1
|
Sandoval MA, Calzadilla W, Vidal J, Brillas E, Salazar-González R. Contaminants of emerging concern: Occurrence, analytical techniques, and removal with electrochemical advanced oxidation processes with special emphasis in Latin America. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123397. [PMID: 38272166 DOI: 10.1016/j.envpol.2024.123397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/02/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
The occurrence of contaminants of emerging concern (CECs) in environmental systems is gradually more studied worldwide. However, in Latin America, the presence of contaminants of emerging concern, together with their environmental and toxicological impacts, has recently been gaining wide interest in the scientific community. This paper presents a critical review about the source, fate, and occurrence of distinct emerging contaminants reported during the last two decades in various countries of Latin America. In recent years, Brazil, Chile, and Colombia are the main countries that have conducted research on the presence of these pollutants in biological and aquatic compartments. Data gathered indicated that pharmaceuticals, pesticides, and personal care products are the most assessed CECs in Latin America, being the most common compounds the followings: atrazine, acenaphthene, caffeine, carbamazepine, ciprofloxacin, diclofenac, diuron, estrone, losartan, sulfamethoxazole, and trimethoprim. Most common analytical methodologies for identifying these compounds were HPLC and GC coupled with mass spectrometry with the potential to characterize and quantify complex substances in the environment at low concentrations. Most CECs' monitoring and detection were observed near to urban areas which confirm the out-of-date wastewater treatment plants and sanitization infrastructures limiting the removal of these pollutants. Therefore, the implementation of tertiary treatment should be required. In this tenor, this review also summarizes some studies of CECs removal using electrochemical advanced oxidation processes that showed satisfactory performance. Finally, challenges, recommendations, and future perspectives are discussed.
Collapse
Affiliation(s)
- Miguel A Sandoval
- Instituto Tecnológico Superior de Guanajuato, Tecnológico Nacional de México, Carretera Estatal Guanajuato-Puentecillas Km. 10.5, 36262, Guanajuato, Mexico
| | - Wendy Calzadilla
- Research Group of Analysis, Treatments, Electrochemistry, Recovery and Reuse of Water, (WATER2), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Jorge Vidal
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ricardo Salazar-González
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
| |
Collapse
|
2
|
Szabo D, Falconer TM, Fisher CM, Heise T, Phillips AL, Vas G, Williams AJ, Kruve A. Online and Offline Prioritization of Chemicals of Interest in Suspect Screening and Non-targeted Screening with High-Resolution Mass Spectrometry. Anal Chem 2024; 96:3707-3716. [PMID: 38380899 PMCID: PMC10918621 DOI: 10.1021/acs.analchem.3c05705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Recent advances in high-resolution mass spectrometry (HRMS) have enabled the detection of thousands of chemicals from a single sample, while computational methods have improved the identification and quantification of these chemicals in the absence of reference standards typically required in targeted analysis. However, to determine the presence of chemicals of interest that may pose an overall impact on ecological and human health, prioritization strategies must be used to effectively and efficiently highlight chemicals for further investigation. Prioritization can be based on a chemical's physicochemical properties, structure, exposure, and toxicity, in addition to its regulatory status. This Perspective aims to provide a framework for the strategies used for chemical prioritization that can be implemented to facilitate high-quality research and communication of results. These strategies are categorized as either "online" or "offline" prioritization techniques. Online prioritization techniques trigger the isolation and fragmentation of ions from the low-energy mass spectra in real time, with user-defined parameters. Offline prioritization techniques, in contrast, highlight chemicals of interest after the data has been acquired; detected features can be filtered and ranked based on the relative abundance or the predicted structure, toxicity, and concentration imputed from the tandem mass spectrum (MS2). Here we provide an overview of these prioritization techniques and how they have been successfully implemented and reported in the literature to find chemicals of elevated risk to human and ecological environments. A complete list of software and tools is available from https://nontargetedanalysis.org/.
