1
|
Arancibia-Díaz A, Astudillo-Castro C, Altamirano C, Vergara-Castro M, Soto-Maldonado C, Córdova A, Fuentes P, Zúñiga-Hansen ME, Bravo J. Enhanced antioxidant capacity and yield of release of chlorogenic acids and derivates by solid-state fermentation of spent coffee ground under controlled conditions of aeration and moisturizing. Food Chem 2025; 479:143744. [PMID: 40068539 DOI: 10.1016/j.foodchem.2025.143744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 03/02/2025] [Accepted: 03/02/2025] [Indexed: 04/09/2025]
Abstract
This study proposed investigates the role of forced aeration flow and humidification pulses during solid-state fermentation (SSF) of spent coffee grounds (SCG) in optimizing fungal growth, metabolic activity, and bioactive compound release. Five fermentation conditions with aeration flows (0.5-1.5 L/min) and moisturizing pulses (30-90 mL/d) were evaluated. Chlorogenic acid (CGA), caffeic acid (CA), and quinic acid (QA) were quantified via HPLC, while antioxidant activities (AA) were assessed using ORAC, DPPH, and FRAP methods. The highest CGA yield (76.1 ± 5.2 mg/g SCGinitial) occurred between days 8-13 under 0.5LA-30LM conditions, while QA peaked at 89.5 ± 4.8 mg/g SCGinitial during days 27-30 under 0.5LA-90HM. AA reached 79,000 μmol TEAC/100 g SCGinitial at late fermentation stages. Low aeration and controlled moisture enhanced fungal colonization, enzymatic hydrolysis, and bioactive compound recovery. These findings evidence the potential of SSF for SCG valorization and offer a framework for process optimization in industrial applications.
Collapse
Affiliation(s)
- Alejandra Arancibia-Díaz
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Carolina Astudillo-Castro
- Escuela de Ingeniería en Alimentos, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile; Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Curauma-Placilla, Valparaíso, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile; Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Curauma-Placilla, Valparaíso, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Mauricio Vergara-Castro
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile
| | - Carmen Soto-Maldonado
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile; Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Curauma-Placilla, Valparaíso, Chile
| | - Andrés Córdova
- Escuela de Ingeniería en Alimentos, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile
| | - Paloma Fuentes
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - María Elvira Zúñiga-Hansen
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile; Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Curauma-Placilla, Valparaíso, Chile
| | - Javier Bravo
- Grupo de NeuroGastroBioquímica, Laboratorio de Química Biológica, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma-Placilla, Valparaíso, Chile
| |
Collapse
|
2
|
Milcarz A, Harasym J. Solid State Fermentation-A Promising Approach to Produce Meat Analogues. Foods 2025; 14:1820. [PMID: 40428599 PMCID: PMC12111598 DOI: 10.3390/foods14101820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/16/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
The increasing demand for sustainable dietary options has intensified the development of plant-based meat analogues. Despite growing market availability, these products often fail to replicate conventional meat's sensory and nutritional properties. Solid-state fermentation (SSF) has emerged as a promising biotechnological approach to enhance the quality of plant-derived protein ingredients. This review summarizes recent findings on the use of SSF in meat analogue production, focusing on microbial strains, substrate selection, and fermentation conditions. The reviewed studies indicate that SSF improves protein digestibility, enhances essential amino acid profiles, reduces anti-nutritional factors, and generates desirable flavour compounds. Furthermore, SSF offers advantages over submerged fermentation in energy and water efficiency, supporting its application in sustainable food processing. The findings highlight SSF's potential to address key limitations of current meat alternatives and its relevance for developing nutritionally adequate and sensory-appealing products. Integration of SSF into plant-based protein processing may play a critical role in advancing environmentally friendly protein systems.
