1
|
Samia B, Socorro J, Durand A, Quivet E, Wortham H. Photolytic degradation of commonly used pesticides adsorbed on silica particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174964. [PMID: 39059656 DOI: 10.1016/j.scitotenv.2024.174964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
The currently used pesticides are mostly semi-volatile organic compounds. As a result, a fraction of them can be adsorbed on atmospheric aerosol surface. Their atmospheric photolysis is poorly documented, and gaps persist in understanding their reactivity in the particle phase. Laboratory experiments were conducted to determine the photolysis rates of eight commonly used pesticides (i.e., cyprodinil, deltamethrin, difenoconazole, fipronil, oxadiazon, pendimethalin, permethrin, and tetraconazole) using a flow reactor. These pesticides were individually adsorbed on hydrophobic silica particles and exposed to a filtered xenon lamp to mimic atmospheric aerosols and sunlight irradiation, respectively. The estimated photolysis rate constants ranged from less than (3.4 ± 0.3) × 10-7 s-1 (permethrin; >47.2 days) to (3.8 ± 0.2) × 10-5 s-1 (Fipronil; 0.4 days), depending on the considered compound. Moreover, this study assessed the influence of pesticide mixtures on their photolysis rates, revealing that certain pesticides can act as photosensitizers, thereby enhancing the reactivity of permethrin and tetraconazole. This study underscores the importance of considering photolysis degradation when evaluating pesticide fate and reactivity, as it can be a predominant degradation pathway for some pesticides. This contributes to an enhanced understanding of their behavior in the atmosphere and their impact on air quality.
Collapse
Affiliation(s)
- Boulos Samia
- Aix Marseille Univ, CNRS, LCE, Marseille, France.
| | | | | | | | | |
Collapse
|
2
|
Samia B, Della Puppa L, Mattei C, Durand A, Ravier S, Quivet E, Wortham H. Influence of pesticide mixture on their heterogeneous atmospheric degradation by ozone and OH radicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123351. [PMID: 38272169 DOI: 10.1016/j.envpol.2024.123351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Pesticides in the atmosphere can exist in both gaseous and particulate phases due to their semi-volatile properties. They can undergo degradation when exposed to atmospheric oxidants like ozone and hydroxyl radicals. The majority of studies on the atmospheric reactivity of pesticides study them in combination, without considering potential mixture effects that could induce uncertainties in the results. Therefore, this study aims to address this gap, through laboratory studies using a flow reactor, and by evaluating the degradation kinetics of pendimethalin mixed with folpet, tebuconazole, and S-metolachlor, which were simultaneously adsorbed on hydrophobic silica particles that mimic atmospheric aerosols. The comparison with other mixtures, including pendimethalin, from the literature has shown similar reactivity with ozone and hydroxyl radicals, indicating that the degradation kinetics of pesticides is independent of the mixture. Moreover, the degradation rates of the four pesticides under study indicate that they are not or slightly degraded by ozone, with half-lives ranging from 29 days to over 800 days. In contrast, when exposed to hydroxyl radicals, tebuconazole exhibited the fastest reactivity, with a half-life of 4 days, while pendimethalin had a half-life of 17 days.
Collapse
Affiliation(s)
- Boulos Samia
- Aix Marseille Univ, CNRS, LCE, Marseille, France
| | | | - Coraline Mattei
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | | | | | | | | |
Collapse
|
3
|
Shang Y, Liu Y, Tian J, Liu C, Zhu X, Wang J, Chen D, Tao W. Heterogeneous kinetics of the OH-initiated degradation of fenthion and parathion. J Environ Sci (China) 2023; 133:161-170. [PMID: 37451785 DOI: 10.1016/j.jes.2022.05.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 07/18/2023]
Abstract
Fenthion and parathion are two representative kinds of organophosphorus pesticides and widely used in agriculture. They are directly or indirectly released into the atmosphere by spraying or volatilization processes. However, their heterogeneous reactivity toward OH radicals has not yet been well understood. Therefore, this work investigated the heterogeneous kinetics of the OH-initiated degradation of surface-bound fenthion and parathion using a flow reactor. The results showed that OH radicals played an important role in the atmospheric degradation of fenthion and parathion. Their average rate constants were (7.20 ± 0.77) × 10-12 and (10.40 ± 0.60) × 10-12 cm3/(mol· sec) at a relative humidity (RH) and temperature of 35% and 20 °C, respectively, suggesting that they have relatively short lifetimes in the atmosphere. In addition, a negative RH dependence and a positive temperature dependence of the rate constants were observed. The Arrhenius expressions of fenthion and parathion were k2 = (1.34 ± 0.48) × 10-9exp[-(1432.59 ± 105.29)/T] and k2 = (1.96 ± 1.38) × 10-9exp[-(1619.98 ± 222.02)/T], respectively, and their overall activation energy was estimated to be (11.88 ± 0.87) and (13.48 ± 1.83) kJ/mol. The experimental results will update the kinetic data of fenthion and parathion in the atmosphere and be helpful to further understand their atmospheric transportation processes.
