1
|
Rojo M, Ball AL, Penrose MT, Weir SM, LeBaron H, Terasaki M, Cobb GP, Lavado R. Accumulation of Parabens, Their Metabolites, and Halogenated Byproducts in Migratory Birds of Prey: A Comparative Study in Texas and North Carolina, USA. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2365-2376. [PMID: 39172001 DOI: 10.1002/etc.5974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Parabens are alkyl esters of p-hydroxybenzoic acid that are commonly used as preservatives in personal care products such as cosmetics. Recent studies have revealed the presence of parabens in surface and tap water because of their use as disinfection products; however, little is known about their occurrence in biological samples and their bioaccumulation potential, particularly in raptor birds known as sentinels for pollutant detection. We examined the occurrence and tissue distribution of parabens, their metabolites, and halogenated byproducts in the liver, kidney, brain, and muscle of birds of prey from Texas and North Carolina (USA). Methylparaben (MeP), propylparaben (PrP), and butylparaben (BuP) were detected in more than 50% of all tissues examined, with the kidney exhibiting the highest concentration of MeP (0.65-6.84 ng/g wet wt). Para-hydroxybenzoic acid (PHBA), a primary metabolite, had the highest detection frequency (>50%) and a high accumulation range in the liver, of 4.64 to 12.55 ng/g. The chlorinated compounds chloromethylparaben and chloroethylparaben were found in over half of the tissues, of which dichloromethylparaben (2.20-3.99 ng/g) and dichloroethylparaben (1.01-5.95 ng/g) in the kidney exhibited the highest concentrations. The dibrominated derivatives dibromideethylparaben (Br2EtP) was detected in more than 50% of samples, particularly in muscle and brain. Concentrations in the range of 0.14 to 17.38 ng/g of Br2EtP were detected in the kidney. Dibromidepropylparaben (Br2PrP) was not frequently detected, but concentrations ranged from 0.09 to 21.70 ng/g in muscle. The accumulations of total amounts (sum) of parent parabens (∑P), metabolites (∑M), and halogenated byproducts (∑H) in different species were not significantly different, but their distribution in tissues differed among the species. Positive correlations were observed among MeP, PrP, BuP, and PHBA in the liver, suggesting similar origins and metabolic pathways. Environ Toxicol Chem 2024;43:2365-2376. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Macarena Rojo
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Ashley L Ball
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Mike T Penrose
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Scott M Weir
- Department of Biology, Queens University of Charlotte, Charlotte, North Carolina, USA
| | | | - Masanori Terasaki
- Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, Iwate, Japan
| | - George P Cobb
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, Texas, USA
| |
Collapse
|
2
|
Okon C, Rocha MB, de Souza Ratuchinski L, Santo DE, Duarte CCS, de Lima Feitoza L, Junior OV, Ferreira PMP, de Almeida EA, Halmemam MCO, Dade SilvaOliveira DC, da Silva Gonzalez R, de Souza DC, Peron AP. Toxicity of the emerging pollutants propylparaben and dichloropropylparaben to terrestrial plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45834-45846. [PMID: 38972946 DOI: 10.1007/s11356-024-34178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Propylparaben (PrP) and dichloropropylparaben (diClPrP) are found in soil worldwide, mainly due to the incorporation of urban sludge in crop soils and the use of non-raw wastewater for irrigation. Studies on the adverse effects of PrP on plants are incipient and not found for diClPrP. PrP and diClPrP were evaluated at concentrations 4, 40, and 400 µg/L for their phytotoxic potential to seeds of Allium cepa (onion), Cucumis sativus (cucumber), Lycopersicum sculentum (tomato), and Lactuca sativa (lettuce), and cytotoxic, genotoxic potential, and for generating oxygen-reactive substances in root meristems of A. cepa bulbs. PrP and diClPrP caused a significant reduction in seed root elongation in all four species. In A. cepa bulb roots, PrP and diClPrP resulted in a high prophase index; in addition, PrP at 400 µg/L and diClPrP at the three concentrations significantly decreased cell proliferation and caused alterations in a significant number of cells. Furthermore, diClPrP concentrations induced the development of hooked roots in onion bulbs. The two chemical compounds caused significant changes in the modulation of catalase, ascorbate peroxidase, and guaiacol peroxidase, disarming the root meristems against hydroxyl radicals and superoxides. Therefore, PrP and diClPrP were phytotoxic and cytogenotoxic to the species tested, proving dangerous to plants.
Collapse
Affiliation(s)
- Caio Okon
- Chemical Enginnering Course, Federal Technological, University of Paraná, Campo Mourão, Paraná, Brazil
| | - Mylena Bathke Rocha
- Chemical Enginnering Course, Federal Technological, University of Paraná, Campo Mourão, Paraná, Brazil
| | | | - Diego Espirito Santo
- Graduate Program in Environmental Engineering, Federal Technological University of Paraná, Francisco Beltrão, Paraná, Brazil
| | - Charla Chaionara Schults Duarte
- Graduate Program in Environmental Engineering, Federal Technological University of Paraná, Francisco Beltrão, Paraná, Brazil
| | - Lidiane de Lima Feitoza
- Academic Department of Biological Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Osvaldo Valarini Junior
- Academic Department of Food and Chemical Engineering, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Academic Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | | | | | - Regiane da Silva Gonzalez
- Academic Department of Chemistry, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
- Graduate Program in Food Technology, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
| | - Débora Cristina de Souza
- Department of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
- Graduate Program in Water Resources and Environmental Engineering, Federal University of Paraná, Paraná, Brazil
| | - Ana Paula Peron
- Graduate Program in Environmental Engineering, Federal Technological University of Paraná, Francisco Beltrão, Paraná, Brazil.
