1
|
Noureen M, Mahmood K, Ahmad SR. Spatiotemporal hazard assessment of municipal solid waste dumps through improved satellite-based indicators. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:614. [PMID: 40304777 DOI: 10.1007/s10661-025-13942-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
To investigate the seasonal and temporal variations of environmental impacts surrounding the municipal solid waste (MSW) dumping site in Bahawalpur, the study accomplished spatiotemporal analysis for three satellite-based indicators: bio indicators (B-Is), thermal indicators (T-I), and moisture indicators (M-I) over 7 years of data acquired using a space-based platform from 2015 to 2021. The average annual expansions of bio-, thermal-, and moisture-influenced zones are 1114, 1158, and 1129 m with severity range averages to 0.07, 2.96, and 0.07 respectively. The seasonal averages of bio-influenced zone are 1341, 1277, 1151, 1103, 1044, and 779 m; thermal-influenced zones are 1163, 1391,1433, 790, 1376, and 797 m; moisture-influenced zone are 1361, 1312, 1125, 1028 1148, and 803 m as found in wet summer, monsoon, winter I, winter II, spring, and dry summer respectively. The analysis discovers that bio- and moisture-influenced zones are dependent on meteorological conditions; however, seasonal temperature variations affect the thermal influence zone. In addition, both the Mann-Kendall test and innovative trend analysis have been used to find trends. The importance of SRS data as an alternative for costly and time-consuming in situ datasets has been verified by the present investigation. Consequently, in order to address the problem of environmental degradation, the proposed research will be beneficial in a variety of waste management domains, such as the location of engineered waste disposal facilities and contamination monitoring of different locations adjacent to the dumping sites.
Collapse
Affiliation(s)
- Misbah Noureen
- College of Earth & Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
- Faculty of Applied Health Sciences, University of Lahore, Lahore, 54590, Pakistan
| | - Khalid Mahmood
- Institute of Space Science, University of the Punjab, Lahore, 54590, Pakistan.
- Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), University of the Punjab, Lahore, 54590, Pakistan.
| | - Sajid Rashid Ahmad
- College of Earth & Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
2
|
Tse HT, Au CK, Chan W. Bisphenol A in Disposable Face Masks: A Novel Human Exposure Pathway and Impact on the Aquatic Environment. Chem Res Toxicol 2025; 38:347-352. [PMID: 39898500 PMCID: PMC11837208 DOI: 10.1021/acs.chemrestox.4c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
We identified and quantified bisphenol A (BPA), a known estrogen-like endocrine disruptor, in disposable face mask samples collected in Hong Kong. Results revealed that BPA is a common contaminant in face masks, with concentrations reaching up to 2 μg/mask. Although polypropylene, the primary material used in mask production, is generally considered to be BPA-free, the contaminant likely originates from additives, such as flame retardants, added during manufacturing. With a dermal absorption coefficient of 0.59 for BPA, the data indicate that mask-borne BPA is readily absorbed by the skin. Notably, 8 of 85 samples could cause the user to exceed the tolerable daily BPA intake set by the European Food Safety Agency (0.0002 μg/kg body weight per day). Additionally, BPA dissolves completely in landfill leachate in less than 70 days, which poses previously unrecognized health and environmental hazards. Given the extensive use of face masks during the pandemic, their role as personal protective equipment for medical practitioners, and the fact that there are currently no regulations regarding BPA contents in masks, it is imperative to investigate the need for regulations in order to safeguard face mask users and the environment.
Collapse
Affiliation(s)
- Hei-Tak Tse
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
3
|
Ishaq A, Said MIM, Azman SB, Dandajeh AA, Lemar GS, Jagun ZT. Utilization of microbial fuel cells as a dual approach for landfill leachate treatment and power production: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41683-41733. [PMID: 38012494 PMCID: PMC11219420 DOI: 10.1007/s11356-023-30841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023]
Abstract
Landfill leachate, which is a complicated organic sewage water, presents substantial dangers to human health and the environment if not properly handled. Electrochemical technology has arisen as a promising strategy for effectively mitigating contaminants in landfill leachate. In this comprehensive review, we explore various theoretical and practical aspects of methods for treating landfill leachate. This exploration includes examining their performance, mechanisms, applications, associated challenges, existing issues, and potential strategies for enhancement, particularly in terms of cost-effectiveness. In addition, this critique provides a comparative investigation between these treatment approaches and the utilization of diverse kinds of microbial fuel cells (MFCs) in terms of their effectiveness in treating landfill leachate and generating power. The examination of these technologies also extends to their use in diverse global contexts, providing insights into operational parameters and regional variations. This extensive assessment serves the primary goal of assisting researchers in understanding the optimal methods for treating landfill leachate and comparing them to different types of MFCs. It offers a valuable resource for the large-scale design and implementation of processes that ensure both the safe treatment of landfill leachate and the generation of electricity. The review not only provides an overview of the current state of landfill leachate treatment but also identifies key challenges and sets the stage for future research directions, ultimately contributing to more sustainable and effective solutions in the management of this critical environmental issue.
Collapse
Affiliation(s)
- Aliyu Ishaq
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johor Bahru, Malaysia
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Mohd Ismid Mohd Said
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johor Bahru, Malaysia
| | - Shamila Binti Azman
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johor Bahru, Malaysia
| | - Aliyu Adamu Dandajeh
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Gul Sanga Lemar
- Department of Biology, Faculty of Science, Kabul University, Jamal Mina, Kabul, Afghanistan
- Faculty of Biology, Department of Botany, Kabul University, Kart-e-Char, Kabul, Afghanistan
| | - Zainab Toyin Jagun
- Department of Real Estate, School of Built Environment Engineering and Computing, Leeds Beckett University, City Campus, Leeds, UK.
| |
Collapse
|
4
|
Ke Y, Lin L, Zhang G, Hong H, Yan C. Aging behavior and leaching characteristics of microfibers in landfill leachate: Important role of surface mesh structure. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134092. [PMID: 38554515 DOI: 10.1016/j.jhazmat.2024.134092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/01/2024]
Abstract
Mesh-structured films formed by the post-processing of microfibers improves their permeability and dexterity, such as disposable masks. However, the aging behavior and potential risks of mesh-structured microfibers (MS-MFs) in landfill leachate remain poorly understood. Herein, the aging behavior and mechanisms of MS-MFs and ordinary polypropylene-films (PP-films) microplastics, as well as their leaching concerning dissolved organic matter (DOM) in landfill leachate were investigated. Results revealed that MS-MFs underwent more significant physicochemical changes than PP-films during the aging process in landfill leachate, due to their rich porous habitats. An important factor in the photoaging of MS-MFs was related to reactive oxygen species produced by DOM, and this process was promoted by photoelectrons under UV irradiation. Compared with PP-films, MS-MFs released more DOM and nano-plastics fragments into landfill leachate, altering the composition and molecular weight of DOM. Aged MS-MFs-DOM generated new components, and humus-like substances produced by photochemistry showed the largest increase. Correlation analysis revealed that leached DOM was positively correlated with oxygen-containing groups accumulated in aged MS-MFs. Overall, MS-MFs will bring higher environmental risks and become a new long-term source of DOM contaminants in landfill leachate. This study provides new insights into the impact of novel microfibers on landfill leachate carbon dynamics.
