 7, Ljubljana, Slovenia
| | - Dusan Zigon
- Jozef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia
| | - Davide Vione
- University of Turin, Department of Chemistry, Via Pietro Giuria 5, Torino, Italy
| | - Tina Kosjek
- Jozef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Shi ZQ, Liu YS, Xiong Q, Cai WW, Ying GG. Occurrence, toxicity and transformation of six typical benzotriazoles in the environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:407-421. [PMID: 30677686 DOI: 10.1016/j.scitotenv.2019.01.138] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 01/12/2019] [Indexed: 05/28/2023]
Abstract
Benzotriazoles (BTs) are a group of heterocyclic compounds which have been widely applied in industrial activities and domestic life mainly as corrosive inhibitors. BTs have been ubiquitously detected in receiving environments and cause potential toxicity to non-target organisms. This paper reviews the occurrence and fate of six selected benzotriazole compounds in different environmental and biological matrices, as well as the transformation and toxicity. Due to their high hydrophilicity and insufficient removal in wastewater treatment plants (WWTPs), these compounds were widely detected in aquatic environments with concentrations mainly from tens ng/L to tens μg/L. Considerable residual levels of BTs in plant, fish, air, tap water and human urine have implied the potential risks to various organsims. The reported acute toxicity of BTs are generally low (EC50 in mg/L level). Some observed sublethal effects including endocrine disrupting effects, hepatotoxicity and neurotoxicity, as well as the ability to promote the development of endometrial carcinoma still raise a concern. BTs are found often more recalcitrant to biodegradation compared to photolysis and ozonation. Environmental factors including pH, temperature, irradiation wavelength, redox condition as well as components of matrix are proved crucial to the removal of BTs. Further studies are needed to explore the precise environment fate and toxicity mechanism of BTs, and develop advanced treatment technologies to reduce the potential ecological risks of BTs.
Collapse
Affiliation(s)
- Zhou-Qi Shi
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Sheng Liu
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Qian Xiong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Wen Cai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Guo Ying
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
7
|
Chung KHY, Lin YC, Lin AYC. The persistence and photostabilizing characteristics of benzotriazole and 5-methyl-1H-benzotriazole reduce the photochemical behavior of common photosensitizers and organic compounds in aqueous environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5911-5920. [PMID: 29235031 DOI: 10.1007/s11356-017-0900-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Benzotriazole (BT) and 5-methyl-1H-benzotriazole (5-MeBT) are broadly used in industrial applications, such as anti-icing fluids and dishwashing detergent, and act as the primary building blocks for UV absorbers and photostabilizers. This study examined the occurrence of these two compounds in the environment and their unique photochemical behavior affecting photosensitizers and other micro-organic pollutants in aqueous environments. BT and 5-MeBT were detected in all river water samples from the major rivers in Taipei City in the concentration ranges of 147 to 1560 ng/L and 22 to 235 ng/L, respectively, and both compounds persisted through a conventional wastewater treatment plant. The direct photolysis half-lives of BT and 5-MeBT were 56.9 and 14.0 h, respectively. The half-life of photolysis in river water for BT was 44.2 h, whereas the half-life of 5-MeBT was 24.7 h. The long half-lives in real-water matrices resulted in their prevalence in water bodies, and these compounds were also found to minimize the photosensitizing ability of nitrate and dissolved organic matter (DOM) and increase the persistence of other micro-organic pollutant. With BT present, the production of ·OH in nitrate photolysis was reduced, the degradation of DOM under sunlight was hindered, and the photodegradation of pharmaceutical residues in surface water, such as methotrexate, was completely impeded. This study suggests that in cases in which BT and 5-MeBT are highly concentrated, the effectiveness of natural attenuation process, i.e., photodegradation, in the aqueous environment is diminished, which increases the persistence of the pollutants as well as the risk of exposure.
Collapse
Affiliation(s)
- Kenneth Hsien-Yung Chung
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 106, Taiwan, Republic of China
| | - Yen-Ching Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 106, Taiwan, Republic of China
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 106, Taiwan, Republic of China.
| |
Collapse
|
8
|
Diaw PA, Oturan N, Seye MDG, Coly A, Tine A, Aaron JJ, Oturan MA. Oxidative degradation and mineralization of the phenylurea herbicide fluometuron in aqueous media by the electro-Fenton process. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Carena L, Minella M, Barsotti F, Brigante M, Milan M, Ferrero A, Berto S, Minero C, Vione D. Phototransformation of the Herbicide Propanil in Paddy Field Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2695-2704. [PMID: 28145687 DOI: 10.1021/acs.est.6b05053] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
When irradiated in paddy-field water, propanil (PRP) undergoes photodegradation by direct photolysis, by reactions with •OH and CO3•-, and possibly also with the triplet states of chromophoric dissolved organic matter. Irradiation also inhibits the nonphotochemical (probably biological) degradation of PRP. The dark- and light-induced pathways can be easily distinguished because 3,4-dichloroaniline (34DCA, a transformation intermediate of considerable environmental concern) is produced with almost 100% yield in the dark but not at all through photochemical pathways. This issue allows an easy assessment of the dark process(es) under irradiation. In the natural environment, we expect PRP photodegradation to be important only in the presence of elevated nitrate and/or nitrite levels, e.g., [NO3-] approaching 1 mmol L-1 (corresponding to approximately 60 mg L-1). Under these circumstances, •OH and CO3•- would play a major role in PRP phototransformation. Because flooded paddy fields are efficient denitrification bioreactors that can achieve decontamination of nitrate-rich water used for irrigation, irrigation with such water would both enhance PRP photodegradation and divert PRP dissipation processes away from the production of 34DCA, at least in the daylight hours.
Collapse
Affiliation(s)
- Luca Carena
- Dipartimento di Chimica, Università di Torino , Via Pietro Giuria 5, 10125 Torino, Italy
| | - Marco Minella
- Dipartimento di Chimica, Università di Torino , Via Pietro Giuria 5, 10125 Torino, Italy
| | - Francesco Barsotti
- Dipartimento di Chimica, Università di Torino , Via Pietro Giuria 5, 10125 Torino, Italy
| | - Marcello Brigante
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, & CNRS, UMR 6296, ICCF, BP 80026 , F-63177 Aubière, France
| | - Marco Milan
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino , Largo Paolo Braccini 2, 10095 Grugliasco (TO), ITALY
| | - Aldo Ferrero
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino , Largo Paolo Braccini 2, 10095 Grugliasco (TO), ITALY
| | - Silvia Berto
- Dipartimento di Chimica, Università di Torino , Via Pietro Giuria 5, 10125 Torino, Italy
| | - Claudio Minero
- Dipartimento di Chimica, Università di Torino , Via Pietro Giuria 5, 10125 Torino, Italy
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino , Via Pietro Giuria 5, 10125 Torino, Italy
- Università di Torino , Centro Interdipartimentale NatRisk, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| |
Collapse
|