Collapse
Affiliation(s)
- Agata Milcarz
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland;
| | - Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland;
- Adaptive Food Systems Accelerator-Science Centre, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland
| |
Collapse
|
3
|
Rabby MRI, Ahmed ZB, Paul GK, Chowdhury NN, Akter F, Razu MH, Karmaker P, Khan M. A Combined Study on Optimization, In Silico Modeling, and Genetic Modification of Large Scale Microbial Cellulase Production. Biochem Res Int 2022; 2022:4598937. [PMID: 36589721 PMCID: PMC9797302 DOI: 10.1155/2022/4598937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Cellulase is a biocatalyst that hydrolyzes cellulosic biomass and is considered a major group of industrial enzymes for its applications. Extensive work has been done on microbial cellulase but fungi are considered a novel strain for their maximum cellulase production. Production cost and novel microbial strains are major challenges for its improvement where cheap agro wastes can be essential sources of cellulose as substrates. The researcher searches for more cellulolytic microbes from natural sources but the production level of isolated strains is comparatively low. So genetic modification or mutation can be employed for large-scale cellulase production before optimization. After genetic modification than in silico molecular modeling can be evaluated for substrate molecule's binding affinity. In this review, we focus not only on the conventional methods of cellulase production but also on modern biotechnological approaches applied to cellulase production by a sequential study on common cellulase-producing microbes, modified microbes, culture media, carbon sources, substrate pretreatment process, and the importance of optimum pH and temperature on fermentation. In this review, we also compare different cellulase activity determination methods. As a result, this review provides insights into the interrelationship between the characteristics of optimizing different culture conditions, genetic modification, and in silico enzyme modeling for the production of cellulase enzymes, which may aid in the advancement of large-scale integrated enzyme manufacturing of substrate-specific enzymes.
Collapse
Affiliation(s)
| | - Zabed Bin Ahmed
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| | - Gobindo Kumar Paul
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| | | | - Fatema Akter
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| | - Mamudul Hasan Razu
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| | - Pranab Karmaker
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| |
Collapse
|
4
|
Parveen S, Ali MI, Aslam M, Ali I, Jamal A, Al-Ansari MM, Al-Humaid L, Urynowicz M, Huang Z. Optimizing biocatalytic potential of Dipodascus australiensis M-2 for degrading lignin under laboratory conditions. Microbiol Res 2022; 265:127179. [PMID: 36099814 DOI: 10.1016/j.micres.2022.127179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022]
Abstract
In present research, a potent fungal strain was isolated from paper mill effluent (black liquor) in order to investigate its potential for the biodegradation of lignin. Two step strategy was used to screen most efficient fungal strain having ability to growin MSM-black liquor medium and to degrade alkali lignin.The results of initial screening indicated that the strain M-2 produced comparatively higher ligninolytic zone on MSN agar plates supplemented with black liquor (BL) and alkali ligninase compared to the other isolates.The results of 18S rRNA gene sequencing revealed that strain M-2 showed ≥ 99% sequence homology with Dipodasceus australiansis.The process for the biodegradation of lignin was optimized using Taguchi Orthogonal Array design. Under optimized conditions of pH 9, 40 °C and 4% inoculum, a maximum of 89% lignin was degraded with 41% color reduction after 8 days of incubation period by Dipodasceus australiansis M-2. The pH and temperature were found to be significant terms with the p-values of 0.002 and 0.001 respectively. The laccase activity of the Dipodascus australiensis was found to be maximum of 1.511 U/mL. The HPLC analysis of lignin biodegradation indicated sharp transformation of peaks as compared to the control. Our results suggested that the strain Dipodascus australiensis M-2 possess excellent lignin degradation and color reduction capability and can be applied in waste treatment systems for pulp and paper mill effluent. In present work we are reporting first hand information regarding biodegradation of lignin by a potent strain of Dipodascus australiensis and statistical optimization of the bioprocess.
Collapse
Affiliation(s)
- Saleha Parveen
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | | | - Maryam Aslam
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Irfan Ali
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Pakistan.
| | - Asif Jamal
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Latifah Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Michael Urynowicz
- College of Engineering and Applied Science, University of Wyoming, USA.
| | - Zaixing Huang
- College of Engineering and Applied Science, University of Wyoming, USA; School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, China.