- Department of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil.
- Graduate Program in Technological Innovations, Federal Technological University of Paraná, Via Rosalina Maria Dos Santos, Campo Mourão, Paraná, 1233, Brazil.
| |
Collapse
|
3
|
Vo PHN, Ky Le G, Huy LN, Zheng L, Chaiwong C, Nguyen NN, Nguyen HTM, Ralph PJ, Kuzhiumparambil U, Soroosh D, Toft S, Madsen C, Kim M, Fenstermacher J, Hai HTN, Duan H, Tscharke B. Occurrence, spatiotemporal trends, fate, and treatment technologies for microplastics and organic contaminants in biosolids: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133471. [PMID: 38266587 DOI: 10.1016/j.jhazmat.2024.133471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/26/2024]
Abstract
This review provides a comprehensive overview of the occurrence, fate, treatment and multi-criteria analysis of microplastics (MPs) and organic contaminants (OCs) in biosolids. A meta-analysis was complementarily analysed through the literature to map out the occurrence and fate of MPs and 10 different groups of OCs. The data demonstrate that MPs (54.7% occurrence rate) and linear alkylbenzene sulfonate surfactants (44.2% occurrence rate) account for the highest prevalence of contaminants in biosolids. In turn, dioxin, polychlorinated biphenyls (PCBs) and phosphorus flame retardants (PFRs) have the lowest rates (<0.01%). The occurrence of several OCs (e.g., dioxin, per- and polyfluoroalkyl substances, polycyclic aromatic hydrocarbons, pharmaceutical and personal care products, ultraviolet filters, phosphate flame retardants) in Europe appear at higher rates than in Asia and the Americas. However, MP concentrations in biosolids from Australia are reported to be 10 times higher than in America and Europe, which required more measurement data for in-depth analysis. Amongst the OC groups, brominated flame retardants exhibited exceptional sorption to biosolids with partitioning coefficients (log Kd) higher than 4. To remove these contaminants from biosolids, a wide range of technologies have been developed. Our multicriteria analysis shows that anaerobic digestion is the most mature and practical. Thermal treatment is a viable option; however, it still requires additional improvements in infrastructure, legislation, and public acceptance.
Collapse
Affiliation(s)
- Phong H N Vo
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
| | - Gia Ky Le
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Lai Nguyen Huy
- Environmental Engineering and Management, Asian Institute of Technology (AIT), Klong Luang, Pathumthani, Thailand
| | - Lei Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Chawalit Chaiwong
- Environmental Engineering and Management, Asian Institute of Technology (AIT), Klong Luang, Pathumthani, Thailand
| | - Nam Nhat Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hong T M Nguyen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Peter J Ralph
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Unnikrishnan Kuzhiumparambil
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Danaee Soroosh
- Biotechnology Department, Iranian Research Organization for Science and Technology, Tehran 3353-5111, Iran
| | - Sonja Toft
- Urban Utilities, Level 10/31 Duncan St, Fortitude Valley, QLD 4006, Australia
| | - Craig Madsen
- Urban Utilities, Level 10/31 Duncan St, Fortitude Valley, QLD 4006, Australia
| | - Mikael Kim
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | | | - Ho Truong Nam Hai
- Faculty of Environment, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City 700000, Viet Nam
| | - Haoran Duan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ben Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| |
Collapse
|
4
|
Unnikrishan A, Khalid NK, Rayaroth MP, Thomas S, Nazim A, Aravindakumar CT, Aravind UK. Occurrence and distribution of steroid hormones (estrogen) and other contaminants of emerging concern in a south indian water body. CHEMOSPHERE 2024; 351:141124. [PMID: 38211796 DOI: 10.1016/j.chemosphere.2024.141124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Steroid hormones (SHs) are among the important classes of Contaminants of Emerging Concern (CECs) whose detection in aquatic environments is vital due to their potential adverse health impacts. Their detection is challenging because of their lower stability in natural conditions and low concentrations. This study reports the presence of steroid hormones in a major river system, the Periyar River, in Kerala (India). Water samples were collected from thirty different river locations in the case of SHs and five locations within these in the case of other CECs. These were subjected to LC-MS/MS and LC-Q-ToF/MS analyses. Five SHs, estriol, estrone, 17 β estradiol, progesterone, and hydroxy progesterone, were separated and targeted using MS techniques. The studies of the water samples confirmed the presence of the first three estrogens in different sampling sites, with estrone present in all the sampling sites. The concentration of estrone was detected in the range from 2 to 15 ng/L. Estriol and estradiol concentrations ranged from 1.0 to 5 ng/L and 1-6 ng/L, respectively. The hormones at some selected sites were continuously monitored for seven months. The chosen areas include the feed water sites for the drinking water treatment plants across the river. The monthly data revealed that estrone is the only SHs detected in all the samples in the selected months. The highest concentration of SH was found in August. Twelve CECs belonging to pharmaceuticals and personal care products were identified and quantified. In addition, 31 other CECs were also identified using non-target analysis. A detailed study of the hormone mapping reported here is the first from any South Indian River.