Collapse
Affiliation(s)
- Yue Ke
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Lujian Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Guanglong Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hualong Hong
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China.
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
5
|
Samarska A, Wiche O. Phytoextraction Options. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 190:181-232. [PMID: 39217584 DOI: 10.1007/10_2024_263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Wastewaters often contain an array of economically valuable elements, including elements considered critical raw materials and elements for fertilizer production. Plant-based treatment approaches in constructed wetlands, open ponds, or hydroponic systems represent an eco-friendly and economical way to remove potentially toxic metal(loid)s from wastewater (phytoextraction). Concomitantly, the element-enriched biomass represents an important secondary raw material for bioenergy generation and the recovery of raw materials from the harvested plant biomass (phytomining). At present, phytoextraction in constructed wetlands is still considered a nascent technology that still requires more fundamental and applied research before it can be commercially applied. This chapter discusses the different roles of plants in constructed wetlands during the phytoextraction of economically valuable elements. It sheds light on the utilization of plant biomass in the recovery of raw materials from wastewater streams. Here, we consider phytoextraction of the commonly studied water pollutants (N, P, Zn, Cd, Pb, Cr) and expand this concept to a group of rather exotic metal(loid)s (Ge, REE, PGM) highlighting the role of phytoextraction in the face of climate change and finite resources of high-tech metals.
Collapse
Affiliation(s)
- Alla Samarska
- Applied Geoecology Group, Faculty of Natural and Environmental Sciences, Zittau/Görlitz University of Applied Sciences, Zittau, Germany
| | - Oliver Wiche
- Applied Geoecology Group, Faculty of Natural and Environmental Sciences, Zittau/Görlitz University of Applied Sciences, Zittau, Germany.
| |
Collapse
|
6
|
Ishaq A, Said MIM, Azman SB, Abdulwahab MF, Jagun ZT. Optimizing total ammonia-nitrogen concentration for enhanced microbial fuel cell performance in landfill leachate treatment: a bibliometric analysis and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86498-86519. [PMID: 37454007 PMCID: PMC10404197 DOI: 10.1007/s11356-023-28580-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Untreated landfill leachate can harm the environment and human health due to its organic debris, heavy metals, and nitrogen molecules like ammonia. Microbial fuel cells (MFCs) have emerged as a promising technology for treating landfill leachate and generating energy. However, high concentrations of total ammonia-nitrogen (TAN), which includes both ammonia and the ammonium ion, can impede MFC performance. Therefore, maintaining an adequate TAN concentration is crucial, as both excess and insufficient levels can reduce power generation. To evaluate the worldwide research on MFCs using landfill leachate as a substrate, bibliometric analysis was conducted to assess publication output, author-country co-authorship, and author keyword co-occurrence. Scopus and Web of Science retrieved 98 journal articles on this topic during 2011-2022; 18 were specifically evaluated and analysed for MFC ammonia inhibition. The results showed that research on MFC using landfill leachate as a substrate began in 2011, and the number of related papers has consistently increased every 2 years, totaling 4060 references. China, India, and the USA accounted for approximately 60% of all global publications, while the remaining 40% was contributed by 70 other countries/territories. Chongqing University emerged as one of the top contributors among this subject's ten most productive universities. Most studies found that maintaining TAN concentrations in the 400-800 mg L-1 in MFC operation produced good power density, pollution elimination, and microbial acclimatization. However, the database has few articles on MFC and landfill leachate; MFC ammonia inhibition remains the main factor impacting system performance. This bibliographic analysis provides excellent references and future research directions, highlighting the current limitations of MFC research in this area.
Collapse
Affiliation(s)
- Aliyu Ishaq
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johr Bohr, Malaysia
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Kaduna, 1045, Zaria, Nigeria
| | - Mohd Ismid Mohd Said
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johr Bohr, Malaysia
| | - Shamila Binti Azman
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johr Bohr, Malaysia
| | - Mohd Firdaus Abdulwahab
- Department of Biosciences, Faculty of Sciences, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Zainab Toyin Jagun
- Department of Real Estate, School of Built Environment Engineering and Computing, Leeds Beckett University, City Campus, Leeds, UK.
| |
Collapse
|
7
|
An investigation into the aging of disposable face masks in landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130671. [PMCID: PMC9789546 DOI: 10.1016/j.jhazmat.2022.130671] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 09/26/2023]
Abstract
Due to the excessive use of disposable face masks during the COVID-19 pandemic, their accumulation has posed a great threat to the environment. In this study, we explored the fate of masks after being disposed in landfill. We simulated the possible process that masks would experience, including the exposure to sunlight before being covered and the contact with landfill leachate. After exposure to UV radiation, all three mask layers exhibited abrasions and fractures on the surface and became unstable with the increased UV radiation duration showed aging process. The alterations in chemical groups of masks as well as the lower mechanical strength of masks after UV weathering were detected to prove the happened aging process. Then it was found that the aging of masks in landfill leachate was further accelerated compared to these processes occurring in deionized water. Furthermore, the carbonyl index and isotacticity of the mask samples after aging for 30 days in leachate were higher than those of pristine materials, especially for those endured longer UV radiation. Similarly, the weight and tensile strength of the aged masks were also found lower than the original samples. Masks were likely to release more microparticles and high concentration of metal elements into leachate than deionized water after UV radiation and aging. After being exposed to UV radiation for 48 h, the concentration of released particles in leachate was 39.45 μL/L after 1 day and then grew to 309.45 μL/L after 30 days of aging. Seven elements (Al, Cr, Cu, Zn, Cd, Sb and Pb) were detected in leachate and the concentration of this metal elements increased with the longer aging time. The findings of this study can advance our understanding of the fate of disposable masks in the landfill and develop the strategy to address this challenge in waste management.