Collapse
Affiliation(s)
- Drew Szabo
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - Travis M. Falconer
- Forensic
Chemistry Center, Office of Regulatory Science, Office of Regulatory
Affairs, US Food and Drug Administration, Cincinnati, Ohio 45237, United States
| | - Christine M. Fisher
- Center
for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland 20740, United States
| | - Ted Heise
- MED
Institute Inc, West Lafayette, Indiana 47906, United States
| | - Allison L. Phillips
- Center
for Public Health and Environmental Assessment, US Environmental Protection Agency, Corvallis, Oregon 97333, United States
| | - Gyorgy Vas
- VasAnalytical, Flemington, New Jersey 08822, United States
- Intertek
Pharmaceutical Services, Whitehouse, New Jersey 08888, United States
| | - Antony J. Williams
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, US Environmental Protection
Agency, Durham, North Carolina 27711, United States
| | - Anneli Kruve
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
- Department
of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
3
|
Yang Y, Yang L, Zheng M, Cao D, Liu G. Data acquisition methods for non-targeted screening in environmental analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
4
|
Mass Spectrometric Methods for Non-Targeted Screening of Metabolites: A Future Perspective for the Identification of Unknown Compounds in Plant Extracts. SEPARATIONS 2022. [DOI: 10.3390/separations9120415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phyto products are widely used in natural products, such as medicines, cosmetics or as so-called “superfoods”. However, the exact metabolite composition of these products is still unknown, due to the time-consuming process of metabolite identification. Non-target screening by LC-HRMS/MS could be a technique to overcome these problems with its capacity to identify compounds based on their retention time, accurate mass and fragmentation pattern. In particular, the use of computational tools, such as deconvolution algorithms, retention time prediction, in silico fragmentation and sophisticated search algorithms, for comparison of spectra similarity with mass spectral databases facilitate researchers to conduct a more exhaustive profiling of metabolic contents. This review aims to provide an overview of various techniques and tools for non-target screening of phyto samples using LC-HRMS/MS.
Collapse
|
5
|
Perin M, Dallegrave A, Suchecki Barnet L, Zanchetti Meneghini L, de Araújo Gomes A, Pizzolato TM. Pharmaceuticals, pesticides and metals/metalloids in Lake Guaíba in Southern Brazil: Spatial and temporal evaluation and a chemometrics approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148561. [PMID: 34175608 DOI: 10.1016/j.scitotenv.2021.148561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 05/06/2023]
Abstract
Compiling and reporting data related to the presence of pharmaceuticals and pesticides are crucial means of assessing the risk those chemicals pose to human health and environment. Data sets from different sources were combined using a data fusion approach to produce a spatial and temporal variation of contaminants presents in water from Lake Guaíba (29°55'-30°24' S; 51°01'-51°20' W). Lake Guaíba is a 496 km2 water body situated in the geological depression of Rio Grande do Sul State, Brazil; that is fed by several rivers from the metropolitan area, the 5th largest metro area in Brazil, with approximately 5 million inhabitants. Analytical methodology to quantify pharmaceuticals and pesticides by LC-QTOF-MS and GC-MS/MS was validated for 41 pharmaceutical and 62 pesticides. Furthermore, 27 chemical elements were analyzed by ICP-MS, and physical chemical parameters were determined using established methodologies. All validation parameters were in accordance with the National Institute of Metrology, Standardization, and Industrial Quality. Thirty-five water samples were analyzed from January to August 2019, and 15 pharmaceuticals and 25 pesticides were present in concentrations ranging from 6.00 ng L-1 to 580.00 ng L-1. Twenty-seven elements were analyzed during the same period, and 18 were present in concentrations ranging from 0.2 μg L-1 to 7060 μg L-1. Samples were tagged according to the points and months of collection to identify temporal and spatial patterns. The main findings show that the compounds are distributed throughout the studied area without an apparent regular pattern, suggesting that events in a specific point affect the entire ecosystem. Conversely, temporal variations were well defined, as samples were grouped according to the climatic conditions of the months of collection. Considering the calculated quotient risks, atrazine, cyproconazole, diuron, and simazine showed the highest risk levels for algae; acetaminophen, diclofenac, and ibuprofen showed the highest risk levels for aquatics invertebrates.