| |
Collapse
|
5
|
Areeshi MY. Microbial cellulase production using fruit wastes and its applications in biofuels production. Int J Food Microbiol 2022; 378:109814. [DOI: 10.1016/j.ijfoodmicro.2022.109814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
|
6
|
Cangussu LB, Melo JC, Franca AS, Oliveira LS. Chemical Characterization of Coffee Husks, a By-Product of Coffea arabica Production. Foods 2021; 10:foods10123125. [PMID: 34945676 PMCID: PMC8700850 DOI: 10.3390/foods10123125] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/28/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Coffee husks are a major by-product of coffee production and are currently being underutilized. The aim of this work was to chemically characterize coffee husks to allow for an adequate evaluation of their potential for valorization. Blanched and non-blanched coffee husks were characterized for extractable and non-extractable phenolics, caffeine, trigonelline content, and for their polysaccharide and proximal composition. The total, soluble and insoluble fiber contents were determined, together with the husks’ technological properties. Antioxidant activity and bioaccessibility of phenolic compounds of coffee husks were evaluated. Two types of husk were studied: one comprised mostly of outer skin and pulp (CH1); and other comprised mostly of parchment (CH2). Blanching had positive effects on non-extractable phenolics, chlorogenic acid and on the bioaccessibility of phenolics, promoting small reductions in extractable phenolics, protocathecuic acid, caffeine and trigonelline contents. Blanched CH1 presented more appropriate properties than CH2 for potential applications in food. It also presented better antioxidant, hydration, and oil holding properties than those of other agri-food by-products. Tentatively identified polysaccharides included galactomannans, arabinogalactans type II, pectin and cellulose.
Collapse
Affiliation(s)
- Lais B. Cangussu
- Graduate Program in Food Science, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.B.C.); (J.C.M.); (L.S.O.)
| | - Jean Carlos Melo
- Graduate Program in Food Science, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.B.C.); (J.C.M.); (L.S.O.)
| | - Adriana S. Franca
- Graduate Program in Food Science, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.B.C.); (J.C.M.); (L.S.O.)
- Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
- Correspondence: ; Tel.: +55-31-3409-3512
| | - Leandro S. Oliveira
- Graduate Program in Food Science, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.B.C.); (J.C.M.); (L.S.O.)
- Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
7
|
Degradation activity of fungal communities on avocado peel (Persea americana Mill.) in a solid-state process: mycobiota successions and trophic guild shifts. Arch Microbiol 2021; 204:2. [PMID: 34870719 DOI: 10.1007/s00203-021-02600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022]
Abstract
To explore the capability of soil mycobiota to degrade avocado peel waste and identify relevant successions and trophic guild shifts, fungal communities from three environments with different land uses were evaluated in a solid-state process. Soil samples used as inoculum were collected from a pristine mature tropical forest, a traditionally managed Mayan land, and an intensively managed monospecific avocado plantation. Soil-substrate mixes were evaluated for 52 weeks to evaluate organic matter decay and the carbon-to-nitrogen ratio. Amplicon-based high-throughput sequencing from internally transcribed spacer (ITS) analysis revealed significant differences in fungal communities widely dominated by Fusarium sp. and Clonostachys sp.; however, less represented taxa showed relevant shifts concomitantly with organic matter content drops. Trophic guild assignment revealed different behaviors in fungal communities between treatments over the 52 weeks, suggesting distinct preconditioning of fungal communities in these environments. Overall, the results lead to the identification of promising degradation moments and inoculum sources for further consortia enrichment or bioprospecting efforts.
Collapse
|
8
|
New sustainable perspectives for “Coffee Wastewater” and other by-products: A critical review. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
Ejaz U, Sohail M, Ghanemi A. Cellulases: From Bioactivity to a Variety of Industrial Applications. Biomimetics (Basel) 2021; 6:44. [PMID: 34287227 PMCID: PMC8293267 DOI: 10.3390/biomimetics6030044] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/20/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Abstract
Utilization of microbial enzymes has been widely reported for centuries, but the commercial use of enzymes has been recently adopted. Particularly, cellulases have been utilized in various commercial sectors including agriculture, brewing, laundry, pulp and paper and textile industry. Cellulases of microbial origin have shown their potential application in various commercial sectors including textile, pulp and paper, laundry, brewing, agriculture and biofuel. Cellulases have diversified applications in the food industry, food service, food supply and its preservation. Indeed, cellulases can tenderize fruits, clarify the fruit juices, reduce roughage in dough, hydrolyze the roasted coffee, extract tea polyphenols and essential oils from olives and can increase aroma and taste in food items. However, their role in food industries has by and large remained neglected. The use of immobilized cellulases has further expanded their application in fruit and vegetable processing as it potentiates the catalytic power and reduces the cost of process. Technological and scientific developments will further expand their potential usage in the food industry.