Collapse
|
8
|
Levels of selected trace metals in enset (Ensete ventricosum (Welw.), Cheesman) (Unprocessed and processed) and soil of siltie zone, Southern Ethiopia. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Xu Z, Li K, Li W, Wu C, Chen X, Huang J, Zhang X, Ban Y. The positive effects of arbuscular mycorrhizal fungi inoculation and/or additional aeration on the purification efficiency of combined heavy metals in vertical flow constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68950-68964. [PMID: 35554837 DOI: 10.1007/s11356-022-20759-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Inoculation with arbuscular mycorrhizal fungi (AMF) and additional aeration (AA), as two approaches to improve the functioning of treatment wetlands, can further promote the capacity of wetlands to purify pollutants. The extent to which, and mechanisms by which, AMF and AA purify wetlands polluted by combined heavy metals (HMs) are not well understood. In this study, the effects and mechanisms of AMF and/or AA on combined HMs removal in vertical flow constructed wetlands (VFCWs) with the Phragmites australis (reeds) were investigated at different HMs concentrations. The results showed that (1) AA improved the AMF colonization in VFCWs and AMF accumulated the combined HMs in their structures; (2) AMF inoculation and/or AA significantly promoted the reeds growth and antioxidant enzymes activities, thereby alleviating oxidative stress; (3) AMF inoculation and AA significantly enhanced the removal rates of Pb, Zn, Cu, and Cd under the stress of high combined HMs concentrations comparing to the control check (CK) treatment (autoclaved AMF inoculation and no aeration), which increased by 22.72%, 30.31%, 12.64%, and 50.22%, respectively; (4) AMF inoculation and/or AA significantly promoted the combined HMs accumulation in plant roots and substrates and altered the distribution of HMs at the subcellular level. We therefore conclude that AMF inoculation and/or AA in VFCWs improves the purification of combined HM-polluted water, and the VFCWs-reeds-AMF/AA associations exhibit great potential for application in remediation of combined HM-polluted wastewater.
Collapse
Affiliation(s)
- Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Kaiguo Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Wenxuan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Chen Wu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Xi Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Jun Huang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| |
Collapse
|
10
|
Grossule V, Fang D, Yue D, Lavagnolo MC, Raga R. Preparation of artificial MSW leachate for treatment studies: Testing on black soldier fly larvae process. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:1231-1241. [PMID: 34963402 DOI: 10.1177/0734242x211066702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
When approaching the study of new processes for leachate treatment, each influencing variable should be kept under control to better comprehend the treatment process. However, leachate quality is difficult to control as it varies dramatically from one landfill to another, and in line with landfill ageing. To overcome this problem, the present study investigated the option of preparing a reliable artificial leachate in terms of quality consistency and representativeness in simulating the composition of real municipal solid waste (MSW) leachate, in view of further investigate the recent treatment process using black soldier fly (BSF) larvae. Two recipes were used to simulate a real leachate (RL): one including chemical ingredients alone (artificial synthetic leachate-SL), and the other including chemicals mixed with artificial food waste (FW) eluate (artificial mixed leachate-ML). Research data were analysed, elaborated and discussed to assess simulation performance according to a series of parameters, such as Analytical representativeness, Treatment representativeness (in this case specific for the BSF larvae process), Recipe relevance, Repeatability and Flexibility in selectively modifying individual quality parameters. The best leachate simulation performance was achieved by the synthetic leachate, with concentration values generally ranging between 97% and 118% of the RL values. When feeding larvae with both RL and SL, similar mortality values and growth performance were observed.
Collapse
Affiliation(s)
- Valentina Grossule
- DICEA, Department of Civil, Architectural and Environmental Engineering, University of Padova, Padova, Italy
| | - Ding Fang
- School of Environment, Tsinghua University, Beijing, PR China
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing, PR China
| | - Maria Cristina Lavagnolo
- DICEA, Department of Civil, Architectural and Environmental Engineering, University of Padova, Padova, Italy
| | - Roberto Raga
- DICEA, Department of Civil, Architectural and Environmental Engineering, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Ahmed DAEA, Galal TM, Al-Yasi HM, Hassan LM, Slima DF. Accumulation and translocation of eight trace metals by the different tissues of Abelmoschus esculentus Moench. irrigated with untreated wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21221-21231. [PMID: 34755298 DOI: 10.1007/s11356-021-17315-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Due to water scarcity, the use of wastewater to irrigate crops is on the rise all over the world, including in Egypt (particularly untreated wastewater). The purpose of this study is to see if irrigation with untreated industrial wastewater in natural fields can cause Abelmoschus esculentus Moench. (okra plant) to accumulate and translocate eight trace metals (lead: Pb, cadmium: Cd, chromium: Cr, copper: Cu, iron: Fe, manganese: Mn, nickel: Ni, and zinc: Zn) in its different tissues. It was extended to look at the effects of wastewater irrigation on the farmed okra plants' growth characteristics, nutrients, colors, and organic content. Two studied sites at South of Cairo have been investigated: the first site (29°42'31.17" N and 31°15'11.56" E) represented by five cultivated fields irrigated with Nile water (control) and the second site (29°42'37.87" N and 31°17'14.53" E) fields irrigated with effluent received untreated industrial wastewater. Three composite soil and irrigated water samples were collected from each site. Because of wastewater irrigation, soil and plant nutrients (nitrogen, potassium, and phosphorus) decreased significantly (at P < 0.01), whereas trace metals increased significantly (at P < 0.01 and P < 0.05) for soil and plant samples irrigated with untreated wastewater. Due to irrigation with untreated wastewater, there was also a significant decrease in okra growth metrics (at P < 0.05) and leaves photosynthetic pigments: chlorophyll a and b, and carotenoids (at P < 0.01 and P < 0.05). In the plant's fruits (edible section) watered with wastewater, iron was the most abundant metal. Besides, Cd, Cu, Fe, Mn, Ni, and Zn concentrations were also in the phytotoxic range (42.57, 140.67, 2756.67, 1293.33, 1326.67, and 877.83 mg kg-1, respectively). All trace elements examined accumulate in the roots of wastewater irrigated okra (Bioaccumulation factor > 1). Okra plants, on the other hand, did not have an accumulated trace metals strategy in their shoots since the translocation factor was less than one. Because of substantial trace metal accumulation in their edible sections, the scientists advised against eating okra plants grown in fields watered with untreated wastewater.
Collapse
Affiliation(s)
| | - Tarek M Galal
- Biology Department, Faculty of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hatim M Al-Yasi
- Biology Department, Faculty of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Loutfy M Hassan
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, 11790, Egypt
| | - Dalia Fahmy Slima
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia, Egypt
| |
Collapse
|
12
|
Chan MY, Tee CS, Chai TT, Sim YL, Beh WL. Evaluation of electro-assisted phytoremediation (EAPR) system for heavy metal removal from synthetic leachate using Pistia stratiotes. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1376-1384. [PMID: 35191343 DOI: 10.1080/15226514.2022.2031863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The highest waste generated in Malaysia is composed of municipal solid waste, which is mainly managed by landfilling. Heavy metals in leachate generated from landfill could have caused hazardous effects to human and environment. EAPR has been increasingly applied to treat soil and wastewater. This technique serves as a potential tool for remediation of real leachate. Metals (Mn, Cd, Fe, Ni, Pb, Zn) uptake by Pistia stratiotes were evaluated via flame atomic adsorption spectrophotometer. Pb and Fe could be the elements that were more efficiently removed by P. stratiotes in the EAPR system. The removal efficiency was 59.86 ± 9.98 and 56.56 ± 18.08% for Pb and Fe, respectively. EAPR significantly reduced the BOD (9.37 ± 2.36 mg/L), color (120.00 ± 5.77 PtCo), and turbidity (25.50 ± 11.96 NTU) of synthetic leachate. An obvious accumulation of heavy metals was observed at roots based on BCF and TF values. BCF values of Pb (18,999.06 ± 8,321.76) and Fe (16,090.81 ± 5,844.36) in the EAPR system were more than 103, which indicates that P. stratiotes is a hyperaccumulator. Further study on the upregulated genes is needed to comprehend the molecular basis of heavy metal stress tolerance.