Collapse
Affiliation(s)
- Maurício Perin
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Alexsandro Dallegrave
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Lucas Suchecki Barnet
- Laboratório Federal de Defesa Agropecuária - LFDA, Ministério da Agricultura, Pecuária e Abastecimento do Brasil, Estrada da Ponta Grossa 3036, 91780-580 Porto Alegre, RS, Brazil
| | - Leonardo Zanchetti Meneghini
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Adriano de Araújo Gomes
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Tânia Mara Pizzolato
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Celma A, Ahrens L, Gago-Ferrero P, Hernández F, López F, Lundqvist J, Pitarch E, Sancho JV, Wiberg K, Bijlsma L. The relevant role of ion mobility separation in LC-HRMS based screening strategies for contaminants of emerging concern in the aquatic environment. CHEMOSPHERE 2021; 280:130799. [PMID: 34162120 DOI: 10.1016/j.chemosphere.2021.130799] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 05/24/2023]
Abstract
Ion mobility separation (IMS) coupled to high resolution mass spectrometry (IMS-HRMS) is a promising technique for (non-)target/suspect analysis of micropollutants in complex matrices. IMS separates ionized compounds based on their charge, shape and size facilitating the removal of co-eluting isomeric/isobaric species. Additionally, IMS data can be translated into collision cross-section (CCS) values, which can be used to increase the identification reliability. However, IMS-HRMS for the screening of contaminants of emerging concern (CECs) have been scarcely explored. In this study, the role of IMS-HRMS for the identification of CECs in complex matrices is highlighted, with emphasis on when and with which purpose is of use. The utilization of IMS can result in much cleaner mass spectra, which considerably facilitates data interpretation and the obtaining of reliable identifications. Furthermore, the robustness of IMS measurements across matrices permits the use of CCS as an additional relevant parameter during the identification step even when reference standards are not available. Moreover, an effect on the number of true and false identifications could be demonstrated by including IMS restrictions within the identification workflow. Data shown in this work is of special interest for environmental researchers dealing with the detection of CECs with state-of-the-art IMS-HRMS instruments.
Collapse
Affiliation(s)
- Alberto Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, E-12071, Spain
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, E-12071, Spain
| | - Francisco López
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, E-12071, Spain
| | - Johan Lundqvist
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| | - Elena Pitarch
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, E-12071, Spain
| | - Juan Vicente Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, E-12071, Spain
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, E-12071, Spain.
| |
Collapse
|
7
|
Overview of Sample Preparation and Chromatographic Methods to Analysis Pharmaceutical Active Compounds in Waters Matrices. SEPARATIONS 2021. [DOI: 10.3390/separations8020016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the environment, pharmaceutical residues are a field of particular interest due to the adverse effects to either human health or aquatic and soil environment. Because of the diversity of these compounds, at least 3000 substances were identified and categorized into 49 different therapeutic classes, and several actions are urgently required at multiple steps, the main ones: (i) occurrence studies of pharmaceutical active compounds (PhACs) in the water cycle; (ii) the analysis of the potential impact of their introduction into the aquatic environment; (iii) the removal/degradation of the pharmaceutical compounds; and, (iv) the development of more sensible and selective analytical methods to their monitorization. This review aims to present the current state-of-the-art sample preparation methods and chromatographic analysis applied to the study of PhACs in water matrices by pinpointing their advantages and drawbacks. Because it is almost impossible to be comprehensive in all PhACs, instruments, extraction techniques, and applications, this overview focuses on works that were published in the last ten years, mainly those applicable to water matrices.
Collapse
|
8
|
Choi Y, Jeon J, Choi Y, Kim SD. Characterizing biotransformation products and pathways of the flame retardant triphenyl phosphate in Daphnia magna using non-target screening. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135106. [PMID: 31791763 DOI: 10.1016/j.scitotenv.2019.135106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 05/27/2023]
Abstract
Triphenyl phosphate (TPHP), one of the organophosphate flame retardants, has been widely used in manufacturing, thereby causing a gradual increase in TPHP concentrations in aquatic environments. However, the information on the biotransformation mechanism of TPHP in invertebrates is lacking. The study identified the biotransformation products of TPHP in Daphnia magna, which showed particularly high toxicity in aquatic organisms, and determined the rates of depuration. Daphnia magna, a standard species for toxicity studies, was exposed to triphenyl phosphate and transferred to the pure medium. The biotransformation products of TPHP and its depuration rates were determined by liquid chromatography-high resolution mass spectrometry. Nine biotransformation products (five in the positive mode and four in the negative mode) of triphenyl phosphate were identified in D. magna. Based on the depuration ratio, the major biotransformation mechanism is estimated to be cysteine conjugation and sulfation. Certain biotransformation products (diphenyl phosphate, hydroxylated triphenyl phosphate, and thiol triphenyl phosphate) might induce toxicity in biota. The results could be used to predict main biotransformation processes and toxic products of organophosphate flame retardants in aquatic invertebrates.
