1
|
Niu M, Harshaw K, Xiang Q, Zhou Y, Xiang P, Ju Z, Long W, MacIsaac HJ, Chang X. Macrophytes mitigate Microcystis aeruginosa-induced fish appetite suppression via intestinal metabolite regulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117348. [PMID: 39550875 DOI: 10.1016/j.ecoenv.2024.117348] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Cyanobacterial blooms and aquatic macrophytes can affect the health, physiology, and behavior of freshwater fish. Changes in food intake can be a key indicator of stress in teleost fish, while changes in metabolite abundance in the gut can indicate a shift in metabolic priorities, including response to environmental stressors. Here, we exposed stone moroko (Pseudorasbora parva) to the cyanobacterium Microcystis aeruginosa and/or the macrophyte Ottelia acuminata and analyzed changes in fish health, appetite regulation, and intestinal metabolome after 96-h exposures. We found that O. acuminata treatment didn't change the tested indicators, while exposure to M. aeruginosa increased concentrations of appetite-inhibiting factors, such as CART and GLP-1, and decreased concentrations of stimulatory factors like orexin. Exploration of the metabolome following exposure revealed that the appetite-inhibiting influence of M. aeruginosa was positively correlated with key metabolites of lipid, amino acid, and cholesterol metabolism, especially those associated with bile acid synthesis and secretion. Further, the presence of O. acuminata decreased the adverse effects of M. aeruginosa among neuro-endocrine regulatory factors, which could be explained by altered regulation of intestinal amino acid metabolites. The deeper mechanism by which O. acuminata moderates the harmful effects of M. aeruginosa remains to be identified.
Collapse
Affiliation(s)
- Minmin Niu
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Keira Harshaw
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Qianqian Xiang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Yuan Zhou
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China; The Ecological and Environmental Monitoring Station of DEEY in Kunming, Kunming 650228, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Zhihao Ju
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Wenyu Long
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Hugh J MacIsaac
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada.
| |
Collapse
|
2
|
Lin W, Ouyang K, He Y, Yang H, Kuang Y, Li D, Li L. Combined effects of microcystin-LR and rice straw-derived biochar on the hepatic antioxidant capacity of zebrafish: Insights from LC-MS/MS-based metabolomics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166830. [PMID: 37673272 DOI: 10.1016/j.scitotenv.2023.166830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Microcystin-LR (MC-LR) produced by cyanobacteria blooms poses a serious risk to aquatic organisms. Rice straw-derived biochar (BC) is gradually being utilized as an effective adsorbent to remove water pollutants. In the present study, the combined toxicity of MC-LR and BC on hepatic antioxidant capacity and metabolic phenotype of zebrafish (Danio rerio) were conducted due to the increasing concern of eutrophication in aquatic environments. Female zebrafish were exposed to solutions of MC-LR (10 μg/L) and BC (100 μg/L) individually and in combination for 30 days. The results indicated that sub-chronic MC-LR exposure induced oxidative stress and metabolic disorders, with a significant elevation of several amino acids, glucose as well as unsaturated fatty acids. Metabolic pathway analysis showed that the ascorbate and aldarate metabolism and biosynthesis of unsaturated fatty acids were affected under MC-LR stress. Significantly increased MDA levels along with significantly decreased CAT and GPx activities were observed in the MC-LR group. Nevertheless, MDA levels, antioxidant enzyme activities, and the relevant gene expressions (cat1, nrf2a, HO-1, keap1a) returned to baseline in the co-exposure group. These findings revealed that MC-LR resulted in metabolic disorders of protein, sugar, and lipid related to energy production, and BC could relieve MC-LR-induced metabolic disorder and oxidative stress in the liver of zebrafish. However, the potential risk of BC-induced metabolic disorder should not be neglected. Our present results highlight the potential of BC as a tool for mitigating the negative impacts of MC-LR on aquatic organisms in blooms-contaminated water.