Collapse
Affiliation(s)
- Mun-Yee Chan
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Malaysia
| | - Chong-Siang Tee
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Malaysia
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Malaysia
| | | | - Woan-Lin Beh
- Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Malaysia
| |
Collapse
|
13
|
Experimental Study on the Hydroponics of Wetland Plants for the Treatment of Acid Mine Drainage. SUSTAINABILITY 2022. [DOI: 10.3390/su14042148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Acid Mine Drainage (AMD) has become an important issue due to its significant ecological pollution. In this paper, phytoremediation technology and mechanism for AMD were investigated by hydroponic experiments, using six wetland plants (Phragmites australis, Typha orientalis, Cyperus glomeratus, Scirpus validus, Iris wilsonii, Juncus effusus) as research objects. The results showed that (1) the removal of sulfate from AMD was highest for Juncus effusus (66.78%) and Iris wilsonii (40.74%) and the removal of Mn from AMD was highest for Typha orientalis (>99%) and Phragmites australis (>99%). In addition, considering the growth condition of the plants, Juncus effusus, Iris wilsonii, and Phragmites australis were finally selected as the dominant plants for the treatment of AMD. (2) The removal pathway of pollutants in AMD included two aspects: one part was absorbed by plants, and the other part was removed through hydrolysis and precipitation processes. Our findings provide a theoretical reference for phytoremediation technology for AMD.
Collapse
|
14
|
Omidinia-Anarkoli T, Shayannejad M. Improving the quality of stabilization pond effluents using hybrid constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149615. [PMID: 34438151 DOI: 10.1016/j.scitotenv.2021.149615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/08/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Water shortage and excessive use of water resources in arid and semi-arid regions, such as Iran, highlights the importance of using treated wastewater, especially for the highly demanding agricultural sector. Constructed wetlands (CWs) are among green technologies that offer an efficient and cost-effective wastewater treatment. This study investigates the complementary treatment of effluent from the Fooladshahr wastewater treatment plant, Isfahan, Iran, using pilot-scale CWs with horizontal (H-CW) and horizontal-vertical flow (HV-CW). The performance of two substrates, pumice and gravel, and the effect of using plants (Phragmites australis) was compared. Maximum removal efficiencies of total suspended solids (TSS) and biochemical oxygen demand (BOD5) were observed in the case of unplanted and planted HV-CW with pumice bed, respectively. In the case of gravel bed, planted H-CWs demonstrated maximum chemical oxygen demand (COD) removal efficiency. The highest mean outflow concentrations for TSS, BOD5 and COD were obtained in unplanted H-CW with pumice bed, likely due to shorter retention times compared to HV-CWs, as well as due to the absence of plants providing the required physicochemical and biological conditions for high performance treatment. Phosphate (PO43-) removal efficiency demonstrated seasonal dependency, where the highest values were obtained in warm seasons. In the case of fecal coliforms (FC), no significant differences were observed between the studied HV-CWs during the whole study period. Based on our results, planted H-CW with gravel bed provided an optimum removal efficiency while requiring a smaller footprint and lower expenditure than HV-CWs. This study demonstrates the application of CWs as an affordable solution for treating domestic wastewater for various reuse application in developing countries with water crisis, such as Iran.
Collapse
Affiliation(s)
- Tayebeh Omidinia-Anarkoli
- Department of Water Engineering, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohammad Shayannejad
- Department of Water Engineering, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
15
|
Subramani AK, Ramani SE, Selvasembian R. Understanding the microstructure, mineralogical and adsorption characteristics of guar gum blended soil as a liner material. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:855. [PMID: 34853926 DOI: 10.1007/s10661-021-09644-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Guar gum blended soil (GGBS) offers potentially advantageous engineering characteristics of hydraulic conductivity and strength for a soil to be used as a liner material. Characterization techniques such as X-ray diffraction, X-ray fluorescence, Fourier transform infrared spectroscopy and scanning electron microscope were used to examine the mineral composition, functional groups and morphological changes in the unblended soil (UBS) and GGBS. These characterization approaches are used to understand adsorption-associated mechanisms of Pb(II) removal. Batch adsorption tests were performed to evaluate the adsorption capacity of UBS and the GGBS with various proportions (0.5%, 1.0%, 1.5% and 2.0%) of guar gum (GG) towards the removal of Pb(II) ions. Batch adsorption experiments were conducted by varying the pH, dosage of adsorbent, concentration of metal ions and contact time. The experimental results showed that the optimum removal of Pb(II) ions was high at a pH of 3.0 for all blends, and adsorption tests beyond 3.0 pH demonstrated a decline in adsorption performance. The maximum Pb(II) removal efficiency of 95% was obtained using the 2.0% GGBS. The isotherm model assessment for adsorption experimental data of Pb(II) showed the best fit for the Langmuir model on using GG. The present research demonstrated that the guar gum-treated blends exhibited potential Pb(II) ion adsorption properties and therefore can be used as sustainable liner material in sanitary landfills.
Collapse
Affiliation(s)
- Anandha Kumar Subramani
- Department of Civil Engineering, Aditya Engineering College, Andhra Pradesh, Surampalem, East Godavari (D.T), 533437, India
- Centre for Advanced Research On Environment, School of Civil Engineering, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India
| | - Sujatha Evangelin Ramani
- Centre for Advanced Research On Environment, School of Civil Engineering, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India.
