1
|
Li M, Cai Y, Zhang Y, Carlson PE, Dong R, Gong Z, Zhang Y, Li K. Impacts of habitat alteration on macroinvertebrates in large shallow lakes: An application of a macroinvertebrate-based multimetric index. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2245-2255. [PMID: 38837538 DOI: 10.1002/ieam.4966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Habitat plays a crucial role in shaping the macroinvertebrate community structure in large shallow lakes. In the pursuit of improving the health of freshwater ecosystems, it is imperative to consider their habitat characteristics. To evaluate the impact of habitat variations on lake ecological health, we developed a macroinvertebrate-based multimetric index (MMI) for both the pelagic and littoral zones of Lake Hongze. Additionally, we employed structural equation models to explore the influence of utilization or phytoplankton biomass on ecological health. Historical data served as reference conditions for the pelagic. Seven key attributes were selected for the pelagic MMI, that is, Biological Monitoring Working Party (BMWP), the percentage of Mollusca taxa, the percentage of filter-collector taxa, the percentage of predator taxa, the percentage of gather-collector taxa, and the percentage of sensitive taxa and functional dispersion. The least minimally disturbed conditions and the best attainable conditions were used to develop the littoral. Four key metrics, that is, the percentage of scraper abundance, Mollusca taxa, Biological Pollution Index, and BMWP, were integrated into the littoral MMI. The assessment based on MMI revealed a "poor" health status for the pelagic zone and a "fair" health status for the littoral zone. These findings underscore the high applicability and efficacy of MMIs in assessing and monitoring ecological health in Lake Hongze. Notably, functional feeding groups exhibited heightened sensitivity to disturbance in both zones. Moreover, sediment organic matter strongly influenced the pelagic ecological health, while chlorophyll a and transparency emerged as primary factors influencing the littoral zone, attributable to varying littoral zone utilization. Integr Environ Assess Manag 2024;20:2245-2255. © 2024 SETAC.
Collapse
Affiliation(s)
- Mingjie Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Yongjiu Cai
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Ying Zhang
- Water Resources Planning Bureau of Jiangsu Province, Nanjing, China
| | - Peter E Carlson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Rui Dong
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Zhijun Gong
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - You Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu, China
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kuanyi Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Liu Z, Bai G, Liu Y, Zou Y, Ding Z, Wang R, Chen D, Kong L, Wang C, Liu L, Liu B, Zhou Q, He F, Wu Z, Zhang Y. Long-term study of ecological restoration in a typical shallow urban lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157505. [PMID: 35870592 DOI: 10.1016/j.scitotenv.2022.157505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
We investigated the long-term effects (6 years) of sediment improvement and submerged plant restoration of a subtropical shallow urban lake, Hangzhou West Lake China. To reveal the lake ecosystems variations, we analyzed the sediment properties, submerged macrophyte characteristics, sediment microorganisms, and benthic macroinvertebrate communities from 2015 to 2020. The ecological restoration project decreased sediment TP and OM, increased submerged macrophyte biomass and sediment microbial diversity, and improved the benthic macroinvertebrate communities in the restored area. The sediment TP decreased from 2.94 mg/g in 2015 to 1.33 mg/g in 2020. The sediment OM of the restored area decreased from 27.44 % in 2015 to 8.08 % in 2020. Principal component analysis (PCA) confirmed that the restoration improved the sediment conditions, making it suitable for the growth of submerged macrophytes, and then sped up the restoration and reconstruction of the lake ecosystem. These results have significant implications on the ecological management of shallow lakes.
Collapse
Affiliation(s)
- Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoliang Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yunli Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilingyun Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zimao Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Rou Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Disong Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lingwei Kong
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Chuan Wang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
3
|
Response of Benthic Fauna to Habitat Heterogeneity in a Shallow Temperate Lake. Animals (Basel) 2021; 11:ani11092488. [PMID: 34573454 PMCID: PMC8468703 DOI: 10.3390/ani11092488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
We investigated the response of benthic macroinvertebrates in the eulittoral, infralittoral, and sublittoral zones, in two segments of the freshwater Lake Wicko on the coast of the Baltic Sea. Our results showed that the morphometry of lakes plays a major role as a factor structuring the macroinvertebrates communities. Two parts of the lake, different in size and depth, show decreasing differences in the trophic state, abundance, diversity and number of indicator species of benthic fauna with the depth gradient. The most significant differences were observed between the littoral zones of both segments. Similar environmental conditions in the sublittoral zones corresponded to the simplified structure of the benthic macroinvertebrates communities. In the infralittoral zone, the most significant differences between the two segments, were recorded for mollusks and large crustaceans as well as the Oligochaeta/Chironomidae abundance ratio. In the sublittoral zone, the diversity of chironomids differed most strongly. Lower species diversity was found in the part of the lake with a slight depth decrease. Shredders reached significantly higher values in eulittoral and infralittoral of the deeper lake segment. Average Score Per Taxon increased with a depth gradient. We recommend testing benthic macroinvertebrates in lakes with different morphometrics individually for each depth zone.
Collapse
|
4
|
Macroinvertebrate Communities in a Lake of an Inter-Basin Water Transfer Project and Its Implications for Sustainable Management. WATER 2020. [DOI: 10.3390/w12071900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, we choose the Weishan Lake, one of important water transfer and storage lakes on the eastern route of the South-to-North Water Diversion Project (SNWD) in China, to clarify how the community structure and assemblage-environment relationships of macroinvertebrates varied across three typical habitats (the River Mouth, Canal and Lake regions) over the four seasons in 2012. A total of 72 taxa belonging to 3 phyla, 9 classes and 24 families were recorded, with tolerant oligochaetes and chironomids as the dominant taxa. The environmental conditions and macroinvertebrate assemblages were clearly separated at spatial and temporal scales. Assemblage structure showed both significant but larger spatial than seasonal variations, with a clear separation of sites from three regions in an ordination plot. Compared to the temporal scale, more indicator species were retained to be responsible for the regional differences according to the two-way cluster analysis. Different environmental variables were significant for distinguishing macroinvertebrate assemblages among four seasons, and among them, pH was the only variable which was retained in all models. Our study provided useful background information of environmental characteristics and macroinvertebrate communities in a typical water transfer and storage lake before the water transfer of the SNWD. After the operation of SNWD, we envisage inter-basin water transfer (IBWT), which is usually accompanied by water level rise, nutrient pattern change and biota succession, will seriously affect recipient basins. Therefore, we propose several management strategies for SNWD: (1) target and detailed data should be collected on a timely basis; (2) government should prevent water pollution and adopt effective measures to protect the water environment; (3) the environmental assessments and other aspects of IBWT planning should be coordinated; (4) an overall consideration of different basins should be given to achieve a greater range of water resources planning, scheduling, and allocation; and (5) the migration and invasion of species should be of concern during the operation of the project.
Collapse
|