1
|
Tu Y, Wang J, Huang Y, Deng H, Liu X, Lv J. Transformational fixation of Cr(VI) during microwave-enhanced reduction of soil iron minerals by tea polyphenols. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124889. [PMID: 40064082 DOI: 10.1016/j.jenvman.2025.124889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/07/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Hexavalent chromium [Cr(VI)] presents substantial environmental and health hazards due to its pronounced toxicity and mobility in soils. Traditional chemical reduction methods for Cr(VI) are often inadequate for treating chromium-contaminated soils, as they may fail to fully reduce Cr(VI), leading to incomplete remediation. Consequently, there is a critical need to develop more efficient and environmentally sustainable methods for the treatment of hexavalent chromium. This study explores an innovative approach using microwave-enhanced reduction of soil iron minerals facilitated by tea polyphenols to achieve transformational fixation of Cr(VI). The microwave-assisted treatment (0.5 wt% TP combined with MW at 700 W for 10 min) significantly reduced Cr(VI) concentrations in iron-rich soil from 363.4 mg kg-1 to 0.3 mg kg-1, achieving a removal rate of 99.9%, compared to TP treatment alone (0.5 wt%). Transmission electron microscopy (TEM), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analyses revealed that the enhanced removal efficiency of Cr(VI) by microwave-assisted tea polyphenols is attributable to the accelerated reduction of soil iron minerals by the polyphenols. Furthermore, microwave enhancement facilitated the transformation of Cr into more stable forms, such as Cr2O3 and FeCr2O4. Additionally, the Cr(VI) content in the treated soil remained below 3 mg kg-1 after 360 days of atmospheric exposure, indicating sustained immobilization. This study demonstrates that the integration of tea polyphenols with microwave irradiation constitutes a promising strategy for the remediation of Cr(VI)-contaminated soils.
Collapse
Affiliation(s)
- Yuliang Tu
- School of Environment and Energy, Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, 510006, China
| | - Jianle Wang
- School of Environment and Energy, Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, 510006, China
| | - Yanfeng Huang
- School of Environment and Energy, Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, 510006, China
| | - Hong Deng
- School of Environment and Energy, Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, China.
| | - Xueming Liu
- School of Environment and Energy, Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, 510006, China
| | - Jiaxin Lv
- School of Environment and Energy, Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
2
|
Huang J, Li Q, Zhu Y, Wu J, Fan G. Columnar cobalt molybdate spinel rooted on three-dimensional nickel foam as robust catalyst for 4-nitrophenol degradation through peroxymonosulfate activation. ENVIRONMENTAL RESEARCH 2025; 266:120579. [PMID: 39662611 DOI: 10.1016/j.envres.2024.120579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/23/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Metal oxides-catalyzed peroxymonosulfate (PMS) activation systems show promise in decomposing organic pollutants, whereas the critical challenges such as catalyst aggregation and metal ion leaching significantly impact the stability and reusability of catalysts and thus limit widespread application. To address these issues, an effective self-supported three-dimensional PMS activator consisted of spinel cobalt molybdate (CoMoO4) and nickel foam (NF) (CoMoO4/NF) is fabricated through hydrothermal and annealing processes. The cooperative redox interaction between Co and Mo metal sites in CoMoO4/NF play a crucial role in efficiently activating PMS to degrade 4-nitrophenol (4-NP). Specifically, the CoMoO4/NF/PMS system achieves a 95% degradation rate for 4-NP within 35 min. Attributing to the unique columnar structure and strong connection between CoMoO4 and NF, the catalyst/PMS system maintains high efficiency after five cycles. Furthermore, the system demonstrates broad applicability for degrading various organic pollutants and resistance to interference from different pH levels, inorganic anions, and humic acid. This study proposes radical/non-radical degradation pathways by identifying active species and investigates the degradation mechanism and toxicity of intermediate products for 4-NP. These findings offer valuable insights for designing and synthesizing self-supported catalysts to eliminate pollutants through PMS activation.
