1
|
Yan K, Zhu M, Su H, Liu X, Li S, Zhi Y, Li Y, Zhang J. Trichoderma asperellum boosts nitrogen accumulation and photosynthetic capacity of wolfberry (Lycium chinense) under saline soil stress. TREE PHYSIOLOGY 2024; 44:tpad148. [PMID: 38079510 DOI: 10.1093/treephys/tpad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 12/01/2023] [Indexed: 02/09/2024]
Abstract
Trichoderma can promote plant growth under saline stress, but the mechanisms remain to be revealed. In this study, we investigate photosynthetic gas exchange, photosystem II (PSII) performance, nitrogen absorption and accumulation in a medicinal plant wolfberry (Lycium chinense) in saline soil supplemented with Trichoderma biofertilizer (TF). Larger nitrogen and biomass accumulation were found in plants supplemented with TF than with organic fertilizer (OF), suggesting that Trichoderma asperellum promoted plant growth and nitrogen accumulation under saline stress. T. asperellum strengthened root nitrogen (N) absorption according to greater increased root NH4+ and NO3- influxes under supplement with TF than OF, while nitrogen assimilative enzymes such as nitrate reductase, nitrite reductase and glutamine synthetase activities in roots and leaves were also stimulated. Thus, the elevated N accumulation derived from the induction of T. asperellum on nitrogen absorption and assimilation. Greater increased photosynthetic rate (Pn) and photosynthetic N-use efficiency under supplement with TF than OF illustrated that T. asperellum enhanced photosynthetic capacity and N utilization under saline stress. Although increased leaf stomatal conductance contributed to carbon (C) isotope fractionation under TF supplement, leaf 13C abundance was significantly increased by supplement with TF rather than OF, indicating that T. asperellum raised CO2 assimilation to a greater extent, reducing C isotope preference. Trichoderma asperellum optimized electron transport at PSII donor and acceptor sides under saline stress because of lower K and J steps in chlorophyll fluorescence transients under supplement with TF than OF. The amount of PSII active reaction centers was also increased by T. asperellum. Thus, PSII performance was upgraded, consistent with greater heightened delayed chlorophyll fluorescence transients and I1 peak under supplement with TF than OF. In summary, TF acted to increase N nutrient acquisition and photosynthetic C fixation resulting in enhanced wolfberry growth under saline soil stress.
Collapse
Affiliation(s)
- Kun Yan
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Mingye Zhu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Hongyan Su
- College of Agriculture and Forestry, Linyi University, Linyi 276000, China
| | - Xiao Liu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Shuxin Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yibo Zhi
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yuxin Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jingdan Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| |
Collapse
|
2
|
Yan K, Mei H, Ruan Y, Yu S, Su H, Zhi Y, Li S, Sun Y. Partial substitution of chemical fertilizer by Trichoderma biofertilizer improved nitrogen use efficiency in wolfberry ( Lycium chinense) in coastal saline land. FRONTIERS IN PLANT SCIENCE 2023; 14:1225028. [PMID: 37877079 PMCID: PMC10591101 DOI: 10.3389/fpls.2023.1225028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
A two-year field trial was conducted to investigate the effects of partial substitution of chemical fertilizer (CF) by Trichoderma biofertilizer (TF) on nitrogen (N) use efficiency and associated mechanisms in wolfberry (Lycium chinense) in coastal saline land. As with plant biomass and fruit yield, apparent N use efficiency and plant N accumulation were also higher with TF plus 75% CF than 100% CF, indicating that TF substitution promoted plant growth and N uptake. As a reason, TF substitution stabilized soil N supply by mitigating steep deceases in soil NH4 +-N and NO3 -N concentrations in the second half of growing seasons. TF substitution also increased carbon (C) fixation according to higher photosynthetic rate (Pn) and stable 13C abundance with TF plus 75% CF than 100% CF. Importantly, leaf N accumulation significantly and positively related with Pn, biomass, and fruit yield, and structural equation modeling also confirmed the importance of the causal relation of N accumulation coupled with C fixation for biomass and yield formation. Consequently, physiological and agronomical N use efficiencies were significantly higher with TF plus 75% CF than 100% CF. Overall, partial substitution of CF by TF improved N use efficiency in wolfberry in coastal saline land by stabilizing soil N supply and coupling N accumulation with C fixation.