Collapse
Affiliation(s)
- Yuanhong Shang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China
| | - Yongchun Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jinfeng Tian
- Medical College, Panzhihua University, Panzhihua 617000, China
| | - Changgeng Liu
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China.
| | - Xuejun Zhu
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China
| | - Jun Wang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China
| | - Dandan Chen
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China
| | - Wei Tao
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong 643000, China
| |
Collapse
|
4
|
Huo Y, Li M, An Z, Sun J, Mei Q, Wei B, Qiu Z, Xie J, He M. Ozonolysis of Permethrin in the Atmosphere: Mechanism, Kinetics, and Evaluation of Toxicity. J Phys Chem A 2021; 125:7705-7715. [PMID: 34459596 DOI: 10.1021/acs.jpca.1c04812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyrethroid, a pesticide widely used worldwide, could mimic, block, or synergize the effects of endogenous hormones in humans or mammals after entering into the atmosphere and after being sprayed and applied in large quantities. This research aims to study the mechanism, kinetics, and eco-toxicity evaluation of the ozonolysis of permethrin (PER)-one of the typical pyrethroid (type I) pesticides. Existing experimental studies only predicted that ozonolysis of PER could generate a cycloperoxy analogue of PER (IM13-1-11), and the reaction mechanism has not yet been completed. To make up for the lack of experimental results, the 13 primary reaction pathways of PER and ozone, as well as the subsequent reactions of Criegee intermediates with small molecules such as NOx, COx, SO2, and O2, have been studied to propose new reaction paths by quantum chemical calculations in this work. We calculated the total reaction rate constant of PER and ozone at 298 K and 1 atm based on the calculated thermodynamic data and the transition state theory (TST), which was compared with the experimental values to prove the reliability of our results. Based on the quantitative structure and activity relationship, we predicted the acute and chronic toxicity of PER and its products of ozonolysis to three representative organisms-fish, daphnia, and green algae to avoid animal experiments. The results show that ozonolysis products of PER are still extremely harmful to the environment and should be taken seriously, although the products have less toxicity than PER.
Collapse
Affiliation(s)
- Yanru Huo
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Zexiu An
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Jianfei Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, P. R. China
| | - Qiong Mei
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Bo Wei
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Zhaoxu Qiu
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
5
|
Guberman VerPloeg SL, Clark AE, Yoon S, Hildebrandt Ruiz L, Sheesley RJ, Usenko S. Assessing the atmospheric fate of pesticides used to control mosquito populations in Houston, TX. CHEMOSPHERE 2021; 275:129951. [PMID: 33662722 DOI: 10.1016/j.chemosphere.2021.129951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
During the summer months, urban areas are literal hot spots of mosquito-borne disease transmission and air pollution. Public health authorities release aerosolized pesticides directly into the atmosphere to help control adult mosquito populations and thereby reduce the threat of diseases, such as Zika Virus. The primary adulticides (i.e. pesticides used to control adult mosquito populations) in Houston, TX are permethrin and malathion. These adulticides are typically sprayed at night using ultra-low volume sprayers. Particulate matter (PM) samples including total suspended and fine PM (PM < 2.5 μm in aerodynamic diameter) were collected at four ground-based sites across Houston in 2013 and include daytime, nighttime, and 24 h samples. Malathion is initially sprayed as coarse aerosol (5-25 μm), but is measured in fine aerosol (<2.5 μm) and coarse aerosol in the urban atmosphere. Particle size is relevant both for deposition velocities and for human exposure. Atmospheric permethrin concentrations measured in nighttime samples peak at 60 ng m-3, while malathion nighttime concentrations peak near 40 ng m-3. Malaoxon, an oxidation product of malathion, was also frequently detected at concentrations >10 ng m-3, indicating significant nighttime oxidation. Based on the loss of malathion and the increase in malaoxon, the atmospheric half-life of malathion in Houston was estimated at <12 h, which was significantly shorter than previous half-life estimates (∼days). Importantly, malaoxon is estimated to be 22-33 times more toxic to humans than malathion. Both the aerosol size and the half-life are critical for mosquito control, human exposure, and risk assessment of these routine pesticides.