Collapse
Affiliation(s)
- Uroosa Ejaz
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi 75600, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
10
|
Bhati N, Shreya, Sharma AK. Cost‐effective cellulase production, improvement strategies, and future challenges. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13623] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nikita Bhati
- Department of Bioscience and Biotechnology Banasthali Vidyapith Vanasthali India
| | - Shreya
- Department of Bioscience and Biotechnology Banasthali Vidyapith Vanasthali India
| | - Arun Kumar Sharma
- Department of Bioscience and Biotechnology Banasthali Vidyapith Vanasthali India
| |
Collapse
|
11
|
Gemechu FG. Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Solid-State Fermentation (SSF) versus Submerged Fermentation (SmF) for the Recovery of Cellulases from Coffee Husks: A Life Cycle Assessment (LCA) Based Comparison. ENERGIES 2020. [DOI: 10.3390/en13112685] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article studies the environmental impacts of cellulase production by using a comparative attributional life cycle assessment (LCA) of two different scenarios of production. The first one is the commonly used submerged fermentation (SmF) using a pure substrate (cellulose powder) and a specific microorganism (Trichoderma reesei). The second scenario considers a novel system to produce enzymes and simultaneously treat a waste using the solid-state fermentation (SSF) process of coffee husk (CH) used as substrate. Experimental data were used in this scenario. The complete production process was studied for these two technologies including the fermentation phase and the complete downstream of cellulase. Life cycle inventory (LCI) data were collected from the database EcoInvent v3 (SimaPro 8.5) modified by data from literature and pilot scale experiments. The environmental impacts of both production systems revealed that those of SmF were higher than those of SSF. A sensitivity analysis showed that the results are highly conditioned by the energy use in the form of electricity during lyophilization, which is needed in both technologies. The results point to a possible alternative to produce the cellulase enzyme while reducing environmental impacts.
Collapse
|
13
|
Production and characterization of a new distillate obtained from fermentation of wet processing coffee by-products. Journal of Food Science and Technology 2020; 57:4481-4491. [PMID: 33087961 DOI: 10.1007/s13197-020-04485-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/06/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
Coffee is one of the most important commodities worldwide. The industrial processing of coffee cherries generates a considerable volume of by-products such as wastewater, coffee pulp, mucilage, and husk. These by-products have sugars and nutrients that can be converted into value-added products via microbial action. In this study, for the first time, we evaluated the potential of coffee pulp and coffee wastewater as substrate for alcoholic fermentation produce a distilled beverage. The must composed by dry or wet coffee pulp and coffee wastewater added of commercial sucrose or sugarcane molasses was fermented by S. cerevisiae. After a screening step, a larger fermentation was carried out with the wet pulp added of sucrose due to its higher alcoholic fermentation efficiency. The distilled beverage contained 38% (v/v) ethanol and 0.2 g/L of acetic acid. The contaminants furfural, hydroxymethylfurfural and ethyl carbamate were below detection level. Among the 48 volatile compounds detected, the majority (21) were ethyl esters usually associated with floral and sweet aromas. Ethyl decanoate (996.88 µg/L) and ethyl dodecanoate (1088.09 µg/L) were the most abundant esters. Coffee spirit presented taste acceptance of 80% and sugarcane spirit, 70%. The tasters indicated an aroma acceptance of 86% for the coffee spirit and 78% for the sugarcane spirit. The results of this work demonstrate the potential for using coffee by-products to produce a good quality distilled beverage. Considering our results, especially sensorial analysis, we can infer that the produced coffee beverage represents a new alternative for adding value to the coffee production chain.