Collapse
Affiliation(s)
- Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Kuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
3
|
Gallet A, Halary S, Duval C, Huet H, Duperron S, Marie B. Disruption of fish gut microbiota composition and holobiont's metabolome during a simulated Microcystis aeruginosa (Cyanobacteria) bloom. MICROBIOME 2023; 11:108. [PMID: 37194081 DOI: 10.1186/s40168-023-01558-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/26/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Cyanobacterial blooms are one of the most common stressors encountered by metazoans living in freshwater lentic systems such as lakes and ponds. Blooms reportedly impair fish health, notably through oxygen depletion and production of bioactive compounds including cyanotoxins. However, in the times of the "microbiome revolution", it is surprising that so little is still known regarding the influence of blooms on fish microbiota. In this study, an experimental approach is used to demonstrate that blooms affect fish microbiome composition and functions, as well as the metabolome of holobionts. To this end, the model teleost Oryzias latipes is exposed to simulated Microcystis aeruginosa blooms of various intensities in a microcosm setting, and the response of bacterial gut communities is evaluated in terms of composition and metabolome profiling. Metagenome-encoded functions are compared after 28 days between control individuals and those exposed to highest bloom level. RESULTS The gut bacterial community of O. latipes exhibits marked responses to the presence of M. aeruginosa blooms in a dose-dependent manner. Notably, abundant gut-associated Firmicutes almost disappear, while potential opportunists increase. The holobiont's gut metabolome displays major changes, while functions encoded in the metagenome of bacterial partners are more marginally affected. Bacterial communities tend to return to original composition after the end of the bloom and remain sensitive in case of a second bloom, reflecting a highly reactive gut community. CONCLUSION Gut-associated bacterial communities and holobiont functioning are affected by both short and long exposure to M. aeruginosa, and show evidence of post-bloom resilience. These findings point to the significance of bloom events to fish health and fitness, including survival and reproduction, through microbiome-related effects. In the context of increasingly frequent and intense blooms worldwide, potential outcomes relevant to conservation biology as well as aquaculture warrant further investigation. Video Abstract.
Collapse
Affiliation(s)
- Alison Gallet
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Sébastien Halary
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Charlotte Duval
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Hélène Huet
- UMR1161 Virologie, École Nationale Vétérinaire d'Alfort, INRA - ANSES - ENVA, Maisons-Alfort, France
| | - Sébastien Duperron
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France.
- Institut Universitaire de France, Paris, France.
| | - Benjamin Marie
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France.
| |
Collapse
|
4
|
Hu MY, Yu QZ, Lin JQ, Fang SG. Sexual Dimorphism of the Gut Microbiota in the Chinese Alligator and Its Convergence in the Wild Environment. Int J Mol Sci 2022; 23:12140. [PMID: 36292992 PMCID: PMC9603114 DOI: 10.3390/ijms232012140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/27/2022] Open
Abstract
The gut microbiota forms a complex microecosystem in vertebrates and is affected by various factors. As a key intrinsic factor, sex has a persistent impact on the formation and development of gut microbiota. Few studies have analyzed sexual dimorphism of gut microbiota, particularly in wild animals. We used 16S rRNA gene sequencing to analyze the gut microbiota of juvenile and adult Chinese alligators, and untargeted metabolomics to study serum metabolomes of adult alligators. We observed significant sexual differences in the community diversity in juvenile, but not adult, alligators. In terms of taxonomic composition, the phylum Fusobacteriota and genus Cetobacterium were highly abundant in adult alligators, similar to those present in carnivorous fishes, whereas the gut microbiota composition in juvenile alligators resembled that in terrestrial reptiles, indicating that adults are affected by their wild aquatic environment and lack sex dimorphism in gut microbiota. The correlation analysis revealed that the gut microbiota of adults was also affected by cyanobacteria in the external environment, and this effect was sex-biased and mediated by sex hormones. Overall, this study reveals sexual differences in the gut microbiota of crocodilians and their convergence in the external environment, while also providing insights into host-microbiota interactions in wildlife.