Collapse
Affiliation(s)
| | - Adelaide E Clark
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA
| | - Subin Yoon
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798, USA
| | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Rebecca J Sheesley
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798, USA
| | - Sascha Usenko
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798, USA; Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA.
| |
Collapse
|
6
|
Hulin M, Leroux C, Mathieu A, Gouzy A, Berthet A, Boivin A, Bonicelli B, Chubilleau C, Hulin A, Leoz Garziandia E, Mamy L, Millet M, Pernot P, Quivet E, Scelo AL, Merlo M, Ruelle B, Bedos C. Monitoring of pesticides in ambient air: Prioritization of substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141722. [PMID: 33207457 DOI: 10.1016/j.scitotenv.2020.141722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Despite the richness of data collected on pesticide concentrations in ambient air in France, knowledge on this topic remains partial and heterogeneous in the absence of specific regulations. The population exposure remains thus difficult to estimate; therefore it was necessary to define modalities for implementing national monitoring of pesticides in ambient air in metropolitan France and in the overseas territories. The objective of this work was to identify which active substances (a.s.) have to be monitored in priority. As part of a collective expertise, a group of multidisciplinary experts has developed a method to rank active substances authorised as plant protection products, biocides and antiparasitic agents, which were available on the French market in 2015. A 3-steps approach has been developed. The first step consisted of a theoretical approach based on a hierarchy of substances according to four criteria: (a) national uses, (b) emission potential to the air, (c) persistence in the air, and (d) chronic toxicity. The three first criteria give information on their potential to be present in the atmosphere, and the fourth criterion allows to consider their potential of hazard. The second step was an observational approach based on existing database on pesticide air measurements in France. In the third step, both approaches were combined using decision trees to select priority pesticides. Among the 1316 a.s. first identified from the EU Pesticides database, 90 were selected, among which 43 required metrological and/or analytical development. The experts recommended confirming the relevance of performing a longer term monitoring of these a. s. after a one-year exploratory campaign. The proposed method is reproduceable, transparent, easy to update (e.g. in the light of a change in product authorization), and can be adapted to other agricultural and geographical conditions, and objectives (e.g. monitoring of the ecotoxicological effects of pesticides).
Collapse
Affiliation(s)
- Marion Hulin
- ANSES, Risk Assessment Department, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort, France.