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India
| |
Collapse
|
16
|
Effects of Cattails and Hydraulic Loading on Heavy Metal Removal from Closed Mine Drainage by Pilot-Scale Constructed Wetlands. WATER 2021. [DOI: 10.3390/w13141937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study demonstrated heavy metal removal from neutral mine drainage of a closed mine in Kyoto prefecture in pilot-scale constructed wetlands (CWs). The CWs filled with loamy soil and limestone were unplanted or planted with cattails. The hydraulic retention time (HRT) in the CWs was shortened gradually from 3.8 days to 1.2 days during 3.5 months of operation. A short HRT of 1.2 days in the CWs was sufficient to achieve the effluent standard for Cd (0.03 mg/L). The unplanted and the cattail-planted CWs reduced the average concentrations of Cd from 0.031 to 0.01 and 0.005 mg/L, Zn from 0.52 to 0.14 and 0.08 mg/L, Cu from 0.07 to 0.04 and 0.03 mg/L, and As from 0.011 to 0.006 and 0.006 mg/L, respectively. Heavy metals were removed mainly by adsorption to the soil in both CWs. The biological concentration factors in cattails were over 2 for Cd, Zn, and Cu. The translocation factors of cattails for all metals were 0.5–0.81. Sulfate-reducing bacteria (SRB) belonging to Deltaproteobacteria were detected only from soil in the planted CW. Although cattails were a minor sink, the plants contributed to metal removal by rhizofiltration and incubation of SRB, possibly producing sulfide precipitates in the rhizosphere.
Collapse
|
17
|
Galal TM, Hassan LM, Ahmed DA, Alamri SAM, Alrumman SA, Eid EM. Heavy metals uptake by the global economic crop (Pisum sativum L.) grown in contaminated soils and its associated health risks. PLoS One 2021; 16:e0252229. [PMID: 34086714 PMCID: PMC8177654 DOI: 10.1371/journal.pone.0252229] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
The aim of the present investigation was to determine the concentration of heavy metals in the different organs of Pisum sativum L. (garden pea) grown in contaminated soils in comparison to nonpolluted soils in the South Cairo and Giza provinces, Egypt, and their effect on consumers' health. To collect soil and plant samples from two nonpolluted and two polluted farms, five quadrats, each of 1 m2, were collected per each farm and used for growth measurement and chemical analysis. The daily intake of metals (DIM) and its associated health risks (health risk index (HRI) were also assessed. The investigated heavy metals were cadmium (Cd), arsenic (As), chromium (Cr), copper (Cu), nickel (Ni), iron (Fe), manganese (Mn), zinc (Zn), silver (Ag), cobalt (Co) and vanadium (V). Significant differences in soil heavy metals, except As, between nonpolluted and polluted sites were recorded. Fresh and dry phytomass, photosynthetic pigments, fruit production, and organic and inorganic nutrients were reduced in the polluted sites, where there was a high concentration of heavy metals in the fruit. The bioaccumulation factor for all studied heavy metals exceeded 1 in the polluted sites and only Pb, Cu and Mn exceeded 1 in the nonpolluted sites. Except for Fe, the DIM of the studied heavy metals in both sites did not exceed 1 in either children or adults. However, the HRI of Pb, Cd, Fe, and Mn in the polluted plants and Pb in the nonpolluted ones exceeded 1, indicating significant potential health risks to consumers. The authors recommend not to eat garden peas grown in the polluted sites, and farmers should carefully grow heavy metals non-accumulating food crops or non-edible plants for other purposes such as animal forages.
Collapse
Affiliation(s)
- Tarek M. Galal
- Faculty of Science, Botany and Microbiology Department, Helwan University, Cairo, Egypt
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Loutfy M. Hassan
- Faculty of Science, Botany and Microbiology Department, Helwan University, Cairo, Egypt
| | - Dalia A. Ahmed
- Faculty of Science, Botany Department, Tanta University, Tanta, Egypt
| | - Saad A. M. Alamri
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Sulaiman A. Alrumman
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ebrahem M. Eid
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Faculty of Science, Botany Department, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
18
|
Maine MA, Hadad HR, Camaño Silvestrini NE, Nocetti E, Sanchez GC, Campagnoli MA. Cr, Ni, and Zn removal from landfill leachate using vertical flow wetlands planted with Typha domingensis and Canna indica. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:66-75. [PMID: 34077330 DOI: 10.1080/15226514.2021.1926909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chromium (Cr), Nickel (Ni), and zinc (Zn) removal from landfill leachate using mesocosm-scale vertical flow wetlands, the effect of recirculation, and the ability of macrophytes to retain metals were evaluated. Wetlands were filled with coarse sand and light expanded clay aggregates and planted with Typha domingensis or Canna indica. Wetlands were operated using intermittent loading, with and without recirculation. Raw leachate was diluted and spiked with metals to reach the following concentrations: 0.2 mg L-1 Cr , 0.2 mg L-1 Ni, and0.2 mg L-1 Zn and 1.0 mg L-1 Cr, 1.0 mg L-1 Ni, and 1.0 mg L-1 Zn. Wetlands planted with T. domingensis presented higher metal removal than those planted with C. indica. Recirculation enhanced metal removal efficiencies significantly, being for T. domingensis/C. indica: 60/54, 49/47, 61/47% for Cr, Ni, and Zn at 0.2 mg L-1, and 80/71, 76/62, 73/59% for Cr, Ni, and Zn at 1.0 mg L-1, respectively. Metals were efficiently retained by macrophytes. Plant biomass and metal concentrations in roots were significantly higher than in shoots. Scanning electron microscopy and X-ray microanalysis showed that metals were absorbed by internal root tissues. A hybrid wetland planted with T. domingensis may be implemented to improve not only metal but also chemical oxygen demand and total nitrogen removals.
Collapse
Affiliation(s)
- María Alejandra Maine
- Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe Argentina, Argentina
| | - Hernán Ricardo Hadad
- Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe Argentina, Argentina
| | - Nahuel Ernesto Camaño Silvestrini
- Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe Argentina, Argentina
| | - Emanuel Nocetti
- Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe Argentina, Argentina
| | - Gabriela Cristina Sanchez
- Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe Argentina, Argentina
| | - Marcelo Abel Campagnoli
- Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe Argentina, Argentina
| |
Collapse
|
19
|
Zhou S, Wang J, Peng S, Chen T, Yue Z. Anaerobic co-digestion of landfill leachate and acid mine drainage using up-flow anaerobic sludge blanket reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8498-8506. [PMID: 33067788 DOI: 10.1007/s11356-020-11207-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
A laboratory-scale up-flow anaerobic sludge blanket (UASB) reactor was developed and constructed for the treatment of landfill leachate and acid mine drainage (AMD). The removal of chemical oxygen demand (COD), sulfate, and metal ions was studied. The maximum COD and sulfate removal efficiency reached 75% and 69%, respectively, during the start-up phase of the UASB. The hydraulic retention time (HRT) had a significant influence on the system. The maximum removal efficiency for COD and sulfate reached 83% and 78%, respectively, at an HRT of 20 h. The methane production process competed with the sulfate reduction process in the UASB. The fractionation of metals in the sludge was analyzed to facilitate metal recovery in a later processing stage. The most abundant sulfate-reducing bacteria was Desulfobulbus, and the methanogen archaeal community in the reactor was mainly composed of Methanobacterium.