Collapse
|
14
|
de Melo Pereira GV, de Carvalho Neto DP, Magalhães Júnior AI, do Prado FG, Pagnoncelli MGB, Karp SG, Soccol CR. Chemical composition and health properties of coffee and coffee by-products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 91:65-96. [PMID: 32035601 DOI: 10.1016/bs.afnr.2019.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coffee can be an ally in the fight against diseases such as type 2 diabetes, cancer, hepatic injury, cirrhosis, depression, suicidal behavior, and neurological and cardiovascular disorders. The properties of coffee also favor gastrointestinal tract and gut microbiota establishment. Coffee bioactive components include phenolic compounds (chlorogenic acids, cafestol and kahweol), alkaloids (caffeine and trigonelin), diterpenes (cafestol and kahweol) and other secondary metabolites. The image of coffee as a super functional food has helped to increase coffee consumption across the globe. This chapter addresses the main health promotion mechanisms associated with coffee consumption. Related topics on coffee production chain, world consumption and reuse of coffee by-products in the production of high-value-adding molecules with potential applications in the food industry are addressed and discussed.
Collapse
Affiliation(s)
- Gilberto V de Melo Pereira
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Dão Pedro de Carvalho Neto
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Antonio I Magalhães Júnior
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Fernanda Guilherme do Prado
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Maria Giovana B Pagnoncelli
- Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Curitiba, Paraná, Brazil
| | - Susan Grace Karp
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil.
| |
Collapse
|
15
|
Sala A, Artola A, Sánchez A, Barrena R. Rice husk as a source for fungal biopesticide production by solid-state fermentation using B. bassiana and T. harzianum. BIORESOURCE TECHNOLOGY 2020; 296:122322. [PMID: 31698222 DOI: 10.1016/j.biortech.2019.122322] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Solid-state fermentation using rice husk as substrate with either Beauveria bassiana or Trichoderma harzianum was conducted on batch reactors at laboratory scale to establish optimal conditions for spore production. Time course tests were performed to determine maximum spore production time, which was 7.7 days for Beauveria bassiana and 5.7 days for Trichoderma harzianum. The effect of moisture, inoculum concentration, airflow rate, temperature and C/N ratio on spore production was evaluated by two Box-Behnken experimental designs. Final spore concentrations ranged from 2.0 × 108 to 2.0 × 109 spores g-1 dry matter. Main factors influencing spore production were moisture (optimum values of 55-60% for Trichoderma harzianum and 65-70 for Beauveria bassiana) and temperature (25 °C). The effect of mixing enhanced Trichoderma harzianum spore production while influencing negatively in the case of Beauveria bassiana. Robustness of the process has been demonstrated through statistical analysis using box-plots.
Collapse
Affiliation(s)
- Arnau Sala
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Adriana Artola
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain.
| | - Antoni Sánchez
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Raquel Barrena
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
16
|
Abdel-Azeem AM, Hasan GA, Mohesien MT. Biodegradation of Agricultural Wastes by Chaetomium Species. Fungal Biol 2020. [DOI: 10.1007/978-3-030-31612-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Cerda A, Artola A, Barrena R, Font X, Gea T, Sánchez A. Innovative Production of Bioproducts From Organic Waste Through Solid-State Fermentation. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00063] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
18
|
Martínez-Avila O, Sánchez A, Font X, Barrena R. Fed-Batch and Sequential-Batch Approaches To Enhance the Bioproduction of 2-Phenylethanol and 2-Phenethyl Acetate in Solid-State Fermentation Residue-Based Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3389-3399. [PMID: 30816043 DOI: 10.1021/acs.jafc.9b00524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study describes the use of alternative operational strategies in the solid-state fermentation of the agro-industrial leftover sugar cane bagasse (SCB) supplemented with l-phenylalanine, for bioproducing natural 2-phenylethanol (2-PE) and 2-phenethyl acetate (2-PEA) using K. marxianus. Here, fed-batch and sequential-batch have been assessed at two scales (1.6 and 22 L) as tools to increase the production, as well as to enhance the sustainability of this residue-based process. While in the reference batch strategy a maximum of 17 mg of 2-PE+2-PEA per gram of added SCB was reached at both scales, the implementation of fed-batch mode induced a production increase of 11.6% and 12.5%, respectively. Also, the production was increased by 16.9% and 2.4% as compared to the batch when a sequential-batch mode was used. Furthermore, the use of these strategies was accompanied by lower consumption of key resources like the inoculum, air, and time, promoting savings between 22% and 76% at both scales.