Collapse
Affiliation(s)
- Amitha Unnikrishan
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi, 682022, Kerala, India
| | - Nejumal K Khalid
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Manoj P Rayaroth
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Shiny Thomas
- Sophisticated Analytical Instrument Facilities (SAIFs), Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Akhil Nazim
- Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India; Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India; Sophisticated Analytical Instrument Facilities (SAIFs), Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi, 682022, Kerala, India.
| |
Collapse
|
5
|
Rosen Vollmar AK, Rattray NJW, Cai Y, Jain A, Yan H, Deziel NC, Calafat AM, Wilcox AJ, Jukic AMZ, Johnson CH. Urinary Paraben Concentrations and Associations with the Periconceptional Urinary Metabolome: Untargeted and Targeted Metabolomics Analyses of Participants from the Early Pregnancy Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:97006. [PMID: 37702489 PMCID: PMC10498870 DOI: 10.1289/ehp12125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Parabens, found in everyday items from personal care products to foods, are chemicals with endocrine-disrupting activity, which has been shown to influence reproductive function. OBJECTIVES This study investigated whether urinary concentrations of methylparaben, propylparaben, or butylparaben were associated with the urinary metabolome during the periconceptional period, a critical window for female reproductive function. Changes to the periconceptional urinary metabolome could provide insights into the mechanisms by which parabens could impact fertility. METHODS Urinary paraben concentrations were measured in paired pre- and postconception urine samples from 42 participants in the Early Pregnancy Study, a prospective cohort of 221 women attempting to conceive. We performed untargeted and targeted metabolomics analyses using ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry. We used principal component analysis, orthogonal partial least-squares discriminant analysis, and permutation testing, coupled with univariate statistical analyses, to find metabolites associated with paraben concentration at the two time points. Potential confounders were identified with a directed acyclic graph and used to adjust results with multivariable linear regression. Metabolites were identified using fragmentation data. RESULTS Seven metabolites were associated with paraben concentration (variable importance to projection score > 1 , false discovery rate-corrected q -value < 0.1 ). We identified four diet-related metabolites to the Metabolomics Standards Initiative (MSI) certainty of identification level 2, including metabolites from smoke flavoring, grapes, and olive oil. One metabolite was identified to the class level only (MSI level 3). Two metabolites were unidentified (MSI level 4). After adjustment, three metabolites remained associated with methylparaben and propylparaben, two of which were diet-related. No metabolomic markers of endocrine disruption were associated with paraben concentrations. DISCUSSION This study identified novel relationships between urinary paraben concentrations and diet-related metabolites but not with metabolites on endocrine-disrupting pathways, as hypothesized. It demonstrates the feasibility of integrating untargeted metabolomics data with environmental exposure information and epidemiological adjustment for confounders. The findings underscore a potentially important connection between diet and paraben exposure, with applications to nutritional epidemiology and dietary exposure assessment. https://doi.org/10.1289/EHP12125.
Collapse
Affiliation(s)
- Ana K Rosen Vollmar
- Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Nicholas J W Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Yuping Cai
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Abhishek Jain
- Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Hong Yan
- Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Nicole C Deziel
- Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Antonia M Calafat
- Organic Analytical Toxicology Branch, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Allen J Wilcox
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Anne Marie Z Jukic
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Caroline H Johnson
- Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Pozzebon EA, Seifert L. Emerging environmental health risks associated with the land application of biosolids: a scoping review. Environ Health 2023; 22:57. [PMID: 37599358 PMCID: PMC10440945 DOI: 10.1186/s12940-023-01008-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Over 40% of the six million dry metric tons of sewage sludge, often referred to as biosolids, produced annually in the United States is land applied. Biosolids serve as a sink for emerging pollutants which can be toxic and persist in the environment, yet their fate after land application and their impacts on human health have not been well studied. These gaps in our understanding are exacerbated by the absence of systematic monitoring programs and defined standards for human health protection. METHODS The purpose of this paper is to call critical attention to the knowledge gaps that currently exist regarding emerging pollutants in biosolids and to underscore the need for evidence-based testing standards and regulatory frameworks for human health protection when biosolids are land applied. A scoping review methodology was used to identify research conducted within the last decade, current regulatory standards, and government publications regarding emerging pollutants in land applied biosolids. RESULTS Current research indicates that persistent organic compounds, or emerging pollutants, found in pharmaceuticals and personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS) have the potential to contaminate ground and surface water, and the uptake of these substances from soil amended by the land application of biosolids can result in contamination of food sources. Advanced technologies to remove these contaminants from wastewater treatment plant influent, effluent, and biosolids destined for land application along with tools to detect and quantify emerging pollutants are critical for human health protection. CONCLUSIONS To address these current risks, there needs to be a significant investment in ongoing research and infrastructure support for advancements in wastewater treatment; expanded manufacture and use of sustainable products; increased public communication of the risks associated with overuse of pharmaceuticals and plastics; and development and implementation of regulations that are protective of health and the environment.
Collapse
Affiliation(s)
- Elizabeth A Pozzebon
- California Conference of Directors of Environmental Health, P.O. Box 2017, Cameron Park, CA, 95682-2017, USA
| | - Lars Seifert
- California Conference of Directors of Environmental Health, P.O. Box 2017, Cameron Park, CA, 95682-2017, USA.