| | - Carole Leroux
- ANSES, Risk Assessment Department, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort, France
| | - Aurélie Mathieu
- ANSES, Risk Assessment Department, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort, France
| | - Aurélien Gouzy
- INERIS, Parc technologique ALATA BP2, 60550 Verneuil-en-Halatte, France
| | - Aurélie Berthet
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - Arnaud Boivin
- ANSES, Regulated Products Assessment Department, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort, France
| | - Bernard Bonicelli
- INRAE UMR ITAP, 361 Rue Jean François Breton, 34196 Montpellier, France
| | - Catherine Chubilleau
- Service d'hygiène hospitalière, Centre hospitalier de Niort, 79000 Niort, France
| | - Agnès Hulin
- ATMO Nouvelle Aquitaine, ZI Périgny, La Rochelle, 17180, Perigny, France
| | - Eva Leoz Garziandia
- INERIS, Parc technologique ALATA BP2, 60550 Verneuil-en-Halatte, France; LCSQA, 60550 Verneuil-en-Halatte, France
| | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78850 Thiverval-Grignon, France
| | - Maurice Millet
- ICPEES (UMR 7515 CNRS), Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | | | | | - Anne-Laure Scelo
- ANSES, Regulated Products Assessment Department, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort, France
| | - Mathilde Merlo
- ANSES, Risk Assessment Department, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort, France
| | - Bernadette Ruelle
- INRAE UMR ITAP, 361 Rue Jean François Breton, 34196 Montpellier, France
| | - Carole Bedos
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78850 Thiverval-Grignon, France
| |
Collapse
|
7
|
Mattei C, Wortham H, Quivet E. Heterogeneous degradation of pesticides by OH radicals in the atmosphere: Influence of humidity and particle type on the kinetics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:1084-1094. [PMID: 30901782 DOI: 10.1016/j.scitotenv.2019.02.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Pesticides can be adsorbed on the surface of atmospheric aerosol, depending on their physicochemical properties. They can be degraded by atmospheric oxidants such as OH radicals but the influence of some environmental parameters on the degradation kinetics, especially relative humidity and particle surface type, is not well understood. Heterogeneous degradation by OH radicals of eight commonly used pesticides (i.e., difenoconazole, tetraconazole, cyprodinil, fipronil, oxadiazon, pendimethalin, deltamethrin, and permethrin) adsorbed on hydrophobic and hydrophilic silicas at a relative humidity ranging from 0% to 70% was studied. Under experimental conditions, only cyprodinil, deltamethrin, permethrin, and pendimethalin were degraded by OH radical in atmospheric relevant concentration. Second-order kinetic constants calculated for the pesticides degraded by OH radicals ranged from (1.93 ± 0.61) × 10-13 cm3 molecule-1 s-1 (permethrin, hydrophobic silica, 30% RH) to (4.08 ± 0.27) × 10-12 cm3 molecule-1 s-1 (pendimethalin, hydrophilic silica, 0% RH). Results obtained can contribute to improve the understanding of the atmospheric fate of pesticides and other semi-volatile organic compounds in the particulate phase and they highlight the importance of taking humidity and particle type into account for the determination of pesticides atmospheric half-lives.
Collapse
Affiliation(s)
- Coraline Mattei
- Aix Marseille Univ, CNRS, LCE, Marseille, France; French Environment and Energy Management Agency, 20, avenue du Grésillé, BP 90406, 49004 Angers Cedex 01, France
| | | | | |
Collapse
|
8
|
Mattei C, Wortham H, Quivet E. Heterogeneous atmospheric degradation of pesticides by ozone: Influence of relative humidity and particle type. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:1544-1553. [PMID: 29996451 DOI: 10.1016/j.scitotenv.2018.01.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/12/2017] [Accepted: 01/06/2018] [Indexed: 06/08/2023]
Abstract
In the atmosphere pesticides can be adsorbed on the surface of particles, depending on their physico-chemical properties. They can react with atmospheric oxidants such as ozone but parameters influencing the degradation kinetics are not clear enough. In this study the heterogeneous ozonolysis of eight commonly used pesticides (i.e., difenoconazole, tetraconazole, cyprodinil, fipronil, oxadiazon, pendimethalin, deltamethrin, and permethrin) adsorbed on hydrophobic and hydrophilic silicas, and Arizona dust at relative humidity ranging from 0% to 80% was investigated. Under experimental conditions, only cyprodinil, deltamethrin, permethrin and pendimethalin were degraded by ozone. Second-order kinetic constants calculated for the pesticides degraded by ozone ranged from (4.7 ± 0.4) × 10-20 cm3 molecule-1 s-1 (pendimethalin, hydrophobic silica, 55% RH) to (2.3 ± 0.4) × 10-17 cm3 molecule-1 s-1 (cyprodinil, Arizona dust, 0% RH). Results obtained can contribute to a better understanding of the atmospheric fate of pesticides in the particulate phase and show the importance of taking humidity and particle type into account for the determination of pesticides atmospheric half-lives.
Collapse
Affiliation(s)
- Coraline Mattei
- Aix Marseille Univ, CNRS, LCE, Marseille, France; French Environment and Energy Management Agency 20, avenue du Grésillé, BP 90406, 49004 Angers Cedex 01, France
| | | | | |
Collapse
|