Collapse
Affiliation(s)
- Oscar Martínez-Avila
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria , Universitat Autònoma de Barcelona , Cerdanyola del Vallès, Barcelona 08193 , Spain
| | - Antoni Sánchez
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria , Universitat Autònoma de Barcelona , Cerdanyola del Vallès, Barcelona 08193 , Spain
| | - Xavier Font
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria , Universitat Autònoma de Barcelona , Cerdanyola del Vallès, Barcelona 08193 , Spain
| | - Raquel Barrena
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria , Universitat Autònoma de Barcelona , Cerdanyola del Vallès, Barcelona 08193 , Spain
| |
Collapse
|
19
|
Paenibacillus polymyxa bioactive compounds for agricultural and biotechnological applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101092] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Steudler S, Werner A, Walther T. It Is the Mix that Matters: Substrate-Specific Enzyme Production from Filamentous Fungi and Bacteria Through Solid-State Fermentation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 169:51-81. [PMID: 30796505 DOI: 10.1007/10_2019_85] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fungi have a diverse spectrum of extracellular enzymes. In nature, extracellular enzymes primarily serve to procure nutrients for the survival and growth of the fungi. Complex polymers such as lignocellulose and starch as well as proteins and fats are broken down into their basic building blocks by extracellular enzymes such as amylases, proteases, lipases, xylanases, laccases, and many more.The abilities of these enzymes are made use of in diverse areas of industry, including food technology, textiles, and pharmaceuticals, and they have become indispensable for today's technology. Enzyme production is usually carried out using submerged fermentation (SmF). However, as part of the search for more sustainable uses of raw materials, solid-state fermentation (SSF) has become the focus of research.The rate of enzyme formation depends on different factors, for example, microorganism, temperature, or oxygen supply. However, one of the most important factors in enzyme production is the choice of substrate, which varies depending on the desired target enzyme. Substrates with proven effectiveness include wheat bran and straw, but unusual agricultural residues such as forage cactus pears and orange peels have surprisingly positive effects on enzyme formation as well.This review gives an overview of various technically relevant enzymes produced by filamentous fungi and suitable substrates for the production of the enzymes by SSF. Graphical Abstract.
Collapse
Affiliation(s)
- Susanne Steudler
- Institut für Naturstofftechnik, Professur für Bioverfahrenstechnik, Technische Universität Dresden, Dresden, Germany.
| | - Anett Werner
- Institut für Naturstofftechnik, Professur für Bioverfahrenstechnik, Technische Universität Dresden, Dresden, Germany
| | - Thomas Walther
- Institut für Naturstofftechnik, Professur für Bioverfahrenstechnik, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
21
|
Cerda A, Mejias L, Rodríguez P, Rodríguez A, Artola A, Font X, Gea T, Sánchez A. Valorisation of digestate from biowaste through solid-state fermentation to obtain value added bioproducts: A first approach. BIORESOURCE TECHNOLOGY 2019; 271:409-416. [PMID: 30296748 DOI: 10.1016/j.biortech.2018.09.131] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Digestate from biowaste was assessed as a potential source of bioproducts of commercial and industrial interest through solid-state fermentation. The targeted bioproducts were hydrolytic enzymes (cellulases and proteases from autochthonous microbiome), biosurfactants (sophorolipids produced from Starmella bombicola) and biopesticides (produced from Bacillus thuringiensis). Low cellulase production was observed within the range of 0.5-1.5 FPU g-1 DM while protease production showed two discrete peaks of 66 ± 8 and 65 ± 3 U g-1 DM at 3.5 and 48 h, respectively. Low sophorolipids production was also obtained, with a maximum yield of 0.02 g g-1 DM using hygienised digestate supplemented with external sugar and fat sources. Biopesticides produced by B. thuringiensis were successfully at 72 h of operation, reaching a maximum spore production of 8.15 ± 0.04 (107) CFU g-1 DM and 2.85 ± 0.22 (107) CFU g-1 DM using sterile and hygienised digestate, respectively. These biopesticides could contribute to the substitution of chemically produced pesticides, moving towards a sustainable digestate management in a circular economy scheme.