Collapse
Affiliation(s)
- Shiqi Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Shuchuan Peng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Tianhu Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
| |
Collapse
|
20
|
Kanyatrakul A, Prakhongsak A, Honda R, Phanwilai S, Treesubsuntorn C, Boonnorat J. Effect of leachate effluent from activated sludge and membrane bioreactor systems with acclimatized sludge on plant seed germination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138275. [PMID: 32408458 DOI: 10.1016/j.scitotenv.2020.138275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/29/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
This research comparatively investigates the effect of landfill leachate effluent of two biological treatment schemes on germination of Lactuca sativa and Vigna radiata. The treatment schemes are two-stage activated sludge (AS) and two-stage membrane bioreactor (MBR) systems with acclimatized seed sludge. The AS and MBR are operated under two concentrations of landfill leachate influent: moderate (condition 1) and elevated (condition 2). The results show that, under condition 1, the AS and MBR efficiently remove 80-96% of organic compounds and nutrients and 81-100% of harmful micropollutants. Under condition 2 with elevated influent concentration, MBR is more effective in biodegrading micropollutants than the AS system. The germination rate (GR) and germination seed index (GSI) of L. sativa and V. radiata germinated with AS and MBR effluent from condition 1 are 100% and 1.29-1.56. Under condition 2, the GR and GSI with AS effluent are reduced to 80% and 0.65-0.77, while those with MBR effluent are 100% and 1.27-1.38. Quantitative real-time polymerase chain reaction (qPCR) analysis indicates that the bacterial community in the MBR is more abundant than in the AS, especially ammonia oxidizing bacteria, Nitrobacter, and Nitrospira, which aid heterotrophic bacteria in biodegradation of micropollutants and promote the growth of heterotrophs. The bacterial abundance and community composition render the MBR scheme more operationally suitable for elevated landfill-leachate influent concentrations. By comparison, the MBR system is more effective in removal of micropollutants than the AS, as evidenced by higher GR and GSI. The technology also could potentially be applied to water reclamation. A lack of technological and financial resources in many developing countries nevertheless precludes the adoption of MBR despite higher pollutant removal efficiency. An alternative solution is the use of acclimatized seed sludge in AS system to enhance treatment efficiency, especially in influent with low concentrations of micropollutants. In addition, the seed germination results suggest the possibility of water reuse in agriculture.
Collapse
Affiliation(s)
- Alongkorn Kanyatrakul
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Apichai Prakhongsak
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Supaporn Phanwilai
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Jatujak, Bangkok 10900, Thailand
| | - Chairat Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Jarungwit Boonnorat
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand.
| |
Collapse
|
21
|
Wang Y, Cai Z, Sheng S, Pan F, Chen F, Fu J. Comprehensive evaluation of substrate materials for contaminants removal in constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134736. [PMID: 31715485 DOI: 10.1016/j.scitotenv.2019.134736] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/12/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Considerable number of studies have been carried out to develop and apply various substrate materials for constructed wetlands (CWs), however, there is a lack of method and model for comprehensive evaluation of different types of CWs substrates. To this end, this article summarized nearly all the substrate materials of CWs available in the literatures, including natural materials, agricultural/industrial wastes and artificial materials. The sources and physicochemical properties of various substrate materials, as well as their removal capacities for main water contaminants including nutrients, heavy metals, surfactants, pesticides/herbicides, emerging contaminants and fecal indicator bacteria (FIB) were comprehensively described. Further, a scoring model for the substrate evaluation was constructed based on likely cost, availability, permeability, reuse and contaminant removal capacities, which can be used to select the most suitable substrate material for different considerations. The provided information and constructed model contribute to better understanding of CWs substrate for readers, and help solve practical problems on substrates selection and CWs construction.
Collapse
Affiliation(s)
- Yanting Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zhengqing Cai
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Sheng Sheng
- Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Fei Pan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Fenfei Chen
- Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Jie Fu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
22
|
Isolation distance between municipal solid waste landfills and drinking water wells for bacteria attenuation and safe drinking. Sci Rep 2019; 9:17881. [PMID: 31784644 PMCID: PMC6884615 DOI: 10.1038/s41598-019-54506-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/11/2019] [Indexed: 11/24/2022] Open
Abstract
Groundwater pollution and human health risks caused by leachate leakage have become a worldwide environmental problem, and the harm and influence of bacteria in leachate have received increased attention. Setting the isolation distance between landfill sites and groundwater isolation targets is particularly important. Firstly, the intensity model of pollutant leakage source and solute transport model were established for the isolation of pathogenic Escherichia coli. Then, the migration, removal and reduction of bacteria in the aerated zone and ground were simulated. Finally, the isolation distance was calculated based on the acceptable water quality limits, and the influence of hydrogeological arameters was analyzed based on the parameter uncertainty. The results of this study suggest that the isolation distances vary widely ranging from 106 m–5.46 km in sand aquifers, 292 m–13.5 km in gravel aquifers and 2.4–58.7 km in coarse gravel aquifers. The gradient change of groundwater from 0.001 to 0.05 resulted in the isolation distance at the highest gradient position being 2–30 times greater than that at the lowest gradient position. There was a difference in the influence of the thickness of the vadose zone. For example, under the same conditions, with the increase of the thickness of the aeration zone, the isolation distance will be reduced by 1.5–5 times, or under the same thickness of the aeration zone, the isolation distance will be significantly shortened. Accordingly, this needs to be determined based on specific safety isolation requirements. In conclusion, this research has important guiding significance for the environmental safety assessment technology of municipal solid waste landfill.
Collapse
|
23
|
Batool A. Metal accumulation from leachate by polyculture in crushed brick and steel slag using pilot-scale constructed wetland in the climate of Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31508-31521. [PMID: 31478177 DOI: 10.1007/s11356-019-06211-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
The temperate climate of Pakistan has enhanced the performance of macrophytes grown in crushed brick and steel slag in constructed wetland for removal of heavy metals from leachate. Two pilot-scale constructed wetlands [constructed wetland 1 (CW1) and constructed wetland 2 (CW2)] were planted with a polyculture of Phragmites australis and Typha latifolia in crushed brick and steel slag, respectively. These wetlands were located in the National University of Sciences and Technology, Islamabad campus, and operated for 15 months for treatment of leachate with climatic variations of Islamabad. The metal accumulation in a polyculture of Phragmites australis and Typha latifolia and in substrates was analyzed in the laboratory of Institute of Environmental Sciences and Engineering located near wetland site. Despite the high temperature in summer season, removal of Cu, Zn, and Pb was efficient due to the synergistic combination of macrophytes and substrates in both wetlands. Substrates acted as a primary sink of metals and enhanced metal accumulation in the plant's roots which resulted in poor translocation of Cu, Zn, and Pb to shoots. Despite the variation in precipitation and temperature during summer and winter seasons, the average removal of copper, zinc, and lead was 95%, 91%, and 89% by polyculture in crushed brick in CW1 and 97%, 95%, and 91% in steel slag in CW2, respectively. A The variation in climate has a negligible effect on the sorption of metals by both substrates in CW1 and CW2. Furthermore, Phragmites australis with crushed brick in CW1 was efficient for removal of Zn and Typha latifolia was performing better with steel slag in CW2 for significantly high removal of Cu and Pb in the climate of Islamabad, Pakistan.