| |
Collapse
|
7
|
Penrose MT, Cobb GP. Influences of Wastewater Treatment on the Occurrence of Parabens, p-Hydroxybenzoic Acid and Their Chlorinated and Hydroxylated Transformation Products in the Brazos River (Texas, USA). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:105-118. [PMID: 37558810 DOI: 10.1007/s00244-023-01025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Parabens are ubiquitous, being found in surface waters around the world. Although little is known about the release of paraben transformation products and fate of transformation products in surface water. This study evaluates both parabens and paraben transformation products in the Brazos River upstream and downstream of a wastewater facility located in Waco, Texas. Concentrations of thirteen compounds were reported in this study, five parent parabens and eight paraben disinfection by-products. Analyte concentrations were spatially evaluated to determine if release of wastewater effluent affects their concentrations in the river. Two Brazos River tributaries were also sampled to determine if they released parabens and related compounds to the Brazos. Sampling occurred weekly for one year with at least 40 samples collected at each site. Analyses were completed for both yearly and seasonal data. Sites downstream of wastewater treatment outfalls had lower concentrations of methyl paraben during the yearly analysis and across multiple seasons in the seasonal analysis with average yearly annual methyl paraben concentrations decreasing from 0.83 ng/L at site 3 to 0.09 ng/L at site 4. Para-hydroxybenzoic acid was the compound present in greatest concentration at most sites across most seasons, with the highest average annual concentration of 10.30 ng/L at site 2. Spatial changes in para-hydroxybenzoic acid varied by season, with seasonal trends only identifiable after normalization by flow. Dichlorinated paraben concentrations increased in the river at sites downstream of wastewater treatment with a yearly average dichlorinated methyl paraben concentration of 0.490 ng/L at site 3 to 1.53 at site 4, just downstream of the major wastewater treatment plant. Concentration increases indicate that wastewater effluent contains sufficiently high dichlorinated paraben concentrations to effect concentrations downstream of effluent discharges. Dichlorinated species also persisted in the environment, with no significant decreases at sites further downstream during any season with an annual average dichlorinated methyl paraben concentration of 1.23 ng/L at site 6. Methyl paraben concentrations decreased at the site furthest downstream to a concentration of 0.081 ng/L, while dichlorinated methyl paraben concentrations remained stable with a concentration of 1.10 ng/L at the site furthest downstream. Due to the dichlorinated species being released in higher concentrations in effluent than parents and being more resistant to degradation, the dichlorinated parabens are more likely to be environmentally relevant than are parent parabens.
Collapse
Affiliation(s)
- Michael T Penrose
- Department of Environmental Science, Baylor University, Waco, TX, USA.
| | - George P Cobb
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
8
|
Kelkar V, Driver EM, Bienenstock EJ, Palladino A, Halden RU. Stability of human stress hormones and stress hormone metabolites in wastewater under oxic and anoxic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159377. [PMID: 36240932 DOI: 10.1016/j.scitotenv.2022.159377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Levels in wastewater of human stress biomarkers, such as cortisone (E), cortisol (F), tetrahydrocortisone (THE), and tetrahydrocortisol (THF) may serve as indicators of population wellbeing and overall health. This study examined the stability of these biosignature compounds in wastewater to inform on their applicability for use in wastewater-based epidemiology (WBE). Wastewater from two undisclosed U.S. municipalities were fortified with the above four biomarkers of stress to a concentration of 10 ppb, and their decay was studied at three temperatures (15, 25, and 35 °C) over 24 h in oxic and anoxic conditions. Samples were analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS) in conjunction with the isotope dilution method for absolute quantitation. Results demonstrated short-term persistence (24 h) of biomarkers at low temperatures (15 °C), and accelerating kinetics of decay that were positively correlated with temperature increases. Among the four biomarkers evaluated, the tetrahydro derivatives were the most long-lived sewage-borne stress biomarkers and these are recommended as prime analytical targets for use in WBE when tracking population stress. Statistical analyses using a non-parametric Wilcoxon test further revealed no significant differences (p > 0.05) between oxic and anoxic decay rates for all stress biomarkers in wastewater from all study locations, regardless of the prevailing temperature regime. This negative finding is worthy of reporting because it suggests the feasibility of straightforward modeling of stress hormone decay, irrespective of whether the sewerage system monitored contains fully filled, pressurized pipes or partially filled gravity flow pipes, whose filling level, and with it its redox conditions, are known to fluctuate over time with water use and storm events.
Collapse
Affiliation(s)
- Varun Kelkar
- Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, AZ 85287-8101, USA
| | - Erin M Driver
- Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, AZ 85287-8101, USA
| | - Elisa J Bienenstock
- Watts College of Public Service and Community Solutions, Arizona State University, 411 N Central Ave #750, Phoenix, AZ 85004, USA
| | - Anthony Palladino
- Boston Fusion Corp., 70 Westview Street, Suite 100, Lexington, MA 02421, USA
| | - Rolf U Halden
- Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, AZ 85287-8101, USA; OneWaterOneHealth Nonprofit Project, Arizona State University Foundation, 1001 S. McAllister Avenue, Tempe, AZ 85287-8101, USA.
| |
Collapse
|
9
|
Fito J, Nkambule TTI. Synthesis of biochar-CoFe 2O 4 nanocomposite for adsorption of methylparaben from wastewater under full factorial experimental design. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:241. [PMID: 36576670 DOI: 10.1007/s10661-022-10819-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The presence of endocrine-disrupting chemicals in municipal wastewater has emerged as a threat to human health and the environment. Therefore, this study aimed to develop biochar-cobalt ferrite (BCF) nanocomposite for the removal of methylparaben from water under the full factorial experimental design of 4 factors with 3 levels (34). The biochar-CoFe2O4 nanocomposite was developed by co-precipitation method from cobalt ferrite and biochar of Eucalyptus tree bark. Adsorbent surface morphology and functional and elemental composition were carried out by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and energy-dispersive X-ray spectroscopy (EDS) techniques which showed the presence of cracks with a rough surface, reasonable surface chemical composition, and many chemical functional groups, respectively. The experimental and predicted adsorption efficiencies ranged from 25.3 to 85.6% and 21.8 to 80.3%, respectively. The maximum adsorption performance (85.6%) reduced the methylparaben concentration from 27.5 to 4.0 mg/L at the optimum condition of adsorbent dose of 55 mg/100 mL, pH 6, contact time 90 min, and the initial methylparaben concentration of 27.5 mg/L. However, the adsorbent dose was the most influential main factor whereas the least influential was the interaction between solution pH and contact time under the regression model. The model also showed that 69% methylparaben removal was described by the regression model. The experimental data best fitted with the Freundlich model indicate multilayer adsorption which is the implication of physisorption. The sorption mechanism is attributed to Vander Waals forces, H-bonding, and dipole interaction. This BCF nanocomposite adsorbent appears to be promising for the removal of methylparaben from wastewater, but a further optimization process is essential to boost the treatment performance.