Collapse
Affiliation(s)
- Meng-Yuan Hu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qin-Zhang Yu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian-Qing Lin
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Marie B, Gallet A. Fish metabolome from sub-urban lakes of the Paris area (France) and potential influence of noxious metabolites produced by cyanobacteria. CHEMOSPHERE 2022; 296:134035. [PMID: 35183584 DOI: 10.1016/j.chemosphere.2022.134035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The recent democratization of high-throughput molecular phenotyping allows the rapid expansion of promising untargeted multi-dimensional approaches (e.g. epigenomics, transcriptomics, proteomics, and/or metabolomics). Indeed, these emerging omics tools, processed for ecologically relevant species, may present innovative perspectives for environmental assessments, that could provide early warning of eco(toxico)logical impairments. In a previous pilot study (Sotton et al., Chemosphere 2019), we explore by 1H NMR the bio-indicative potential of metabolomics analyses on the liver of 2 sentinel fish species (Perca fluviatilis and Lepomis gibbosus) collected in 8 water bodies of the peri-urban Paris' area (France). In the present study, we further investigate on the same samples the high potential of high-throughput UHPLC-HRMS/MS analyses. We show that the LC-MS metabolome investigation allows a clear separation of individuals according to the species, but also according to their respective sampling lakes. Interestingly, similar variations of Perca and Lepomis metabolomes occur locally indicating that site-specific environmental constraints drive the metabolome variations which seem to be influenced by the production of noxious molecules by cyanobacterial blooms in certain lakes. Thus, the development of such reliable environmental metabolomics approaches appears to constitute an innovative bio-indicative tool for the assessment of ecological stress, such as toxigenic cyanobacterial blooms, and aim at being further follow up.
Collapse
Affiliation(s)
- Benjamin Marie
- UMR 7245, CNRS/MNHN, Molécules de Communication et Adaptation des Micro-organismes (MCAM), équipe "Cyanobactéries, Cyanotoxines et Environnement", 12 rue Buffon - CP 39, 75231, Paris Cedex 05, France.
| | - Alison Gallet
- UMR 7245, CNRS/MNHN, Molécules de Communication et Adaptation des Micro-organismes (MCAM), équipe "Cyanobactéries, Cyanotoxines et Environnement", 12 rue Buffon - CP 39, 75231, Paris Cedex 05, France
| |
Collapse
|
6
|
Lebeau-Roche E, Daniele G, Fildier A, Turies C, Dedourge-Geffard O, Porcher JM, Geffard A, Vulliet E. An optimized LC-HRMS untargeted metabolomics workflow for multi-matrices investigations in the three-spined stickleback. PLoS One 2021; 16:e0260354. [PMID: 34843526 PMCID: PMC8629232 DOI: 10.1371/journal.pone.0260354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
Environmental metabolomics has become a growing research field to understand biological and biochemical perturbations of organisms in response to various abiotic or biotic stresses. It focuses on the comprehensive and systematic analysis of a biologic system’s metabolome. This allows the recognition of biochemical pathways impacted by a stressor, and the identification of some metabolites as biomarkers of potential perturbations occurring in a body. In this work, we describe the development and optimization of a complete reliable methodology based on liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) for untargeted metabolomics studies within a fish model species, the three-spined stickleback (Gasterosteus aculeatus). We evaluated the differences and also the complementarities between four different matrices (brain, gills, liver and whole fish) to obtain metabolome information. To this end, we optimized and compared sample preparation and the analytical method, since the type and number of metabolites detected in any matrix are closely related to these latter. For the sample preparation, a solid-liquid extraction was performed on a low quantity of whole fish, liver, brain, or gills tissues using combinations of methanol/water/heptane. Based on the numbers of features observed in LC-HRMS and on the responses of analytical standards representative of different metabolites groups (amino acids, sugars…), we discuss the influence of the nature, volume, and ratio of extraction solvents, the sample weight, and the reconstitution solvent. Moreover, the analytical conditions (LC columns, pH and additive of mobile phases and ionization modes) were also optimized so as to ensure the maximum metabolome coverages. Thus, two complementary chromatographic procedures were combined in order to cover a broader range of metabolites: a reversed phase separation (RPLC) on a C18 column followed by detection with positive ionization mode (ESI+) and a hydrophilic interaction chromatography (HILIC) on a zwitterionic column followed by detection with negative ionization mode (ESI-). This work provides information on brain, gills, liver, vs the whole body contribution to the stickleback metabolome. These information would help to guide ecotoxicological and biomonitoring studies.