Collapse
Affiliation(s)
- Ammara Batool
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| |
Collapse
|
24
|
DalCorso G, Fasani E, Manara A, Visioli G, Furini A. Heavy Metal Pollutions: State of the Art and Innovation in Phytoremediation. Int J Mol Sci 2019; 20:E3412. [PMID: 31336773 PMCID: PMC6679171 DOI: 10.3390/ijms20143412] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
Mineral nutrition of plants greatly depends on both environmental conditions, particularly of soils, and the genetic background of the plant itself. Being sessile, plants adopted a range of strategies for sensing and responding to nutrient availability to optimize development and growth, as well as to protect their metabolisms from heavy metal toxicity. Such mechanisms, together with the soil environment, meaning the soil microorganisms and their interaction with plant roots, have been extensively studied with the goal of exploiting them to reclaim polluted lands; this approach, defined phytoremediation, will be the subject of this review. The main aspects and innovations in this field are considered, in particular with respect to the selection of efficient plant genotypes, the application of improved cultural strategies, and the symbiotic interaction with soil microorganisms, to manage heavy metal polluted soils.
Collapse
Affiliation(s)
- Giovanni DalCorso
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Elisa Fasani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Anna Manara
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, 43124 Parma, Italy
| | - Antonella Furini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
25
|
Carvajal-Flórez E. Technologies applicable to the removal of heavy metals from landfill leachate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15725-15753. [PMID: 30989600 DOI: 10.1007/s11356-019-04888-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/15/2019] [Indexed: 05/28/2023]
Abstract
This article presents a review of the main physical, chemical, electrochemical, and biological technologies used for treating heavy metals in the wastewater of industrial processes and in synthetic aqueous solutions which could be applied to leachate from landfills. This paper outlines the generalities, operating principles, and modifications made to the technologies described. It discusses and assesses which of these have better removal rates and higher levels of efficiency in minimizing the heavy metal concentrations contained in leachates, such as mercury, chromium, lead, nickel, and copper among others. The first part of the document presents the so-called conventional technologies, such as chemical, physical, and electrochemical treatment. These have been used to treat different wastewater, especially industrial waste, operating adequately from the technical topic, but with high costs and the secondary products' production. The second part exposes biological treatments tend to be most widely used due to their versatility, effectiveness, and low cost, when compared with traditional technologies. It is important to note that there is no single treatment and that each of the technologies reviewed has different heavy metal decontamination rates. All technologies search to reduce concentrations of heavy metals to values that are safe for the natural resources where they are discharged or disposed, thereby complying with the regulatory limits regulated in each of the regions.
Collapse
|
26
|
Silvestrini NEC, Hadad HR, Maine MA, Sánchez GC, Del Carmen Pedro M, Caffaratti SE. Vertical flow wetlands and hybrid systems for the treatment of landfill leachate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8019-8027. [PMID: 30684173 DOI: 10.1007/s11356-019-04280-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Landfill leachates contain a variety of toxic compounds, which makes them one of the most difficult types of wastewater to be treated. An alternative "green" technology for leachate treatment is the use of constructed wetlands (CWs). The aims of this study were to select macrophytes and substrates to be used in vertical flow wetlands (VFWs) and to evaluate the performance of hybrid systems composed by a VFW and a horizontal subsurface flow (HSSW) or a free water surface flow (FWSW) wetlands for the treatment of a high ammonium concentration landfill leachate. In microcosms scale experiments, Typha domingensis, Scirpus californicus, and Iris pseudacorus were studied to assess their tolerance to raw and diluted leachate. Substrate selection for VFWs was evaluated using different layers of light expanded clay aggregate (LECA), coarse sand, fine sand, and gravel. Contaminant removals were higher in planted than in unplanted wetlands. Plants did not tolerate the raw effluent but showed a positive effect on plant growth when exposed to the diluted leachate. T. domingensis and I. pseudacorus showed higher contaminant removal ability and tolerance to landfill leachate than S. californicus. VFW with LECA + coarse sand showed the best performance in removal efficiencies. Hybrid system composed by VFW-FWSW planted with T. domingensis presented the best performance for the treatment of landfill leachate with high concentrations of ammonium.
Collapse
Affiliation(s)
- Nahuel Ernesto Camaño Silvestrini
- Quimica Analitica, Instituto de Quimica Aplicada del Litoral (IQAL, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, (3000), Santa Fe, Argentina.
| | - Hernán Ricardo Hadad
- Quimica Analitica, Instituto de Quimica Aplicada del Litoral (IQAL, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, (3000), Santa Fe, Argentina
| | - María Alejandra Maine
- Quimica Analitica, Instituto de Quimica Aplicada del Litoral (IQAL, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, (3000), Santa Fe, Argentina
| | - Gabriela Cristina Sánchez
- Quimica Analitica, Instituto de Quimica Aplicada del Litoral (IQAL, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, (3000), Santa Fe, Argentina
| | - María Del Carmen Pedro
- Quimica Analitica, Instituto de Quimica Aplicada del Litoral (IQAL, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, (3000), Santa Fe, Argentina
| | - Sandra Ester Caffaratti
- Quimica Analitica, Instituto de Quimica Aplicada del Litoral (IQAL, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, (3000), Santa Fe, Argentina
| |
Collapse
|
27
|
Hu S, Chen Z, Lv Z, Chen K, Huang L, Zuo X, He J, Chen Y. Purification of leachate from sludge treatment beds by subsurface flow constructed wetlands: effects of plants and hydraulic retention time. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5769-5781. [PMID: 30612364 DOI: 10.1007/s11356-018-4006-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Sludge treatment beds (STBs) have been used widely in many countries due to low energy consumption, low operating and maintenance costs, and better environmental compatibility. Penetration, evaporation, and transpiration are the main processes for sludge dewatering in STBs. However, the leachate quality from STBs usually cannot meet discharge limits. Moreover, such leachate has very low COD/N ratio, which makes it difficult to treat. In the present study, two subsurface flow (SSF) constructed wetlands (CWs) were investigated for the treatment of leachate from STBs under three different hydraulic retention time (HRT) (3 days, 4 days, 6 days), aiming for evaluating the effects of plants and HRT on treatment performance, as well as the potential of SSF CWs to treat sludge leachate with low COD/N ration. The results showed that plants play an important role in leachate treatment. The best treatment performance was achieved with HRT of 4 days. In this condition, the mean removal efficiencies of COD (chemical oxygen demand), NH4+-N, TN (total nitrogen), and TP (total phosphorus) in the planted and the unplanted CWs were 61.6% (unplanted - 3.7%), 76.6% (unplanted 43.5%), 70% (unplanted 41%), and 65.6% (unplanted 6%), respectively. Heavy metal concentrations were below the Chinese integrated wastewater discharge standard during the experimental period in the planted CW, and the removal efficiencies in the planted CW system were higher than in the unplanted CW system. In all, planted SSF CWs can be an effective approach in removing leachate from sludge treatment beds. Furthermore, considering to temperature and seasonal variation, the leachate from STBs needs to be further studied in pilot- and full-scale condition.