Collapse
Affiliation(s)
- Kun Yan
- School of Agriculture, Ludong University, Yantai, China
| | - Huimin Mei
- School of Life Sciences, Liaoning University, Shenyang, China
| | - Yanan Ruan
- School of Life Sciences, Liaoning University, Shenyang, China
| | - Shunyang Yu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai, China
| | - Hongyan Su
- School of Agriculture, Ludong University, Yantai, China
| | - Yibo Zhi
- School of Agriculture, Ludong University, Yantai, China
| | - Suxin Li
- School of Agriculture, Ludong University, Yantai, China
| | - Yanan Sun
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
3
|
Wang F, Chen FS, Fang XM, Wang H, Hu X. Phosphorus addition regulates the growth of Chinese fir by changing needle nitrogen fractions in growing and dormant seasons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158230. [PMID: 36007640 DOI: 10.1016/j.scitotenv.2022.158230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Forest productivity is generally limited by nutrient scarcity. This study aims to reveal seasonal interactions among leaf carbon (C), nitrogen (N) fractions and tree growth driven by nutrient addition in a subtropical forest. Here, a field nutrient addition experiment was conducted with six treatments, namely, +N5 (5 g N m-2 yr-1), +N10 (10 g N m-2 yr-1), +P5 (5 g P m-2 yr-1), +N5 + P5, +N10 + P5, and control (N0 + P0). C fractions (structural and non-structural carbohydrates) and N fractions (soluble N, nucleic N and protein N) in needles as well as tree growth indicated by basal area increment (BAI) were measured in growing and dormant seasons. Total N and protein N in old needles were significantly increased by P addition, while no significant differences of non-structural carbohydrates in young (<1-year old) and old needles (>1-year old) were detected among the treatments in both seasons. N and P addition increased the structural carbohydrates of old needles in dormant season. P addition decreased and increased tree growth in growing and dormant seasons, respectively. The variation of BAI was explained 18.3 % by total N and 17.8 % by protein N in growing season, and was explained 33.9 % by total N and 34.2 % by protein N in dormant season. Our study suggested that the P addition effect on Chinese fir growth mostly depends on needle N fractions. This study highlights tree seasonal growth driven by nutrient alteration might be characterized by leaf N fractions rather than C fractions in subtropical forests.
Collapse
Affiliation(s)
- Fangchao Wang
- Postdoctoral Research Station of Management Science and Engineering, Nanchang University, Nanchang 330031, China; Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fu-Sheng Chen
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xiang-Min Fang
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huimin Wang
- Qianyanzhou Ecological Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofei Hu
- Postdoctoral Research Station of Management Science and Engineering, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
4
|
Zhan N, Huang L, Wang Z, Xie Y, Shang X, Liu G, Wu Z. Comparative transcriptomics and bioinformatics analysis of genes related to photosynthesis in Eucalyptus camaldulensis. PeerJ 2022; 10:e14351. [PMID: 36389400 PMCID: PMC9661968 DOI: 10.7717/peerj.14351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022] Open
Abstract
The timber species Eucalyptus camaldulensis is one of the most important in southern China. Therefore, it is essential to understand the photosynthetic pattern in eucalyptus leaves. In the present study, eighteen photosynthesis-related genes were analyzed using bioinformatics methods. The results indicated that there were ten differentially expressed ribose-5-phosphate isomerase genes (RPI), and six of them were up-regulated in the mature leaves compared to the young leaves, while others were down-regulated. The differential expression of four rubisco methyltransferase genes (RBCMT) were observed. Two of them were up-regulated, while two were down-regulated in mature leaves compared to young leaves. Furthermore, two ribulose-phosphate-3-epimerase genes (RPE) were up-regulated in the mature leaves compared to the young leaves. In contrast, two genes involved in triosephosphate isomerase (TIM) were down-regulated in mature leaves compared with young leaves. The current study provides basic information about the transcriptome of E. camaldulensis and lays a foundation for further research in developing and utilizing important photosynthetic genes.