Collapse
Affiliation(s)
- Yeowool Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Junho Jeon
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Younghun Choi
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
9
|
Gumbi BP, Moodley B, Birungi G, Ndungu PG. Target, Suspect and Non-Target Screening of Silylated Derivatives of Polar Compounds Based on Single Ion Monitoring GC-MS. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16204022. [PMID: 31640145 PMCID: PMC6843951 DOI: 10.3390/ijerph16204022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 11/21/2022]
Abstract
There is growing interest in determining the unidentified peaks within a sample spectra besides the analytes of interest. Availability of reference standards and hyphenated instruments has been a key and limiting factor in the rapid determination of emerging pollutants in the environment. In this work, polar compounds were silylated and analyzed with gas chromatography mass spectrometry (GC-MS) to determine the abundant fragments within the single ion monitoring (SIM) mode and methodology. Detection limits and recoveries of the compounds were established in river water, wastewater, biosolid and sediment matrices. Then, specific types of polar compounds that are classified as emerging contaminants, pharmaceuticals and personal care products, in the environment were targeted in the Mgeni and Msunduzi Rivers. We also performed suspect and non-target analysis screening to identify several other polar compounds in these rivers. A total of 12 compounds were quantified out of approximately 50 detected emerging contaminants in the Mgeni and Msunduzi Rivers. This study is significant for Africa, where the studies of emerging contaminants are limited and not usually prioritized.
Collapse
Affiliation(s)
- Bhekumuzi Prince Gumbi
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Brenda Moodley
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Grace Birungi
- Department of Chemistry, Mbarara University of Science and Technology, Mbarara 1410, Uganda.
| | - Patrick Gathura Ndungu
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2028, South Africa.
| |
Collapse
|
10
|
Hedgespeth ML, Nichols EG. Expanding phytoremediation to the realms of known and unknown organic chemicals of concern. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1385-1396. [PMID: 31257906 DOI: 10.1080/15226514.2019.1633265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent advancements in analytical chemistry and data analyses via high-resolution mass spectrometry (HRMS) are evolving scientific understanding of the potential totality of organic chemical exposure and pollutant risk. This review addresses the importance of HRMS approaches, namely suspect screening and nontarget chemical analyses, to the realm of phytoremediation. These analytical approaches are not without caveats and constraints, but they provide an opportunity to understand in greater totality how plant-based technologies contribute, mitigate, and reduce organic chemical exposure across scales of experimental and system-level studies. These analytical tools can enlighten the complexity and efficacy of plant-contaminant system design and expand our understanding of biogenic and anthropogenic chemicals at work in phytoremediation systems. Advances in data analytics from biological sciences, such as metabolomics, are crucial to HRMS analysis. This review provides an overview of targeted, suspect screening, and nontarget HRMS approaches, summarizes the expanding knowledge of regulated and unregulated organic chemicals in the environment, addresses requisite HRMS instrumentation, analysis cost, uncertainty, and data processing techniques, and offers potential bridges of HRMS analyses to phytoremediation research and application.