Collapse
Affiliation(s)
- Emmanuelle Lebeau-Roche
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, Reims cedex 2, France
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
| | - Gaëlle Daniele
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
| | - Aurélie Fildier
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
| | - Cyril Turies
- Institut National de l’Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, Verneuil-en-Halatte, France
| | - Odile Dedourge-Geffard
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, Reims cedex 2, France
| | - Jean-Marc Porcher
- Institut National de l’Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, Verneuil-en-Halatte, France
| | - Alain Geffard
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, Reims cedex 2, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
- * E-mail:
| |
Collapse
|
7
|
Ma Y, Liu H, Du X, Shi Z, Liu X, Wang R, Zhang S, Tian Z, Shi L, Guo H, Zhang H. Advances in the toxicology research of microcystins based on Omics approaches. ENVIRONMENT INTERNATIONAL 2021; 154:106661. [PMID: 34077854 DOI: 10.1016/j.envint.2021.106661] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs) are the most widely distributed cyanotoxins, which can be ingested by animals and human body in multiple ways, resulting in a threat to human health and the biodiversity of wildlife. Therefore, the study on toxic effects and mechanisms of MCs is one of the focuses of attention. Recently, the Omics techniques, i.e. genomics, transcriptomics, proteomics and metabolomics, have significantly contributed to the comprehensive understanding and revealing of the molecular mechanisms about the toxicity of MCs. This paper mainly reviews current literature using the Omics approaches to explore the toxicity mechanism of MCs in liver, gonad, spleen, brain, intestine and lung of multiple species. It was found that MCs can exert strong toxic effects on various metabolic activities and cell signal transduction in cell cycle, apoptosis, destruction of cell cytoskeleton and redox disorder, at protein, transcription and metabolism level. Meanwhile, it was also revealed that the alteration of non-coding RNAs (miRNA, circRNA and lncRNA, etc.) and gut microbiota plays an essential regulatory role in the toxic effects of MCs, especially in hepatotoxicity and reproductive toxicity. In addition, we summarized current research gaps and pointed out the future directions for research. The detailed information in this paper shows that the application and development of Omics techniques have significantly promoted the research on MCs toxicity, and it is also a valuable resource for exploring the toxic mechanism of MCs.