Collapse
Affiliation(s)
- Jieling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Qiulin Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Yuyue Zhu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Jie Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Guangyin Fan
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| |
Collapse
|
3
|
Liu SZ, Ding W, Zhang HW, Li ZS, Tian KC, Liu C, Geng ZC, Xu CY. Magnetized bentonite modified rice straw biochar: Qualitative and quantitative analysis of Cd(II) adsorption mechanism. CHEMOSPHERE 2024; 359:142262. [PMID: 38714252 DOI: 10.1016/j.chemosphere.2024.142262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024]
Abstract
Industrialization has caused a significant global issue with cadmium (Cd) pollution. In this study, Biochar (Bc), generated through initial pyrolysis of rice straw, underwent thorough mixing with magnetized bentonite clay, followed by activation with KOH and subsequent pyrolysis. Consequently, a magnetized bentonite modified rice straw biochar (Fe3O4@B-Bc) was successfully synthesized for effective treatment and remediation of this problem. Fe3O4@B-Bc not only overcomes the challenges associated with the difficult separation of individual bentonite or biochar from water, but also exhibited a maximum adsorption capacity of Cd(II) up to 241.52 mg g-1. The characterization of Fe3O4@B-Bc revealed that its surface was rich in C, O and Fe functional groups, which enable efficient adsorption. The quantitative calculation of the contribution to the adsorption mechanism indicates that cation exchange and physical adsorption accounted for 65.87% of the total adsorption capacity. In conclusion, Fe3O4@B-Bc can be considered a low-cost and recyclable green adsorbent, with broad potential for treating cadmium-polluted water.
Collapse
Affiliation(s)
- Shu-Zhi Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Wei Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Hong-Wei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zhu-Shuai Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Ke-Chun Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Ce Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zeng-Chao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Northwest Plant Nutrition and Agro-Environment in Ministry of Agriculture, PR China, Yangling, 712100, China.
| | - Chen-Yang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Northwest Plant Nutrition and Agro-Environment in Ministry of Agriculture, PR China, Yangling, 712100, China.
| |
Collapse
|
4
|
Zhang W, Jia H, Wang Y, Gao F, Yang G, Wang J. Review in application of blast furnace dust in wastewater treatment: material preparation, integrated process, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22339-22361. [PMID: 38433174 DOI: 10.1007/s11356-024-32631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Blast furnace dust (BFD) is the solid powder and particulate matter produced by dust removal process in ironmaking industry. The element composition of BFD is complex, and a direct return to sintering will lead to heavy metal enrichment and blast furnace lining corrosion. In recent years, the application of BFD in wastewater treatment has attracted widespread attention. Based on the mechanisms of action of BFD in wastewater, this paper discusses in detail the application of BFD in iron-carbon micro-electrolysis, biological enhancement, adsorption, flocculation, and Fenton/Fenton-like reactions. Iron oxides and carbon in BFD are key substances. Thus, BFD has great potential as a raw material in wastewater treatment, and the waste utilization of BFD can be realized. However, the difference in elements and composition of BFD limits its large-scale application. We can classify BFD according to different proportions of elements. In the future, it is necessary to focus on the service life of BFD in water and whether it shall bring secondary pollution to water.
Collapse
Affiliation(s)
- Wen Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yue Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Fei Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Guang Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China.
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China.
| |
Collapse
|
5
|
Li Y, Cao H, Liu W, Liu P. Effective degradation of tetracycline via recyclable cellulose nanofibrils/polyvinyl alcohol/Fe 3O 4 hybrid hydrogel as a photo-Fenton catalyst. CHEMOSPHERE 2022; 307:135665. [PMID: 35835244 DOI: 10.1016/j.chemosphere.2022.135665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
In this work, the method of in-situ co-precipitation was used to prepare PVA/CNF/Fe3O4 hybrid hydrogel, and the relationship between its structure and performance was explored. The Fe3O4NPs prepared by this method were dispersed on the carrier PVA/CNF hydrogel and were easy to recover. The catalytic degradation of tetracycline was investigated using PVA/CNF/Fe3O4 hybrid hydrogel as photo-Fenton catalysts. The results showed that light and hydrogel carriers were pivotal factors in promoting Fe2+ and Fe3+ cycling and that the PVA/CNF/Fe3O4 hybrid hydrogel as catalysts were able to activate H2O2 to generate a large amount of oxygen radical •OH, resulting in efficient removal of tetracycline. The tetracycline degradation followed a proposed first-order kinetic model and achieved a removal rate of about 98% in 120 min at an optimum pH of 3, H2O2 100 mM, catalyst 0.3 g/L, and a temperature of 25 °C.