Collapse
Affiliation(s)
- Melanie L Hedgespeth
- Department of Forest and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
11
|
Hohrenk LL, Vosough M, Schmidt TC. Implementation of Chemometric Tools To Improve Data Mining and Prioritization in LC-HRMS for Nontarget Screening of Organic Micropollutants in Complex Water Matrixes. Anal Chem 2019; 91:9213-9220. [DOI: 10.1021/acs.analchem.9b01984] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lotta L. Hohrenk
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU) University of Duisburg-Essen, Universitätsstrasse 5, Essen 45141, Germany
| | - Maryam Vosough
- Department of Clean Technologies, Chemistry and Chemical Engineering Research Center of Iran,
P.O. Box 14335-186, Tehran 1496813151, Iran
| | - Torsten C. Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU) University of Duisburg-Essen, Universitätsstrasse 5, Essen 45141, Germany
- IWW Water Centre, Moritzstr. 26, Mülheim an der Ruhr 45476, Germany
| |
Collapse
|
12
|
Cheng Z, Zhang X, Geng X, Organtini KL, Dong F, Xu J, Liu X, Wu X, Zheng Y. A target screening method for detection of organic pollutants in fruits and vegetables by atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry combined with informatics platform. J Chromatogr A 2018; 1577:82-91. [DOI: 10.1016/j.chroma.2018.09.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/23/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
|
13
|
Park N, Choi Y, Kim D, Kim K, Jeon J. Prioritization of highly exposable pharmaceuticals via a suspect/non-target screening approach: A case study for Yeongsan River, Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:570-579. [PMID: 29800850 DOI: 10.1016/j.scitotenv.2018.05.081] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/20/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) in the Yeongsan River, Korea were prioritized via suspect and non-target analysis using LC-HRMS (QExactive plus Orbitrap) followed by semi-quantitative analysis to confirm the priority of PPCPs. A scoring and ranking system for prioritization was suggested based on occurrence frequency and chromatographic peak area or concentration. Through suspect and non-target screening, more than 50 PPCPs were tentatively identified and ranked by the scoring system. Among them, 28 substances were finally confirmed using reference standards. For estimating concentration, 26 confirmed PPCPs and 12 additional substances not included in the first ranking were semi-quantitatively analyzed. We found that carbamazepine, metformin, paraxanthine, naproxen, and fluconazole occurred 100% of the time above the limit of quantification in 14 samples, whereas carbamazepine, metformin, paraxanthine, caffeine, and cimetidine showed maximum concentrations above 1000 ng/L. Thus, in the final prioritization list, carbamazepine, metformin, and paraxanthine shared first place, followed by caffeine, cimetidine, lidocaine, naproxen, cetirizine, climbazole, fexofenadine, tramadol, and fluconazole, with scores of 100 or above. We suggest that these 12 PPCPs are the most highly exposable substances, and thus must be considered in future water monitoring in the Yeongsan River.
Collapse
Affiliation(s)
- Naree Park
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Younghun Choi
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Deokwon Kim
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Kyunghyun Kim
- Water Quality Assessment Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Junho Jeon
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea.
| |
Collapse
|
14
|
Fu Y, Zhang Y, Zhou Z, Lu X, Lin X, Zhao C, Xu G. Screening and Determination of Potential Risk Substances Based on Liquid Chromatography–High-Resolution Mass Spectrometry. Anal Chem 2018; 90:8454-8461. [DOI: 10.1021/acs.analchem.8b01153] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yanqing Fu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhui Zhang
- School of Computer Science & Technology, Dalian University of Technology, Dalian 116023, China
| | - Zhihui Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui Lin
- School of Computer Science & Technology, Dalian University of Technology, Dalian 116023, China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
do Nascimento TA, Dutra FVA, Pires BC, Borges KB. Efficient removal of anti-inflammatory phenylbutazone from an aqueous solution employing a composite material based on poly(aniline-co-pyrrole)/multi-walled carbon nanotubes. NEW J CHEM 2018. [DOI: 10.1039/c8nj00861b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Poly(Ani-co-Py)/MWCNT was synthesized by chemical oxidation in a triple-phase interface system and presented a high capacity for the removal of PBZ from wastewater.