Collapse
Affiliation(s)
- Alejandra Cerda
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Laura Mejias
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; Aeris Tecnologías Ambientales S.L., Carrer Santa Rosa, 38, local, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Paula Rodríguez
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Alejandra Rodríguez
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Adriana Artola
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Xavier Font
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Teresa Gea
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Antoni Sánchez
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
22
|
Martínez O, Sánchez A, Font X, Barrena R. Enhancing the bioproduction of value-added aroma compounds via solid-state fermentation of sugarcane bagasse and sugar beet molasses: Operational strategies and scaling-up of the process. BIORESOURCE TECHNOLOGY 2018; 263:136-144. [PMID: 29738976 DOI: 10.1016/j.biortech.2018.04.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Bioproduction of generally recognized as safe (GRAS) products starting with low-cost raw materials has become significant in the biorefinery concept. Thus, the solid-state fermentation (SSF) of agro-industrial residues using GRAS strains appears as alternative to obtain aroma compounds. Here, the SSF of the mixture sugarcane bagasse/sugar beet molasses was used for producing a mixture of value-added fruit-like compounds. The study aimed to enhance the production and ester selectivity evaluating three operational strategies at three scales (0.5, 4.5 and 22 L) using non-sterilized residues. While the average total volatile production was 120 mgVol per gram of dry substrate (g-1ITS), fed-batch operation promoted the highest increases in the ester content up to 57 mgEst g-1ITS, an 88 and 59% more than in the static-batch and intermittent mixing modes respectively. Alternative operational strategies have compensated the scale-up adverse effects in the bioproduction, moving towards a sustainable large-scale application in a circular economy scheme.
Collapse
Affiliation(s)
- Oscar Martínez
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Antoni Sánchez
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Xavier Font
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Raquel Barrena
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
23
|
Microbial Strategies for Cellulase and Xylanase Production through Solid-State Fermentation of Digestate from Biowaste. SUSTAINABILITY 2018. [DOI: 10.3390/su10072433] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Solid-state fermentation (SSF) is a promising technology for producing bioproducts from organic wastes. The objective of this study is to assess the feasibility of using digestate as substrate to produce hydrolytic enzymes, mainly cellulase and xylanase, by exploring three different inoculation strategies: (i) SSF with autochthonous microbiota; (ii) non-sterile SSF inoculated with Trichoderma reesei and (iii) sequential batch operation to select a specialized inoculum, testing two different residence times. Native microbial population did not show a significant cellulase production, suggesting the need for a specialized inoculum. The inoculation of Trichoderma reesei did not improve the enzymatic activity. On the other hand, inconsistent operation was achieved during sequential batch reactor in terms of specific oxygen uptake rate, temperature and enzymatic activity profile. Low cellulase and xylanase activities were attained and the main hypotheses are non-appropriate biomass selection and some degree of hydrolysis by non-targeted proteases produced during fermentation.
Collapse
|
24
|
The role of laboratory-scale bioreactors at the semi-continuous and continuous microbiological and biotechnological processes. Appl Microbiol Biotechnol 2018; 102:7293-7308. [DOI: 10.1007/s00253-018-9194-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022]
|
25
|
García-Galán MJ, Uggetti E, Garfi M, Olguín EJ, García J, Puigagut J. Biotechnology: a highly efficient tool for the current environmental challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1664-1667. [PMID: 29128123 DOI: 10.1016/j.scitotenv.2017.10.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Affiliation(s)
| | - Enrica Uggetti
- Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | - Marianna Garfi
- Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | | | - Joan García
- Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | - Jaume Puigagut
- Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| |
Collapse
|
26
|
Liu L, Wang S, Guo X, Zhao T, Zhang B. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 73:101-112. [PMID: 29279244 DOI: 10.1016/j.wasman.2017.12.026] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/21/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
A comprehensive characterization of the bacterial diversity associated to thermophilic stages of green waste composting was achieved. In this study, eight different treatments (T1-T8) and three replicated lab-scale green waste composting were carried out to compare the effect of the cellulase (i.e. 0, 2%), microbial inoculum (i.e. 0, 2 and 4%) and particle size (i.e. 2 and 5 mm) on bacterial community structure. Physicochemical properties and bacterial communities of T1-T8 composts were observed, and the bacterial structure and diversity were examined by high-throughput sequencing via a MiSeq platform. The results showed that the most abundant phyla among the treatments were the Firmicutes, Chloroflexi and Proteobacteria. The shannon index and non-metric multidimensional scaling (NMDS) showed higher bacterial abundance and diversity at the metaphase of composting. Comparing with 5-mm treatments, particle size of 2-mm had a richer diversity of bacterial communities. The addition of cellulase and a microbial inoculum could promote the fermentation temperature, reduce the compost pH and C/N ratio and result in higher GI index. The humic substance (HS) and humic acid (HA) contents for 2-mm particle size treatments were higher than those of 5-mm treatments. Canonical correspondence analysis suggested that differences in bacterial abundance and diversity significantly correlated with HA, E4/E6 and temperature, and the relationship between bacterial diversity and environmental parameters was affected by composting stages. Based on these results, the application of cellulase to promote green waste composting was feasible, and particle size was identified as a potential control of composting physicochemical properties and bacterial diversity.