Collapse
Affiliation(s)
- Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Ziang Shi
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, PR China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, PR China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
8
|
Li H, Gu X, Chen H, Mao Z, Zeng Q, Yang H, Kan K. Comparative toxicological effects of planktonic Microcystis and benthic Oscillatoria on zebrafish embryonic development: Implications for cyanobacteria risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:115852. [PMID: 33246764 DOI: 10.1016/j.envpol.2020.115852] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Planktonic and benthic cyanobacteria blooms are increasing in frequency in recent years. Although many studies have focused on the effects of purified toxins or cyanobacteria extracts on fish developments, the more complex impacts of cyanobacteria cells on fish populations are still considered insufficient. This study compared the toxicological effects of harmful planktonic Microcystis and benthic Oscillatoria on zebrafish (Danio rerio) early stages of development. Zebrafish embryos, at 1-2 h post fertilization (hpf), were exposed to 5, 10, and 20 × 105 cells/mL Microcystis (producing microcystins) or Oscillatoria (producing cylindrospermopsins) until 96 hpf. The results indicated that the effects of benthic Oscillatoria on embryonic development of zebrafish were different from those of planktonic Microcystis. Reduced hatching rates, increased mortality, depressed heart rates and elevated malformation rates were observed following exposures to increased concentrations of Microcystis, whilst Oscillatoria exposures only caused yolk sac edemas. Exposure to a high concentration of Microcystis induced severe oxidative damage, growth inhibition and transcriptional downregulations of genes (GH, GHR1, IGF1, IGF1rb) associated with the growth hormone/insulin-like growth factor (GH/IGF) axis. Although Oscillatoria exposure did not affect the body growth, it obviously enhanced the antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and up-regulated the expressions of several oxidative stress-related genes. Discrepancies in the developmental toxicity caused by Microcystis and Oscillatoria may not only attributed to the different secondary metabolites they secrete, but also to the different adhesion behaviors of algal cells on embryonic chorion. These results suggested that harmful cyanobacteria cells could influence the successful recruitment of fish, while the effects of benthic cyanobacteria should not be ignored. It also highlighted that the necessity for further investigating the ecotoxicity of intact cyanobacterial samples when assessing the risk of cyanobacterial blooms.
Collapse
Affiliation(s)
- Hongmin Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China.
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Kecong Kan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Marie B. Disentangling of the ecotoxicological signal using "omics" analyses, a lesson from the survey of the impact of cyanobacterial proliferations on fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139701. [PMID: 32497891 DOI: 10.1016/j.scitotenv.2020.139701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/16/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Omics technologies offer unprecedented perspectives for the rational investigation of complex biological systems. Indeed, omics present the ability of offering an extensive perception of the biochemistry and physiology of the cell and of any perturbing consequences of contaminants through the joint investigation of thousands of molecular responses simultaneously; then it has recently conducted to a fervent attention by research ecotoxicologists. Beyond the presentation of latest advances, exemplified here by omics investigation of cyanobacterial deleterious effects on various fishes (at various experimental and biological scales and with various analytical tools and pipeline), the present review paper re-explores the promising perspectives and also the pitfalls of such holistic investigations of the ecotoxicological response of organisms for environmental assessment.
Collapse
Affiliation(s)
- Benjamin Marie
- Muséum National d'Histoire Naturelle, UMR 7245, CNRS, MNHN Molécules de Communication et Adaptation des Micro-organismes (MCAM), équipe "Cyanobactéries, Cyanotoxines et Environnement", 12 rue Buffon, CP 39, 75231 Paris Cedex 05, France.
| |
Collapse
|
10
|
Sotton B, Paris A, Le Manach S, Blond A, Duval C, Qiao Q, Catherine A, Combes A, Pichon V, Bernard C, Marie B. Specificity of the metabolic signatures of fish from cyanobacteria rich lakes. CHEMOSPHERE 2019; 226:183-191. [PMID: 30927670 DOI: 10.1016/j.chemosphere.2019.03.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
With the increasing impact of the global warming, occurrences of cyanobacterial blooms in aquatic ecosystems are becoming a main worldwide ecological concern. Due to their capacity to produce potential toxic metabolites, interactions between the cyanobacteria, their cyanotoxins and the surrounding freshwater organisms have been investigated during the last past years. Non-targeted metabolomic analyses have the powerful capacity to study simultaneously a high number of metabolites and thus to investigate in depth the molecular signatures between various organisms encountering different environmental scenario, and potentially facing cyanobacterial blooms. In this way, the liver metabolomes of two fish species (Perca fluviatilis and Lepomis gibbosus) colonizing various peri-urban lakes of the Île-de-France region displaying high biomass of cyanobacteria, or not, were investigated. The fish metabolome hydrophilic fraction was analyzed by 1H NMR analysis coupled with Batman peak treatment for the quantification and the annotation attempt of the metabolites. The results suggest that similar metabolome profiles occur in both fish species, for individuals collected from cyanobacterial blooming lakes compared to organism from non-cyanobacterial dominant environments. Overall, such environmental metabolomic pilot study provides new research perspectives in ecology and ecotoxicology fields, and may notably provide new information concerning the cyanobacteria/fish ecotoxicological interactions.