Collapse
Affiliation(s)
- Jemal Fito
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa.
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| |
Collapse
|
10
|
Hu C, Bai Y, Li J, Sun B, Chen L. Endocrine disruption and reproductive impairment of methylparaben in adult zebrafish. Food Chem Toxicol 2022; 171:113545. [PMID: 36470324 DOI: 10.1016/j.fct.2022.113545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022]
Abstract
Methylparaben (MeP) is one of the most frequently used preservatives in our daily products. However, it is becoming an aquatic pollutant of emerging concern. To reveal the endocrine disruption mechanism and reproductive impairment of MeP, the present study exposed adult zebrafish to 0, 1, 3, and 10 μg/L (0, 6.6, 19.7, and 65.7 nM) of MeP for 28 days. The results showed that subchronic exposure to 10 μg/L of MeP significantly increased the gonadosomatic index in zebrafish. Spermatogenesis and oogenesis were blocked by MeP at concentrations as low as 1 μg/L. Furthermore, parental exposure to MeP induced developmental deficits in offspring larvae, by increasing mortality, stimulating precocious hatching, and elevating heart rate. Blood concentrations of estradiol, testosterone, and 11-keto-testosterone were consistently lowered in MeP exposure groups. Transcriptional results evidenced that the disturbance in steroidogenesis and feedback regulation mechanisms along the hypothalamic-pituitary-gonadal axis underlay the imbalance of sex hormones. In line with the low estradiol level, hepatic production of vitellogenin (VTG) was significantly down-regulated, subsequently leading to a deficiency of VTG supply during oogenesis. To our knowledge, this is the first study to provide systemic insight about the antiestrogenic activity and reproductive toxicity of MeP.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Yachen Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
11
|
Bowes DA, Driver EM, Halden RU. A framework for wastewater sample collection from a sewage cleanout to inform building-scale wastewater-based epidemiology studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155576. [PMID: 35504397 DOI: 10.1016/j.scitotenv.2022.155576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Wastewater-based epidemiology (WBE) is a public health tool utilized for drug surveillance, and more recently, infectious disease monitoring of SARS-CoV-2. Sample collection is historically performed at a wastewater treatment plant, however, at this spatial resolution, much information related to actionable and contextually relevant community health data may be lost. Sampling from within the sewer collection system is now being employed more widely, bringing unique challenges, including health and safety concerns related to sample collection. As proof of concept, we tested the efficacy of sampling at the building-level from a sewer cleanout at an undisclosed location in Greater Phoenix, AZ, USA, to (i) test the feasibility of wastewater sample collection from this alternative access point, (ii) assess the advantages and limitations experienced for both maintenance-hole and cleanout-level sampling, (iii) screen for chemical analytes to evaluate detectability, and (iv) create a sampling framework for future near-source WBE investigations. Results indicate that use of a sewer cleanout compared to a maintenance hole is cost-effective, practical, and safe, while still preserving the anonymity and privacy for the contributing population. Additionally, of the 37 biomarkers screened over two sampling events, 20 were detected that cover a wide range of human behavior, exposure, and activity, indicating use of a sewer cleanout to be entirely feasible for downstream analysis. This reported success of sewer cleanout sampling for WBE and corresponding framework may allow practitioners to isolate specific complexes or buildings of interest, while avoiding challenges that can arise from maintenance hole sampling, thus allowing for widescale implementation of WBE for public health purposes.
Collapse
Affiliation(s)
- Devin A Bowes
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, AZ 85287-8101, USA; School for Engineering of Matter, Transport, and Energy, Arizona State University, 1001 S. McAllister Ave, AZ 85287-8101, USA
| | - Erin M Driver
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, AZ 85287-8101, USA
| | - Rolf U Halden
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, AZ 85287-8101, USA; School for Sustainable Engineering and the Built Environment, Arizona State University, 1001 S. McAllister Ave, AZ 85287-8101, USA; OneWaterOneHealth, The Arizona State University Foundation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; Global Futures Laboratory, Arizona State University, 800 S. Cady Mall, Tempe, AZ 85281, USA.
| |
Collapse
|
12
|
Li WL, Zhang ZF, Kilgallon J, Sparham C, Li YF, Yuan YX. Fate of household and personal care chemicals in typical urban wastewater treatment plants indicate different seasonal patterns and removal mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118618. [PMID: 34863890 DOI: 10.1016/j.envpol.2021.118618] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Studies on the presence and fate of household and personal care chemicals (HPCCs) in wastewater treatment plants (WWTPs) are important due to their increasing consumption worldwide. The seasonal patterns and removal mechanisms of HPCCs are not well understood for WWTPs that apply different treatment technologies. To answer these questions, the sewage and sludge samples were taken from 10 typical WWTPs in Northeast China. Levels of UV filters in the influents in the warm season were significantly greater than that of the cold season (p < 0.05). Significant seasonal differences were found for the removals of many HPCCs. Results revealed that the highest removal efficiencies were found for linear alkylbenzene sulphonates with values ranging from 97.2% to 99.7%, and the values were 50.0%-99.9% for other HPCCs. The SimpleTreat model demonstrated that the studied WWTPs were operating with high efficiency at the time of sampling. The sorption of HPCCs to sludge can be strongly associated with their physicochemical parameters. Mass balance calculation suggested that sorption was the dominant mechanism for the removal of antimicrobials, while degradation and/or biotransformation were the other mechanisms for removing the most HPCCs in the WWTPs. This study real the factors influencing the seasonal patterns and removal mechanisms which imply the need for further studies to fully understands the plant and human health implications as sludge could be used in the municipal land application of biosolids.