Collapse
Affiliation(s)
- Ni Zhan
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, Guangdong, China,Langfang Normal University, Langfang, Hebei, China
| | - Liejian Huang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Zhen Wang
- Langfang Normal University, Langfang, Hebei, China
| | - Yaojian Xie
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, Guangdong, China
| | - Xiuhua Shang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, Guangdong, China
| | - Guo Liu
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, Guangdong, China
| | - Zhihua Wu
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, Zhanjiang, Guangdong, China
| |
Collapse
|
5
|
Li R, Yu D, Zhang Y, Han J, Zhang W, Yang Q, Gessler A, Li MH, Xu M, Guan X, Chen L, Wang Q, Wang S. Investment of needle nitrogen to photosynthesis controls the nonlinear productivity response of young Chinese fir trees to nitrogen deposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156537. [PMID: 35679936 DOI: 10.1016/j.scitotenv.2022.156537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Plant carbon (C) assimilation is expected to nonlinearly increase with continuously increasing nitrogen (N) deposition, causing a N saturation threshold for productivity. However, the response of plant productivity to N deposition rates and further the N saturation threshold still await comprehensive quantization for forest ecosystem. Here, we tested the effect of N addition on aboveground net primary productivity (ANPP) of three-year old Chinese fir (Cunninghamia lanceolata) trees by adding N at 0, 5.6, 11.2, 22.4, and 44.8 g N m-2 yr-1 for 2.5 years. The N saturation threshold was estimated based on a quadratic-plus-plateau model. Results showed that ANPP transitioned from an increasing stage with increasing N addition rate to a plateaued stage at an N rate of 16.3 g N m-2 yr-1. The response of ANPP to N addition rates was well explained by the net photosynthetic rates of needles. Results from the dual isotope measurement [simultaneous determination of needle stable carbon (δ13C) and oxygen (δ18O) isotopes] indicated that the photosynthetic capacity, rather than the stomatal conductance, mediated the response of photosynthesis and ANPP of the young Chinese fir trees to N addition. Accordingly, the amount of needle N partitioning to water-soluble fraction, which is associated with the photosynthetic capacity, also responded to N enrichment with a nonlinear increase. Our study will contribute to a more accurate prediction on the influence of N deposition on C cycles in Chinese fir plantations.
Collapse
Affiliation(s)
- Renshan Li
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China; Life Science Department, Luoyang Normal University, Luoyang 471934, China
| | - Dan Yu
- Life Science Department, Luoyang Normal University, Luoyang 471934, China
| | - Yankuan Zhang
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianming Han
- Life Science Department, Luoyang Normal University, Luoyang 471934, China
| | - Weidong Zhang
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China; Huitong National Research Station of Forest Ecosystem, Huitong 418307, China.
| | - Qingpeng Yang
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China; Huitong National Research Station of Forest Ecosystem, Huitong 418307, China.
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Mai-He Li
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China; Forest Dynamics, Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Ming Xu
- BNU-HKUST Laboratory for Green Innovation, Beijing Normal University, Zhuhai 519085, China
| | - Xin Guan
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China; Huitong National Research Station of Forest Ecosystem, Huitong 418307, China
| | - Longchi Chen
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China; Huitong National Research Station of Forest Ecosystem, Huitong 418307, China
| | - Qingkui Wang
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China; Huitong National Research Station of Forest Ecosystem, Huitong 418307, China
| | - Silong Wang
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China; Huitong National Research Station of Forest Ecosystem, Huitong 418307, China
| |
Collapse
|
6
|
Nitrogen Addition Decreases Rhizodepositionby Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook) Seedlings and Its Distribution in Soil Aggregates. FORESTS 2022. [DOI: 10.3390/f13081166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rhizodeposition-derived carbon plays an important role in plant nutrient acquisition and soil carbon sequestration. However, how nitrogen deposition affects the distribution of rhizodeposition-derived carbon into aggregate classes (macrogagregates, microaggregates, and silt and clay) is unclear. We conducted a nitrogen addition experiment on Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) seedlings with continuously labeled 13CO2 for 120 days. Plant growth and the distribution of rhizodeposition-derived carbon into aggregate classes were assessed. Results showed that nitrogen additionconsiderably increased the ratio of aboveground to belowground biomass, but not aboveground and belowground biomass. Compared with the control, nitrogen addition resulted in a significantdecreaseby 52%inrhizodeposition-derived carbon in bulk soil.We found that more rhizodeposition-derived carbon was incorporated into macroaggregate, followed by microaggregate, and silt and clay regardless of nitrogen addition. The rhizodeposition-derived carbon was significantly decreased by 40% in macroaggregate, 60%in microaggregate, and 61%in silt and clayafter nitrogenaddition. Nitrogen addition and aggregate classes had no interactive effect on the rhizodeposition-derived carbon. Our results suggest that nitrogen deposition decreases the rhizodeposition of Chinese fir and its distributionin aggregate classes.