Collapse
Affiliation(s)
- Shanshan Hu
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521, Prague, Czech Republic
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521, Prague, Czech Republic
| | - Zuopeng Lv
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Shanghai Road 101, Xuzhou, 221116, China
| | - Ke Chen
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Jian'gan Road 12, Guilin, 541004, China
| | - Xingtao Zuo
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Jiajie He
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
28
|
Camaño Silvestrini NE, Maine MA, Hadad HR, Nocetti E, Campagnoli MA. Effect of feeding strategy on the performance of a pilot scale vertical flow wetland for the treatment of landfill leachate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:542-549. [PMID: 30121532 DOI: 10.1016/j.scitotenv.2018.08.132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Landfill leachate is one of the most challenging types of wastewater to treat using constructed wetlands. The objective of this study was to evaluate the effect of two feeding strategies on the treatment efficiency of a landfill leachate using vertical flow wetlands (VFWs) planted with Typha domingensis or Canna indica. The tolerance of these macrophytes to the leachate was also evaluated. Coarse sand and light expanded clay aggregates (LECA) were used as substrates. Two feeding strategies (FS) were applied: FSA = 1 pulse per day of 0.21 m pulse-1, FSB = 3 pulses per day of 0.07 m pulse-1. VFWs planted with T. domingensis presented removal efficiencies of 34/74% (NH4+) and 16/48% (TN) for FSA/FSB, respectively. VFWs planted with C. indica presented removal efficiencies of 27/72% (NH4+) and 18/46% (TN) for FSA/FSB, respectively. NH4+ and total nitrogen (TN) removal efficiencies were significantly higher in FSB than in FSA, but there were no significant differences between macrophyte species. COD removal showed no significant differences between FSs or between macrophyte species. T. domingensis and C. indica demonstrated to be tolerant to the leachate studied. VFWs planted with T. domingensis or C. indica are suitable to treat diluted landfill leachate with high ammonium concentrations using a feeding strategy of pulses. However, an anaerobic stage may be added after the VFW to get higher TN and COD removal.
Collapse
Affiliation(s)
- N E Camaño Silvestrini
- Química Analítica, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina.
| | - M A Maine
- Química Analítica, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina
| | - H R Hadad
- Química Analítica, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina
| | - E Nocetti
- Química Analítica, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina
| | - M A Campagnoli
- Química Analítica, Instituto de Química Aplicada del Litoral (IQAL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina
| |
Collapse
|
29
|
Syranidou E, Thijs S, Avramidou M, Weyens N, Venieri D, Pintelon I, Vangronsveld J, Kalogerakis N. Responses of the Endophytic Bacterial Communities of Juncus acutus to Pollution With Metals, Emerging Organic Pollutants and to Bioaugmentation With Indigenous Strains. FRONTIERS IN PLANT SCIENCE 2018; 9:1526. [PMID: 30405664 PMCID: PMC6200866 DOI: 10.3389/fpls.2018.01526] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/28/2018] [Indexed: 05/23/2023]
Abstract
Plants and their associated bacteria play a crucial role in constructed wetlands. In this study, the impact of different levels of pollution and bioaugmentation with indigenous strains individually or in consortia was investigated on the composition of the endophytic microbial communities of Juncus acutus. Five treatments were examined and compared in where the wetland plant was exposed to increasing levels of metal pollution (Zn, Ni, Cd) and emerging pollutants (BPA, SMX, CIP), enriched with different combinations of single or mixed endophytic strains. High levels of mixed pollution had a negative effect on alpha diversity indices of the root communities; moreover, the diversity indices were negatively correlated with the increasing metal concentrations. It was demonstrated that the root communities were separated depending on the level of mixed pollution, while the family Sphingomonadaceae exhibited the higher relative abundance within the root endophytic communities from high and low polluted treatments. This study highlights the effects of pollution and inoculation on phytoremediation efficiency based on a better understanding of the plant microbiome community composition.
Collapse
Affiliation(s)
- Evdokia Syranidou
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Marina Avramidou
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
| | - Nele Weyens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Danae Venieri
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nicolas Kalogerakis
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
30
|
Zloch J, Vaverková MD, Adamcová D, Radziemska M, Vyhnánek T, Trojan V, Đorđević B, Brtnický M. Seasonal Changes and Toxic Potency of Landfill Leachate for White Mustard (Sinapis alba L.). ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2018. [DOI: 10.11118/actaun201866010235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
31
|
Wu S, Zou S, Liang G, Qian G, He Z. Enhancing recovery of magnesium as struvite from landfill leachate by pretreatment of calcium with simultaneous reduction of liquid volume via forward osmosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:137-146. [PMID: 28803191 DOI: 10.1016/j.scitotenv.2017.08.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Landfill leachate contains substances that can be potentially recovered as valuable resources. In this study, magnesium in a landfill leachate was recovered as struvite with calcium pretreatment; meanwhile, the leachate volume was reduced by using a submerged forward osmosis (FO) process, thereby enabling significant reduction of further treatment footprint and cost. Without pretreatment, calcium exhibited strong competition for phosphate with magnesium. The pretreatment with a Ca2+: CO32- molar ratio of 1:1.4 achieved a relatively low loss rate of Mg2+ (24.1±2.0%) and high Ca2+ removal efficiency (89.5±1.7%). During struvite recovery, 98.6±0.1% of magnesium could be recovered with a significantly lower residual PO43--P concentration (<25mgL-1) under the condition of (Mg+Caresidual): P molar ratio of 1:1.5 and pH9.5. The obtained struvite had a similar crystal structure and composition (19.3% Mg and 29.8% P) to that of standard struvite. The FO process successfully recovered water from the leachate and reduced its volume by 37%. The configuration of calcium pretreatment - FO - struvite recovery was found to be the optimal arrangement in terms of FO performance. These results have demonstrated the feasibility of magnesium recovery from landfill leachate and the importance of the calcium pretreatment, and will encourage further efforts to assess the value and purity of struvite for commercial use and to develop new methods for resource recovery from leachate.
Collapse
Affiliation(s)
- Simiao Wu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai 200444, PR China; Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Shiqiang Zou
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Guannan Liang
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai 200444, PR China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Shanghai 200444, PR China
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|