Collapse
Affiliation(s)
- Yuhang Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Hui Cao
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenli Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Pengtao Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
6
|
Guo H, Yang H, Huang J, Tong J, Liu X, Wang Y, Qiao W, Han J. Theoretical and experimental insight into plasma-catalytic degradation of aqueous p-nitrophenol with graphene-ZnO nanoparticles. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Pal S, Kumar A, Kumar S, De AK, Prakash R, Sinha I. Visible Light Photocatalysis on Magnetically Recyclable Fe3O4/Cu2O Nanostructures. Catal Letters 2022. [DOI: 10.1007/s10562-021-03893-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Silva AKD, Torquato ECC, Castanharo JA, Costa MADS, Marques MRDC, Costa LDC. Evaluation of magnetic poly(methyl methacrylate) microspheres as catalysts in heterogeneous Fenton processes. POLIMEROS 2022. [DOI: 10.1590/0104-1428.20220029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Wu D, Kan H, Zhang Y, Wang T, Qu G, Zhang P, Jia H, Sun H. Pyrene contaminated soil remediation using microwave/magnetite activated persulfate oxidation. CHEMOSPHERE 2022; 286:131787. [PMID: 34365168 DOI: 10.1016/j.chemosphere.2021.131787] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are important mutagen prevalent in the contaminated sites, bringing potential risks to human health. Iron oxides are important natural components in soils. Pyrene removal in soil using persulfate (PS) oxidation activated by microwave (MW) and magnetite (Fe3O4) was investigated. Fe3O4 significantly promoted pyrene removal in the soil; 91.7 % of pyrene was degraded within 45 min treatment. Pyrene removal rate in the Fe3O4/MW/PS system was 5.18 and 3.00 times higher than that in the Fe3O4/PS and MW/PS systems. Increasing in Fe3O4 dosage, PS concentration, MW temperature, and soil moisture content in the selected range were conducive for pyrene degradation. SO4•-, •OH, O2•-, and 1O2 were responsible for pyrene degradation, and the conversion of Fe (Ⅱ) in the Fe3O4 to Fe (Ⅲ) contributed to the formation of O2•- and 1O2. Characteristic bands of pyrene were more obviously destroyed by the Fe3O4/MW/PS oxidation, in comparison with MW/PS oxidation. Ring hydroxylation and ring-opening reactions were the main degradation pathways of pyrene. The toxicities of the formed byproducts were significantly reduced after treatment. This study provided a promising option for pyrene contaminated soil remediation.
Collapse
Affiliation(s)
- Dan Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Hongshuai Kan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Ying Zhang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, 210037, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Peng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
10
|
Core-Shell Structured Magnetic Carboxymethyl Cellulose-Based Hydrogel Nanosorbents for Effective Adsorption of Methylene Blue from Aqueous Solution. Polymers (Basel) 2021; 13:polym13183054. [PMID: 34577955 PMCID: PMC8466880 DOI: 10.3390/polym13183054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022] Open
Abstract
This article reports effective removal of methylene blue (MB) dyes from aqueous solutions using a novel magnetic polymer nanocomposite. The core-shell structured nanosorbents was fabricated via coating Fe3O4 nanoparticles with a layer of hydrogel material, that synthesized by carboxymethyl cellulose cross-linked with poly(acrylic acid-co-acrylamide). Some physico-chemical properties of the nanosorbents were characterized by various testing methods. The nanosorbent could be easily separated from aqueous solutions by an external magnetic field and the mass fraction of outer hydrogel shell was 20.3 wt%. The adsorption performance was investigated as the effects of solution pH, adsorbent content, initial dye concentration, and contact time. The maximum adsorption capacity was obtained at neutral pH of 7 with a sorbent dose of 1.5 g L−1. The experimental data of MB adsorption were fit to Langmuir isotherm model and Pseudo-second-order kinetic model with maximum adsorption of 34.3 mg g−1. XPS technique was applied to study the mechanism of adsorption, electrostatic attraction and physically adsorption may control the adsorption behavior of the composite nanosorbents. In addition, a good reusability of 83.5% MB recovering with adsorption capacity decreasing by 16.5% over five cycles of sorption/desorption was observed.