Collapse
Affiliation(s)
- Ling Liu
- College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China; Key Lab of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
| | - Shuqi Wang
- Tianjin LVYIN Landscape and Ecology Construction Co., Ltd, Tianjin 300384, PR China
| | - Xiaoping Guo
- College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China; Key Lab of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing 100083, PR China.
| | - Tingning Zhao
- College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China; Key Lab of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
| | - Bolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
27
|
Chen Y, Chang SKC, Chen J, Zhang Q, Yu H. Characterization of microbial community succession during vermicomposting of medicinal herbal residues. BIORESOURCE TECHNOLOGY 2018; 249:542-549. [PMID: 29080518 DOI: 10.1016/j.biortech.2017.10.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Large amounts of medicinal herbal residues (MHR) are produced in the world annually due to the increasing demand for herbal products. In this study, vermicomposting was used to stabilize MHR. Four inoculating density of earthworms was studied, specifically, 0 (W1), 60 (W2), 120 (W3) and 180 (W4) earthworms per kilogram of substrate. The C:N ratios of vermicomposts in W2, W3 and W4 were less than 20 by the end of the first week, while the value for W1 was 30.92. This indicates that earthworms promote the stabilization of MHR. In the initial stage, richness and diversity of the microbial community decreased due to earthworm inoculation, and then began to increase. The dominant phyla were Proteobacteria, Bacteroidetes, Basidiomycota and Ascomycota in the substrates. The abundance of the dominant phyla varied according to earthworm density, indicating that earthworms change the microbial composition. The results suggest that MHR can be stabilized by vermicomposting.
Collapse
Affiliation(s)
- Yuxiang Chen
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
| | - Sam K C Chang
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS 39762, United States
| | - Jing Chen
- Logistics College, Beijing Wuzi University, Beijing 101149, China
| | - Qiang Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Haiye Yu
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
28
|
Cerda A, Mejías L, Gea T, Sánchez A. Cellulase and xylanase production at pilot scale by solid-state fermentation from coffee husk using specialized consortia: The consistency of the process and the microbial communities involved. BIORESOURCE TECHNOLOGY 2017; 243:1059-1068. [PMID: 28764108 DOI: 10.1016/j.biortech.2017.07.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
Solid state fermentation is a promising technology however rising concerns related to scale up and reproducibility in a productive process. Coffee husk and a specialized inoculum were used in a 4.5L and then in 50L reactors to assess the reproducibility of a cellulase and hemicellulase production system. Fermentations were consistent in terms of cellulase production and microbial communities. The higher temperatures achieved when operating at 50L generated a shift on the microbial communities and a reduction of nearly 50% on cellulase production at pilot scale. In spite, an overall enzymatic production of 3.1±0.5FPUg-1DM and 48±4Ug-1DM for FPase and Xyl activities was obtained, respectively, with low deviation coefficients of 16 and 19% for FPase and Xyl production. Gaseous emissions assessment revealed an emission factor of 2.6·10-3kg volatile organic compounds per Mg of coffee husk and negligible NH3, CH4 and N2O emissions.
Collapse
Affiliation(s)
- Alejandra Cerda
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Laura Mejías
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Teresa Gea
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Antoni Sánchez
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|