Collapse
|
7
|
Diverging Responses of Two Subtropical Tree Species (Schima superba and Cunninghamia lanceolata) to Heat Waves. FORESTS 2020. [DOI: 10.3390/f11050513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The frequency and intensity of heat waves (HWs) has increased in subtropical regions in recent years. The mechanism underlying the HW response of subtropical trees remains unclear. In this study, we conducted an experiment with broad-leaved Schima superba (S. superba) and coniferous Cunninghamia lanceolata (C. lanceolata) seedlings to examine HW (5-day long) effects on stem water transport, leaf water use efficiency (WUE), morphology and growth, and to elucidate differences in the responses of both species. Our results indicated that HWs can significantly reduce hydraulic conductivity in both species. C. lanceolata experienced significant xylem embolism, with the percentage loss of conductivity (PLC) increasing by 40%, while S. superba showed a non-significant increase in PLC (+25%). Furthermore, HW also caused a reduction in photosynthesis rates (An), but transpiration rates (Tr) increased on the 5th day of the HW, together leading to a significant decrease in leaf WUE. From diurnal dynamics, we observed that the HW caused significant decrease of S. superba An only in the morning, but nearly the all day for C. lanceolata. During the morning, with a high vapor pressure deficit (VPD) environment, the HW increased Tr, which contributed a lot to latently cooling the foliage. In comparing the two tree species, we found that HW effects on S. superba were mostly short-term, with leaf senescence but limited or no xylem embolism. The surviving S. superba recovered rapidly, forming new branches and leaves, aided by their extensive root systems. For C. lanceolata, continued seedling growth initially but with subsequent xylem embolism and withering of shoots, led to stunted recovery and regrowth. In conclusion, apart from the direct thermal impacts caused by HW, drought stress was the main cause of significant negative effects on plant water transport and the photosynthetic system. Furthermore, S. superba and C. lanceolata showed clearly different responses to HW, which implies that the response mechanisms of broad-leaved and coniferous tree species to climate change can differ.
Collapse
|
8
|
Xie Y, Wang H, Lei X. Simulation of climate change and thinning effects on productivity of Larix olgensis plantations in northeast China using 3-PG mix model. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110249. [PMID: 32148315 DOI: 10.1016/j.jenvman.2020.110249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/21/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Understanding the effects of thinning on forest productivity under climate change is vital to adaptive forest management. In the present study, the 3-PGmix model was applied to simulate the thinning effects on productivity of Larix olgensis plantations under climate change using 164 sample plots collected from the 6th, 7th and 8th National Forest Inventories in Jilin Province, northeast China. Climate scenarios of RCP 4.5 and RCP 8.5 were adopted from 2011 to 2100 with corresponding reference years (1981-2010). We simulated four cutting intensities: no-thinning, NT; low intensity thinning with 10% stem removal, LT; moderate thinning with 20% stem removal, MT and heavy thinning with 30% stem removal, HT for three times with 5- and 10-year thinning intervals. The results indicated that the mean net primary productivity (NPP) during the simulated 90 years was increased under RCP 4.5 and RCP 8.5. The LT and MT had positive but HT had negative effects on the mean NPP for the same climate scenario. Increased thinning intensity facilitated the positive effects of climate change on NPP but without a significant interaction effect. During the simulation, LT had the highest NPP value and HT had the biggest NPP increase under future climate change. We also discussed the management of larch plantations under climate change and advocated low intensity thinning with 10-year thinning interval to gain maximum NPP for mitigating climate change.