Collapse
|
11
|
Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115755] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Moreira AJ, Freschi CD, Pereira EC, Freschi GPG. N-compounds speciation analysis in environmental samples using ultrasound-assisted solid-liquid extraction and non-chromatographic techniques. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:297. [PMID: 33893885 DOI: 10.1007/s10661-021-09088-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
A fast, efficient, and non-chromatographic method was presented in this study for nitrite, nitrate, and p-nitrophenol (N-compounds) extraction and speciation analysis of environmental samples. By applying ultrasound-assisted solid-liquid extraction (USLE), analytes were efficiently extracted from water, soil, or sediment collected in areas of environmental disaster. These analytes were selectively converted to NO(g) through UV photolysis (NO3-), H2O2/UV photocatalysis (PNP), and direct conversion (NO2-). Following conversion, NO(g) was separated from the liquid phase and determined by high-resolution continuum source molecular absorption spectrometry (HR-CS MAS). The LODs obtained were 0.097 ± 0.004 mg L-1 for nitrite, 0.119 ± 0.004 mg L-1 for nitrate, and 0.090 ± 0.006 mg L-1 for p-nitrophenol. On applying this speciation method to environmental samples, concentrations were found to be up to 0.99 ± 0.03 mg L-1 (NO2-), 49.80 ± 2.5 mg L-1 (NO3-), and 0.10 ± 0.02 mg L-1 (PNP). Finally, addition/recovery study of real water, soil, and sediment samples showed 101 ± 2% recovery for NO2-, 100 ± 1% for NO3-, and 96 ± 5% for PNP.
Collapse
Affiliation(s)
- Ailton José Moreira
- LAFFEQ, Institute of Science and Technology, Federal University of Alfenas, UNIFAL-MG, Poços de Caldas, MG, 37715-400, Brazil.
- Chemistry Dept, Universidade Federal de São Carlos, UFSCar-SP, São Carlos, SP, 13565-905, Brazil.
| | - Carolina Dakuzaku Freschi
- LAFFEQ, Institute of Science and Technology, Federal University of Alfenas, UNIFAL-MG, Poços de Caldas, MG, 37715-400, Brazil
| | - Ernesto Chaves Pereira
- Chemistry Dept, Universidade Federal de São Carlos, UFSCar-SP, São Carlos, SP, 13565-905, Brazil
| | - Gian Paulo Giovanni Freschi
- LAFFEQ, Institute of Science and Technology, Federal University of Alfenas, UNIFAL-MG, Poços de Caldas, MG, 37715-400, Brazil
| |
Collapse
|
13
|
Enhanced degradation of Acid Red 73 by using cellulose-based hydrogel coated Fe3O4 nanocomposite as a Fenton-like catalyst. Int J Biol Macromol 2020; 152:242-249. [DOI: 10.1016/j.ijbiomac.2020.02.200] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022]
|
14
|
Abd Razak NF, Shamsuddin M. Catalytic reduction of 4-nitrophenol over biostabilized gold nanoparticles supported onto thioctic acid functionalized silica-coated magnetite nanoparticles and optimization using response surface methodology. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1720724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Nur Fadzilah Abd Razak
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Mustaffa Shamsuddin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
15
|
Li X, Li C, Gao G, Lv B, Xu L, Lu Y, Zhang G. In-situ self-assembly of robust Fe (III)-carboxyl functionalized polyacrylonitrile polymeric bead catalyst for efficient photo-Fenton oxidation of p-nitrophenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134910. [PMID: 31710850 DOI: 10.1016/j.scitotenv.2019.134910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
From the view of channel confinement and functional site capture, we develop an in-situ self-assembly strategy to fabricate the carboxyl functionalized Fe-HPAN bead catalyst with highly stable and uniformly dispersed metallic sites for efficient photo-Fenton oxidation of p-nitrophenol (p-NP). BET and FTIR analysis reveal that numerous carboxyl groups and mesopores exist in Fe-HPAN beads, which acts to capture and immobilize iron ions. Catalytic results show that the degradation rate and TOC removal for p-NP were up to 99.78 and 91.68% under the optimal condition. Even at near neutral pH, the degradation rate almost keep the same and the TOC removal can still reach 73.05%. Due to the autocatalytic cycle of FeIII/FeII, the apparent rate constant of Fe-HPAN (0.2247 min-1) was 5.4 times as high as unmodified Fe-PAN (0.0415 min-1) in the presence of H2O2 and visible light irradiation, which was 2-3 orders of magnitude larger than that of other reaction systems. More importantly, Fe-HPAN bead catalyst exhibited little loss of activity even after 20 cycles of re-utilization. The possible degradation pathway of p-NP was also proposed based on GC/MS analysis. The present work may provide a new perspective for the use of synthetic polymer to prepare low-cost, efficient and robust photo-Fenton oxidation catalysts.