Collapse
Affiliation(s)
- Benoît Sotton
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231, Paris Cedex 05, France
| | - Alain Paris
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231, Paris Cedex 05, France
| | - Séverine Le Manach
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231, Paris Cedex 05, France
| | - Alain Blond
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231, Paris Cedex 05, France
| | - Charlotte Duval
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231, Paris Cedex 05, France
| | - Qin Qiao
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231, Paris Cedex 05, France
| | - Arnaud Catherine
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231, Paris Cedex 05, France
| | - Audrey Combes
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR CNRS-ESPCI Paris, CBI 8231, PSL Research University, ESPCI Paris, 10 rue Vauquelin, Paris, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR CNRS-ESPCI Paris, CBI 8231, PSL Research University, ESPCI Paris, 10 rue Vauquelin, Paris, France
| | - Cécile Bernard
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231, Paris Cedex 05, France
| | - Benjamin Marie
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231, Paris Cedex 05, France.
| |
Collapse
|
11
|
Le Manach S, Sotton B, Huet H, Duval C, Paris A, Marie A, Yépremian C, Catherine A, Mathéron L, Vinh J, Edery M, Marie B. Physiological effects caused by microcystin-producing and non-microcystin producing Microcystis aeruginosa on medaka fish: A proteomic and metabolomic study on liver. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:523-537. [PMID: 29220784 DOI: 10.1016/j.envpol.2017.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/10/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Cyanobacterial blooms have become a common phenomenon in eutrophic freshwater ecosystems worldwide. Microcystis is an important bloom-forming and toxin-producing genus in continental aquatic ecosystems, which poses a potential risk to Human populations as well as on aquatic organisms. Microcystis is known to produce along with various bioactive peptides, the microcystins (MCs) that have attracted more attention notably due to their high hepatotoxicity. To better understand the effects of cyanobacterial blooms on fish, medaka fish (Oryzias latipes) were sub-chronically exposed to either non-MC-producing or MC-producing living strains and, for this latter, to its subsequent MC-extract of Microcystis aeruginosa. Toxicological effects on liver have been evaluated through the combined approach of histopathology and 'omics' (i.e. proteomics and metabolomics). All treatments induce sex-dependent effects at both cellular and molecular levels. Moreover, the modalities of exposure appear to induce differential responses as the direct exposure to the cyanobacterial strains induce more acute effects than the MC-extract treatment. Our histopathological observations indicate that both non-MC-producing and MC-producing strains induce cellular impairments. Both proteomic and metabolomic analyses exhibit various biological disruptions in the liver of females and males exposed to strain and extract treatments. These results support the hypothesis that M. aeruginosa is able to produce bioactive peptides, other than MCs, which can induce toxicological effects in fish liver. Moreover, they highlight the importance of considering cyanobacterial cells as a whole to assess the realistic environmental risk of cyanobacteria on fish.
Collapse
Affiliation(s)
- Séverine Le Manach
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France.
| | - Benoit Sotton
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Hélène Huet
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, BioPôle Alfort, F-94704 Maisons-Alfort Cedex, France
| | - Charlotte Duval
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Alain Paris
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Arul Marie
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Claude Yépremian
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Arnaud Catherine
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Lucrèce Mathéron
- Institut de Biologie Paris Seine/FR 3631, Plateforme Spectrométrie de masse et Protéomique, Institut de Biologie Intégrative IFR 83, Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Joelle Vinh
- USR 3149 ESPCI/CNRS SMPB, Laboratory of Biological Mass Spectrometry and Proteomics, ESPCI Paris, PSL Research University, Paris, France
| | - Marc Edery
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Benjamin Marie
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France.
| |
Collapse
|