Collapse
Affiliation(s)
| | | | - Bruna Carneiro Pires
- Departamento de Ciências Naturais
- Universidade Federal de São João del-Rei
- São João del-Rei
- Brazil
| | - Keyller Bastos Borges
- Departamento de Ciências Naturais
- Universidade Federal de São João del-Rei
- São João del-Rei
- Brazil
| |
Collapse
|
16
|
Bade R, White JM, Gerber C. Qualitative and quantitative temporal analysis of licit and illicit drugs in wastewater in Australia using liquid chromatography coupled to mass spectrometry. Anal Bioanal Chem 2017; 410:529-542. [DOI: 10.1007/s00216-017-0747-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 11/30/2022]
|
17
|
Fu Y, Zhao C, Lu X, Xu G. Nontargeted screening of chemical contaminants and illegal additives in food based on liquid chromatography–high resolution mass spectrometry. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Bijlsma L, Bade R, Celma A, Mullin L, Cleland G, Stead S, Hernandez F, Sancho JV. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal Chem 2017; 89:6583-6589. [DOI: 10.1021/acs.analchem.7b00741] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lubertus Bijlsma
- Research
Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat
s/n, E-12071 Castellón, Spain
| | - Richard Bade
- Research
Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat
s/n, E-12071 Castellón, Spain
- School
of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Alberto Celma
- Research
Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat
s/n, E-12071 Castellón, Spain
| | - Lauren Mullin
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Gareth Cleland
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Sara Stead
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Felix Hernandez
- Research
Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat
s/n, E-12071 Castellón, Spain
| | - Juan V. Sancho
- Research
Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat
s/n, E-12071 Castellón, Spain
| |
Collapse
|
19
|
Chibwe L, Titaley IA, Hoh E, Massey Simonich SL. Integrated Framework for Identifying Toxic Transformation Products in Complex Environmental Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2017; 4:32-43. [PMID: 35600207 PMCID: PMC9119311 DOI: 10.1021/acs.estlett.6b00455] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Complex environmental mixtures consist of hundreds to thousands of unknown and unregulated organic compounds that may have toxicological relevance, including transformation products (TPs) of anthropogenic organic pollutants. Non-targeted analysis and suspect screening analysis offer analytical approaches for potentially identifying these toxic transformation products. However, additional tools and strategies are needed in order to reduce the number of chemicals of interest and focus analytical efforts on chemicals that may pose risks to humans and the environment. This brief review highlights recent developments in this field and suggests an integrated framework that incorporates complementary instrumental techniques, computational chemistry, and toxicity analysis, for prioritizing and identifying toxic TPs in the environment.
Collapse
Affiliation(s)
- Leah Chibwe
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Ivan A. Titaley
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Eunha Hoh
- Graduate School of Public Health, San Diego State University, San Diego, CA, 92182, USA
| | - Staci L. Massey Simonich
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
20
|
Identifying known unknowns using the US EPA's CompTox Chemistry Dashboard. Anal Bioanal Chem 2016; 409:1729-1735. [PMID: 27987027 DOI: 10.1007/s00216-016-0139-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/18/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
Abstract
Chemical features observed using high-resolution mass spectrometry can be tentatively identified using online chemical reference databases by searching molecular formulae and monoisotopic masses and then rank-ordering of the hits using appropriate relevance criteria. The most likely candidate "known unknowns," which are those chemicals unknown to an investigator but contained within a reference database or literature source, rise to the top of a chemical list when rank-ordered by the number of associated data sources. The U.S. EPA's CompTox Chemistry Dashboard is a curated and freely available resource for chemistry and computational toxicology research, containing more than 720,000 chemicals of relevance to environmental health science. In this research, the performance of the Dashboard for identifying known unknowns was evaluated against that of the online ChemSpider database, one of the primary resources used by mass spectrometrists, using multiple previously studied datasets reported in the peer-reviewed literature totaling 162 chemicals. These chemicals were examined using both applications via molecular formula and monoisotopic mass searches followed by rank-ordering of candidate compounds by associated references or data sources. A greater percentage of chemicals ranked in the top position when using the Dashboard, indicating an advantage of this application over ChemSpider for identifying known unknowns using data source ranking. Additional approaches are being developed for inclusion into a non-targeted analysis workflow as part of the CompTox Chemistry Dashboard. This work shows the potential for use of the Dashboard in exposure assessment and risk decision-making through significant improvements in non-targeted chemical identification. Graphical abstract Identifying known unknowns in the US EPA's CompTox Chemistry Dashboard from molecular formula and monoisotopic mass inputs.
Collapse
|