Collapse
Affiliation(s)
- Wen-Long Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, M3H 5T4, Canada
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - John Kilgallon
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Science Park, Sharnbrook, MK44 1LQ, UK
| | - Chris Sparham
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Science Park, Sharnbrook, MK44 1LQ, UK
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; IJRC-PTS-NA, Toronto, M2N 6X9, Canada
| | - Yi-Xing Yuan
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
13
|
Dionisio D, Rodrigo MA, Motheo AJ. Electrochemical degradation of a methyl paraben and propylene glycol mixture: Interference effect of competitive oxidation and pH stability. CHEMOSPHERE 2022; 287:132229. [PMID: 34547562 DOI: 10.1016/j.chemosphere.2021.132229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Endocrine disrupting compounds (EDCs) are one of the many classes of harmful pollutants frequently found in water resources. Even at low concentrations, EDCs might accumulate in the organisms and interfere on numerous processes controlled by hormones. Parabens, for example, are preservatives widely used in pharmaceutical and cosmetic industries, but several studies related them to human breast cancer. It is well-known that electrochemical technologies are an efficient alternative for wastewater treatment, promoting the appropriate destruction of EDCs. However, most studies are applied to single target contaminant solutions, which may neglect the impact from co-exited inorganic/organic pollutants. Based on that, this study aimed to elucidate the interfering effects of two target organic contaminants of very different nature during electrochemical mediated process. For that, methyl paraben (MeP) and propylene glycol (PG) were selected as models of aromatic/phenolic and carboxylate compounds versus low-molecular aliphatic alcohols. These two compounds are often together used in preservative blends and cosmetic/pharmaceutical formulations. PG is not a harmful chemical, but it is present in several types of effluents in relatively high concentrations. Thus, it may interfere on the degradation of numerous pollutants of low concentrations. The electrochemical treatment of a mixture containing 100 mg L-1 MeP +1000 mg L-1 PG showed that both contaminants suffered interfering effects. The presence of MeP negatively interfered on PG degradation; the carboxylate compound is more easily oxidized even at lower molecular concentration. On the other hand, the presence of PG showed an unexpected positive effect on MeP degradation, that was not reflected on its mineralization. The results indicate that in addition to the expected effect of anodic competition, polymerization and copolymerization reactions may also occur in the studied system. The use of an acidic buffer medium increased the removal of both contaminants and favored the oxidation pathway over the polymerization. In this case, the increase in the removal was reflected in the mineralization process, which increased up to 6 times when the mixture was treated in the buffered medium.
Collapse
Affiliation(s)
- Dawany Dionisio
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, CEP 13560-970, São Carlos, SP, Brazil; Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla - La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla - La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - Artur J Motheo
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
14
|
Luis Malvar J, Luis Santos J, Martín J, Aparicio I, Alonso E. Occurrence of the main metabolites of pharmaceuticals and personal care products in sludge stabilization treatments. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 116:22-30. [PMID: 32781408 DOI: 10.1016/j.wasman.2020.07.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
In Europe, approximately 40% of sludge yearly produced in wastewater treatment plants (WWTPs) is applied in agricultural lands as organic amendment, especially in arid regions. Sludge tends to concentrate wastewater pollutants. Many of them are not removed by sludge stabilization treatments and, as a result, they could originate adverse effects on soils, vegetation, animals, and humans. Although sludge stabilization treatments play an important role in removal contaminants from sludge and, therefore, in preventing contaminant discharges onto soils, there is scarce information about the occurrence of these compounds in these treatments. This fact is especially acute for emerging pollutants and, particularly, their metabolites. In this work, seven pharmaceuticals and personal care products, and their main metabolites, have been monitored in five different stabilization treatments: anaerobic and aerobic digestion, dehydration, composting, and lagooning. Sixteen compounds were measured in the analysed samples. Their distribution was similar in primary sludge, in spite of the different geographic locations of the WWTPs, The distribution was in accordance with the metabolic ratios of most of the studied compounds. Different behaviour was observed depending on the compound, for example, CBZ, 3-OH-CBZ, DIC, and 4-OH-DIC were highly persistent in all studied stabilization technologies whereas CAF, PX showed high degradability. Most of the studied compounds were measured in the final product of the sludge stabilization processes evaluated. This fact shows the necessity to improve the knowledge about the presence of these compounds in sludge intended to be applied onto soil and about the potential ecotoxicological risks of these compounds.
Collapse
Affiliation(s)
- José Luis Malvar
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África, 7, E-41011 Seville, Spain
| | - Juan Luis Santos
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África, 7, E-41011 Seville, Spain.