Collapse
Affiliation(s)
- Xiong Li
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, 310014 Hangzhou, China
| | - Chang Li
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, 310014 Hangzhou, China
| | - Guanyu Gao
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, 310014 Hangzhou, China
| | - Bosheng Lv
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, 310014 Hangzhou, China
| | - Lusheng Xu
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, 310014 Hangzhou, China
| | - Yin Lu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Shuren Street 8#, Hangzhou 310015, China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, 310014 Hangzhou, China.
| |
Collapse
|
16
|
Persulfate activation for efficient degradation of norfloxacin by a rGO-Fe3O4 composite. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.05.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Nazari P, Rahman Setayesh S. Efficient Fe/CuFeO
2
/rGO nanocomposite catalyst for electro‐Fenton degradation of organic pollutant: Preparation, characterization and optimization. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Pegah Nazari
- Department of ChemistrySharif University of Technology Azadi Avenue Tehran PO Box 11155‐9516 Iran
| | | |
Collapse
|
18
|
Cheng W, Jiang L, Quan X, Cheng C, Huang X, Cheng Z, Yang L. Ozonation process intensification of p-nitrophenol by in situ separation of hydroxyl radical scavengers and microbubbles. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:25-36. [PMID: 31461419 DOI: 10.2166/wst.2019.227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ozonation efficiency for removal of recalcitrant organic pollutants in alkaline wastewater is always low because of the presence of some hydroxyl radical scavengers. To solve this problem, the O3/Ca(OH)2 system was put forward, and p-nitrophenol (PNP) was chosen to explore the mechanism of this system. The effects of key operational parameters were studied respectively; the Ca(OH)2 dosage 3 g/L, ozone inlet flow rate 3.5 L/min, ozone concentration 65 mg/L, reactor pressure 0.25 MPa, and temperature 25 °C were obtained as the optimal operating conditions. After 60 min treatment, the organic matter mineralized completely, which was higher than the sum of the ozonation-alone process (55.63%) and the Ca(OH)2 process (3.53%). It suggests that the calcium hydroxide in the O3/Ca(OH)2 process possessed a paramount role in the removal of PNP. The liquid samples and the precipitated substances were analyzed by gas chromatography mass spectrometry, X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy; it was demonstrated that Ca(OH)2 could accelerate the generation of hydroxyl radical and simultaneously in situ separate partial intermediate products and CO3 2- ions through some precipitation reactions.
Collapse
Affiliation(s)
- Wen Cheng
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China E-mail:
| | - Li Jiang
- College of Artificial Intelligence and Big Data, Chongqing College of Electronic Engineering, Chongqing 401331, China
| | - Xuejun Quan
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China E-mail:
| | - Chen Cheng
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China E-mail:
| | - Xiaoxue Huang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China E-mail:
| | - Zhiliang Cheng
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China E-mail:
| | - Lu Yang
- Chongqing Municipal Solid Waste Resource Utilization & Treatment Collaborative Innovation Center, Chongqing 401331, China
| |
Collapse
|
19
|
Heterogeneous Fenton-Like Degradation of p-Nitrophenol over Tailored Carbon-Based Materials. Catalysts 2019. [DOI: 10.3390/catal9030258] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Activated carbon (AC), carbon xerogel (XG), and carbon nanotubes (CNT), with and without N-functionalities, were prepared. Catalysts were obtained after impregnation of these materials with 2 wt.% of iron. The materials were characterized in terms of N2 adsorption at −196 °C, elemental analysis (EA), and the pH at the point of zero charge (pHPZC). The p-nitrophenol (PNP) degradation and mineralization (assessed in terms of total organic carbon–TOC–removal) were evaluated during adsorption, catalytic wet peroxidation (CWPO), and Fenton process. The textural and chemical properties of the carbon-based materials play an important role in such processes, as it was found that the support with the highest surface area -AC- presents the best performance in adsorption, whereas the materials with the highest mesopore surface area -XG or Fe/XG- lead to best removals by oxidation processes (for XG it was achieved 39.7 and 35.0% and for Fe/XG 45.4 and 41.7% for PNP and TOC, respectively). The presence of N-functionalities increases such removals. The materials were reused in consecutive cycles: the carbon-based materials were deactivated by hydrogen peroxide, while the catalysts showed high stability and no Fe leaching. For the support with superior performances -XG-, the effect of nitrogen content was also evaluated. The removals increase with the increase of the nitrogen content, the maximum removals (81% and 65% for PNP and TOC, respectively) being reached when iron supported on a carbon xerogel doped with melamine was used as catalyst.