Collapse
Affiliation(s)
- Yalin Xie
- College of Forestry, Beijing Forestry University, 100083, Beijing, China.
| | - Haiyan Wang
- College of Forestry, Beijing Forestry University, 100083, Beijing, China.
| | - Xiangdong Lei
- College of Forestry, Beijing Forestry University, 100083, Beijing, China; Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
9
|
Primary and Secondary Branch Growth in Black Spruce and Balsam Fir after Careful Logging around Small Merchantable Stems (CLASS). FORESTS 2019. [DOI: 10.3390/f10060500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Careful logging around small merchantable stems (CLASS) is a partial cutting treatment that consists of the harvest of 70%–90% of the merchantable volume of an irregular coniferous stand. In this treatment, regeneration, saplings and small merchantable stems (DBH < 15 cm) are preserved and can continue to grow and develop into the dominant layer of the new stand. The aim of this project was to examine the effects of CLASS on the primary and secondary growth of branches, as well as on branch diameter in black spruce and balsam fir trees in the boreal forest of Quebec, Canada. Primary and secondary growth were measured on five branches per tree while branch diameter was analysed from 15 whorls distributed within the crown of the 48 black spruce and 48 balsam fir trees sampled. Branch primary and secondary growth significantly increased after CLASS in the lower part of the crown in both species, and both types of growth increased proportionally. These findings suggest that CLASS may delay crown recession as the lower branches tend to survive and grow for a longer period. However, although radial growth increased in the years post-CLASS, this did not significantly influence the final branch diameter and should not lead to lumber downgrade.
Collapse
|
10
|
Leaf Temperature and Vapour Pressure Deficit (VPD) Driving Stomatal Conductance and Biochemical Processes of Leaf Photosynthetic Rate in a Subtropical Evergreen Coniferous Plantation. SUSTAINABILITY 2018. [DOI: 10.3390/su10114063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Photosynthesis is arguably the most important biochemical process on Earth, which is dramatically influenced by environmental conditions. How environmental factors drive stomatal conductance and biochemical processes of leaf photosynthetic rate has not been sufficiently investigated in subtropical China. In this study, we analysed the effects of stomatal and biochemical parameters on the photosynthetic rate of native Masson’s pine (Pinus massoniana Lamb.) and exotic slash pine (Pinus elliottii Engelm.) in response to leaf temperature and vapour pressure deficit (VPD) in subtropical China, based on leaf gas exchange measurements in 2016. Our results showed that there was no significant difference in the light-saturated photosynthetic rate (Asat) between native Masson’s pine and exotic slash pine. The seasonal patterns of maximum rate of the carboxylation (Vcmax25) were basically consistent with seasonal patterns of Asat for both species. The positive effect of leaf temperature on Asat was mainly produced through its positive effect on Vcmax25. Leaf temperature had no significant effect on stomatal conductance. Vcmax25 and gs simultaneously affected Asat in response to VPD. Our results highlighted the importance of biochemical processes in limiting leaf photosynthetic rate in response to environmental conditions in subtropical evergreen coniferous plantations.
Collapse
|
11
|
Lin JC, Chiu CM, Lin YJ, Liu WY. Thinning Effects on Biomass and Carbon Stock for Young Taiwania Plantations. Sci Rep 2018; 8:3070. [PMID: 29449666 PMCID: PMC5814411 DOI: 10.1038/s41598-018-21510-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/06/2018] [Indexed: 11/15/2022] Open
Abstract
Forests play an important role as carbon sinks by sequestrating carbon through photosynthesis. Thinning treatments have large impacts on carbon storage, in addition to strengthening quality and quantity of plantations. This study analyzed the effects of different thinning treatments on carbon stocks in both individual trees and stands of Taiwania (Taiwania cryptomerioides) plantations. Repeated field measurements and allometric equations were used to calculate total C storage and sequestration rates of live trees. The results of this study showed that the total carbon stock of stands with thinning treatments was less than that of the non-thinned stands. The non-thinned 23-year old stands had an estimated carbon stock of 96.8 Mg C ha−1, which is higher than the carbon stock found in either medium- (84.1 Mg C ha−1) or heavily-thinned (74.7 Mg C ha−1) treatment plots of the same age. If the objective of Taiwania plantations was to store large amounts of carbon in the young growth stage, without regard to the initial rate of storage, a better option is no-thinning. However, the medium thinned forests seem to be more promising for carbon sequestration than the no-thinned forests if a longer period is considered.
Collapse
Affiliation(s)
- Jiunn-Cheng Lin
- Division of Forestry Economics, Taiwan Forestry Research Institute, Taipei, 100, Taiwan
| | - Chih-Ming Chiu
- Division of Forest Management, Taiwan Forestry Research Institute, Taipei, 100, Taiwan
| | - Yu-Jen Lin
- Division of Forest Utilization, Taiwan Forestry Research Institute, Taipei, 100, Taiwan
| | - Wan-Yu Liu
- Department of Forestry, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|