| | - Julia Martín
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África, 7, E-41011 Seville, Spain
| | - Irene Aparicio
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África, 7, E-41011 Seville, Spain
| | - Esteban Alonso
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África, 7, E-41011 Seville, Spain
| |
Collapse
|
15
|
Dionisio D, Santos LH, Rodrigo MA, Motheo AJ. Electro-oxidation of methyl paraben on DSA®-Cl2: UV irradiation, mechanistic aspects and energy consumption. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Mao H, Li H, Li Y, Li L, Yin L, Yang Z. Four typical personal care products in a municipal wastewater treatment plant in China: Occurrence, removal efficiency, mass loading and emission. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109818. [PMID: 31689659 DOI: 10.1016/j.ecoenv.2019.109818] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/26/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
The occurrence, removal efficiency, mass loading and environmental emission of four categories (benzotriazoles; parabens; antimicrobials; benzophenones) of personal care products were simultaneously determined along the whole process line through an integrated approach (involving both dissolved and adsorbed phase) at a typical wastewater treatment plant in Hunan Province, Southern China. The results showed the prevalence of 13 and 11 target compounds in wastewater and suspended particulate matter, respectively. Twelve substances were detected in the sludge with the mean concentrations ranging from 0.12 to 591.23 ng/g dry weight. Benzotriazoles were the dominant compounds existing in water and antimicrobials were readily being absorbed onto suspended particulate matter and sludge. The overall removal efficiencies of compounds in the total treatment were -84.06%-98.53%. Mass balance results revealed that 85.17%-98.73% of the parabens and benzophenones were removed by degradation, while antimicrobials were removed by being adsorbed onto sludge. However, benzotriazoles could not be efficiently removed and the mass loss was lower than 61.03%. Although ultraviolet radiation played a limited role in removing most target compounds, it still had an impact on removing antimicrobials, 5,6-dimethyl-1H-benzotriazole and 2-hydroxy-4-methoxybenzophenone. The total mass loading and emission of personal care products were 506.35 mg/d/1000 people and 357.56 mg/d/1000 people, respectively. This work would help understand the removal approaches and real pollution of personal care products in the water environment.
Collapse
Affiliation(s)
- Huiyue Mao
- Center for Environment and Water Resources/College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, PR China
| | - Haipu Li
- Center for Environment and Water Resources/College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, PR China.
| | - Yue Li
- Center for Environment and Water Resources/College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, PR China
| | - Lei Li
- Changsha Water Group Co., LTD, Changsha, 410015, PR China
| | - Ling Yin
- Changsha Water Group Co., LTD, Changsha, 410015, PR China
| | - Zhaoguang Yang
- Center for Environment and Water Resources/College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, PR China.
| |
Collapse
|
17
|
Mixed-mode ion-exchange polymeric sorbents in environmental analysis. J Chromatogr A 2020; 1609:460531. [DOI: 10.1016/j.chroma.2019.460531] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 11/22/2022]
|
18
|
Zhu Q, Jia J, Wang Y, Zhang K, Zhang H, Liao C, Jiang G. Spatial distribution of parabens, triclocarban, triclosan, bisphenols, and tetrabromobisphenol A and its alternatives in municipal sewage sludges in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:61-69. [PMID: 31082603 DOI: 10.1016/j.scitotenv.2019.05.059] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
Parabens, triclocarban (TCC), triclosan (TCS), bisphenols (BPs), and tetrabromobisphenol A and its alternatives (TBBPAs) are used in a broad range of daily consumer products and industrial productions. Concerns have been raised over exposure of humans to these chemicals, because of their adverse health effects. However, information on the spatial distribution of parabens, TCC, TCS, BPs and TBBPAs in sludge from waste water treatment plants (WWTPs) in China is still limited. In this study, 19 endocrine disrupting chemicals, including six parabens, two antimicrobials (TCC and TCS), eight BPs and three TBBPAs, were determined in sludges from 46 WWTPs across China. Concentrations of target chemicals were found in a decreased order as: ∑(TCC+TCS) (mean: 3930, range: 1340-11,100ng/g dw)>∑8BPs (201, 23.1-1240ng/g dw)>∑6parabens (67.9, 10.4-272ng/g dw)>∑3TBBPAs (18.4, 1.36-195ng/g dw). Methyl paraben (MeP), TCC, bisphenol A (BPA) and tetrabromobisphenol A (TBBPA) were the major compounds found in sludge, accounting for 89.0%, 57.7%, 85.8% and 93.3% of ∑6parabens, ∑(TCC+TCS), ∑8BPs and ∑3TBBPAs, respectively. Elevated concentrations of BPs and TBBPAs were found in sludges from the Northeast China and Central South China (p<0.05), respectively, whereas there were no significant spatial difference in concentrations of parabens or antimicrobials among different geographical regions (p>0.05). Calculation of mass loading showed that sludge from East China (1340kg/yr) and South Central China (1060kg/yr) released relatively more such chemicals. This nationwide study provided baseline concentrations of these chemicals in sludges and estimated their environmental release through sludge in China.
Collapse
Affiliation(s)
- Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiabao Jia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yun Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kegang Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, Hebei 071003, China
| | - He Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Mohapatra DP, Kirpalani DM. Advancement in treatment of wastewater: Fate of emerging contaminants. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23533] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dipti Prakash Mohapatra
- National Research Council of CanadaEnergy Mining and Environment Research Centre 1200 Montreal Road Ottawa ON K1A 0R6 Canada
| | - Deepak M. Kirpalani
- National Research Council of CanadaEnergy Mining and Environment Research Centre 1200 Montreal Road Ottawa ON K1A 0R6 Canada
| |
Collapse
|
20
|
Feng J, Zhao J, Xi N, Guo W, Sun J. Parabens and their metabolite in surface water and sediment from the Yellow River and the Huai River in Henan Province: Spatial distribution, seasonal variation and risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:480-487. [PMID: 30738230 DOI: 10.1016/j.ecoenv.2019.01.102] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
In this study, six alkyl esters of p-hydroxybenzoic acids (parabens) and their metabolite, 4-hydroxybenzoic acid (p-HB) were simultaneously determined in surface water and sediment from the Yellow River and the Huai River in Henan Province, China. Concentrations of ∑parabens in surface water were 3.31-55.2 ng/L in the Yellow River and 15.0-164 ng/L in the Huai River, while in the sediment, concentrations of ∑parabens were 13.3-37.2 ng/g and 16.1-31.6 ng/g, respectively. Compared with other studies, levels of parabens in the studied area were relatively high in the sediments but middle in the surface water. MeP and PrP were the most abundant parabens, and were detected in all sampling sites. Contributions of EtP, BzP, BuP, and HeP to ∑parabens were each no more than 10%. 4-Hydroxybenzoic acid was found in all samples albeit at low concentrations. Significant positive correlations among parabens suggest similar sources of parabens in the Yellow River and the HuaiRiver. Dissolved organic carbon (DOC) had an important effect on parabens in the surface water of the Yellow and Huai Rivers. Due to low dilution of discharges, high concentrations of parabens were found during moderate precipitation season as well as minimal precipitation season in surface water. However, no apparent seasonal variation of parabens in surface sediment was observed. Hazard quotients showed that the ecological risks of parabens was low in the studied area.