Collapse
|
20
|
Liu J, Cui J, Zhao T, Fan S, Zhang C, Hu Q, Hou X. Fe3O4-CeO2 loaded on modified activated carbon as efficient heterogeneous catalyst. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Jia X, Chen X, Liu Y, Zhang B, Zhang H, Zhang Q. Hydrophilic Fe3
O4
nanoparticles prepared by ferrocene as high-efficiency heterogeneous Fenton catalyst for the degradation of methyl orange. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiangkun Jia
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Natural and Applied Science; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| | - Xin Chen
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Natural and Applied Science; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| | - Yin Liu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Natural and Applied Science; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| | - Baoliang Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Natural and Applied Science; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| | - Hepeng Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Natural and Applied Science; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| | - Qiuyu Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Natural and Applied Science; Northwestern Polytechnical University; Xi'an 710072 People's Republic of China
| |
Collapse
|
22
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 271.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
23
|
Ma C, Yuan P, Jia S, Liu Y, Zhang X, Hou S, Zhang H, He Z. Catalytic micro-ozonation by Fe 3O 4 nanoparticles @ cow-dung ash for advanced treatment of biologically pre-treated leachate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 83:23-32. [PMID: 30514468 DOI: 10.1016/j.wasman.2018.10.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 05/28/2023]
Abstract
In this work, the biologically pre-treated leachate was subjected to catalytic micro-ozonation using cow-dung ash composites loaded with Fe3O4 nanoparticles (nano-Fe3O4@CDA) as the catalyst. The optimal conditions used were nano-Fe3O4@CDA dosage of 0.8 g/L, input ozone of 3.0 g/L, and reaction time of 120 min. This environment yielded the following results: The COD and color number (CN) removal reached 53% and 89%, respectively, and the BOD5/COD increased from 0.05 to 0.32. The catalytic micro-ozonation partially degraded the refractory substances into intermediates with lower molecular weight. The percentage of phenolic compounds decreased sharply from 28.08% to 8.56%, largely due to the opening of the ring as well as to the formation of organic intermediates with a low molecular weight. Based on the results culled from the electron paramagnetic resonance (EPR), it is evident that the nano-Fe3O4@CDA catalyst can accelerate in order to generate OH. This was the main mechanism involved in its excellent ability to degrade refractory pollutants. These results demonstrated the potential use of nano-Fe3O4@CDA as a catalyst in the catalytic micro-ozonation process.
Collapse
Affiliation(s)
- Cui Ma
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Pengfei Yuan
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Shengyong Jia
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yaqi Liu
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Xingjun Zhang
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Sen Hou
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Hanxu Zhang
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengguang He
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
24
|
Guo S, Yang Z, Wen Z, Fida H, Zhang G, Chen J. Reutilization of iron sludge as heterogeneous Fenton catalyst for the degradation of rhodamine B: Role of sulfur and mesoporous structure. J Colloid Interface Sci 2018; 532:441-448. [DOI: 10.1016/j.jcis.2018.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022]
|
25
|
Ma C, He Z, Jia S, Zhang X, Hou S. Treatment of stabilized landfill leachate by Fenton-like process using Fe 3O 4 particles decorated Zr-pillared bentonite. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:489-496. [PMID: 29913417 DOI: 10.1016/j.ecoenv.2018.06.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Fe3O4 particles decorated Zr pillared bentonite (Fe3O4/Zr-B) were successfully synthesized, which were used to treat stabilized landfill leachate by Fenton-like process. The organics removal and biodegradability were both significantly improved owing to good catalytic stability of the magnetically recoverable catalyst. With the catalyst dosage of 1.0 mg L-1, initial pH of 2 and peroxide concentration of 0.1 mmol L-1, the COD removal efficiency increased to 68% and BOD5/COD of 0.27 was achieved. According to the results of the GC-MS, Fenton-like reaction with Fe3O4/Zr-B had an excellent removal performance for almost all the heterocyclic compounds. The 3D-EEM fluorescence spectra indicated that the fluorescence intensity was dramatically reduced and the UV humic-like and fulvic-like substances were removed effectively during the catalytic degradation. It seemed advisable to implement this process as a pre-treatment to facilitate the further biological treatment.
Collapse
Affiliation(s)
- Cui Ma
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengguang He
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Shengyong Jia
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Xingjun Zhang
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Sen Hou
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
26
|
Chen C, Han Y, Guo J, Zhou L, Lan Y. Assessing the role of silica gel in the degradation of p -nitrophenol via Zn(0)-activated persulfate. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.03.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Qin Q, Liu Y, Li X, Sun T, Xu Y. Enhanced heterogeneous Fenton-like degradation of methylene blue by reduced CuFe 2O 4. RSC Adv 2018; 8:1071-1077. [PMID: 35538971 PMCID: PMC9076977 DOI: 10.1039/c7ra12488k] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/21/2017] [Indexed: 12/05/2022] Open
Abstract
To facilitate rapid dye removal in oxidation processes, copper ferrite (CuFe2O4) was isothermally reduced in a H2 flow and used as a magnetically separable catalyst for activation of hydrogen peroxide (H2O2). The physicochemical properties of the reduced CuFe2O4 were characterized with several techniques, including transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and magnetometry. In the catalytic experiments, reduced CuFe2O4 showed superior catalytic activity compared to raw CuFe2O4 for the removal of methylene blue (MB) due to its relatively high surface area and loading Fe0/Cu0 bimetallic particles. A limited amount of metal ions leached from the reduced CuFe2O4 and these leached ions could act as homogeneous Fenton catalysts in MB degradation. The effects of experimental parameters such as pH, catalyst dosage and H2O2 concentration were investigated. Free radical inhibition experiments and electron spin resonance (ESR) spectroscopy revealed that the main reactive species was hydroxyl radical (˙OH). Moreover, reduced CuFe2O4 could be easily separated by using an external magnet after the reaction and remained good activity after being recycled five times, demonstrating its promising long-term application in the treatment of dye wastewater.
Collapse
Affiliation(s)
- Qingdong Qin
- School of Civil Engineering, Southeast University Nanjing 210096 China +86 25 83790757 +86 25 83790757
| | - Yahong Liu
- School of Civil Engineering, Southeast University Nanjing 210096 China +86 25 83790757 +86 25 83790757
| | - Xuchun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310018 China
| | - Tian Sun
- School of Civil Engineering, Southeast University Nanjing 210096 China +86 25 83790757 +86 25 83790757
| | - Yan Xu
- School of Civil Engineering, Southeast University Nanjing 210096 China +86 25 83790757 +86 25 83790757
| |
Collapse
|
28
|
Biomass activated carbon supported with high crystallinity and dispersion Fe 3 O 4 nanoparticle for preconcentration and effective degradation of methylene blue. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Liang C, Zhao W, Song Z, Xing S. Influence of precursor pH on the structure and photo-Fenton performance of Fe/hydrochar. RSC Adv 2017. [DOI: 10.1039/c7ra06194c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fe/hydrochar exhibited high visible light photo-Fenton activity because hydrochar accelerated the Fe3+/Fe2+ cycle at the catalyst/water interface.
Collapse
Affiliation(s)
- Chuan Liang
- College of Chemistry and Material Sciences
- Hebei Normal University
- Shijiazhuang
- PR China
| | - Wei Zhao
- College of Chemistry and Material Sciences
- Hebei Normal University
- Shijiazhuang
- PR China
| | - Zhuda Song
- College of Chemistry and Material Sciences
- Hebei Normal University
- Shijiazhuang
- PR China
| | - Shengtao Xing
- College of Chemistry and Material Sciences
- Hebei Normal University
- Shijiazhuang
- PR China
| |
Collapse
|
30
|
Wang N, Zhao Q, Zhang A. Catalytic oxidation of organic pollutants in wastewater via a Fenton-like process under the catalysis of HNO3-modified coal fly ash. RSC Adv 2017. [DOI: 10.1039/c7ra04451h] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Organic wastewater can be treated effectively via a heterogeneous Fenton-like process under the catalysis of HNO3-modified coal fly ash.
Collapse
Affiliation(s)
- Nannan Wang
- School of Mechanical Engineering
- Beijing Institute of Petrochemical Technology
- Beijing 102617
- PR China
| | - Qiang Zhao
- Beijing BHT Environment Technology Co., Ltd
- Beijing 100102
- PR China
| | - Aili Zhang
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116024
- PR China
| |
Collapse
|