Collapse
Affiliation(s)
- Jinglan Feng
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Jiahui Zhao
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Nannan Xi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Wei Guo
- Department of Chemistry, Xinxiang Medical University, Henan 453003, PR China
| | - Jianhui Sun
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| |
Collapse
|
21
|
Li J, Jiang J, Pang SY, Sun S, Wang L, Zhou Y, Wang Z, Gao Y. Oxidation of methylparaben (MeP) and p‑hydroxybenzoic acid (p-HBA) by manganese dioxide (MnO 2) and effects of iodide: Efficiency, products, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:670-677. [PMID: 30684835 DOI: 10.1016/j.scitotenv.2019.01.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
It is reported that methylparaben (MeP, a widely used phenolic preservative) and its major metabolite p‑hydroxybenzoic acid (p-HBA) display estrogenic activity and are frequently detected in various environmental settings. Naturally occurring manganese dioxide (MnO2) plays an important role in attenuation of contaminants released into the environment, and the presence of iodide (I-) may affect these processes. In this work, it was found that both MeP and p-HBA displayed considerable reactivity towards MnO2 with their half-lives increased with decreasing MnO2 concentrations or increasing pH. The presence of I- obviously accelerated the transformation efficiency of MeP and p-HBA by MnO2 with stronger enhancement at higher I- concentrations or lower pH. Dimeric products (e.g., dimeric MeP or p-HBA) were generated from MeP/p-HBA treated by MnO2, and iodinated aromatic products (e.g., mono-/di-iodinated MeP/p-HBA) were additionally identified in the presence of I-. Higher concentrations of these iodinated aromatic products were generally formed at higher I- or lower MnO2 concentrations or lower pH. Ecotoxicity analysis showed that dimeric and iodinated aromatic products were more eco-toxic than parent MeP/p-HBA. This work shows that MnO2 may greatly affect the fate of MeP and p-HBA released into the environment, and the presence of I- can significantly affect these processes.
Collapse
Affiliation(s)
- Juan Li
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Jiang
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Su-Yan Pang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Shaofang Sun
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - Lihong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Zhou
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhen Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuan Gao
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
22
|
Chen J, Meng XZ, Bergman A, Halden RU. Nationwide reconnaissance of five parabens, triclosan, triclocarban and its transformation products in sewage sludge from China. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:502-510. [PMID: 30466048 DOI: 10.1016/j.jhazmat.2018.11.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
China's rapid growth of both population size and sanitation infrastructure have created a heightened need for responsible management of sewage sludge. We applied liquid chromatography in conjunction with isotope dilution tandem mass spectrometry to measure multiple endocrine disrupting antimicrobials and their transformation products in 100 sewage sludge samples collected across 21 Chinese provinces/districts. Occurrences (detection frequencies) and concentrations (ng/g dry weight) were as follows: triclosan (99%; <4-4870), triclocarban (95%; <3-43,300), 2'-hydroxy-triclocarban (94%; <1-2340), 3'-hydroxy-triclocarban (91%; <1-1250), 3,3',4,4'-tetrachlorocarbanilide (100%; 22-580), dichlorocarbanilide (94%; <2-23,890), monocarbanilide (92%; <2-120), carbanilide (90%; <3-1,340), and five parabens: methyl- (98%; <2-630), ethyl- (96%; <2-170), propyl- (99%; <2-27), butyl- (89%; <2-11) and benzyl-paraben (7%; <2-12). The transformation products of triclocarban were measured for the first time in Chinese wastewater system, and ratios of transformation products to parental triclocarban indicate ongoing triclocarban dechlorination during wastewater treatment. Contaminant profiles and concentrations differed by region, treatment capacity, and wastewater type. Extrapolation of collected data yielded an estimate for the total mass of 13 analytes sequestered in Chinese sewage sludge of 68 t/y with an upper bound of 400 t/y. This China-wide survey established baseline levels of selected antimicrobials in sludges whose current disposal is performed with little regulatory oversight and enforcement.
Collapse
Affiliation(s)
- Jing Chen
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, School of Sustainable Engineering and the Built Environment, Arizona State University, 781 E. Terrace Mall, Tempe, AZ 85287, United States
| | - Xiang-Zhou Meng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ake Bergman
- Swedish Toxicology Sciences Research Center (Swetox), Forskargatan 20, Södertälje 15136, Sweden
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, School of Sustainable Engineering and the Built Environment, Arizona State University, 781 E. Terrace Mall, Tempe, AZ 85287, United States.
| |
Collapse
|
23
|
Martín-Pozo L, de Alarcón-Gómez B, Rodríguez-Gómez R, García-Córcoles MT, Çipa M, Zafra-Gómez A. Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review. Talanta 2019; 192:508-533. [DOI: 10.1016/j.talanta.2018.09.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
|
24
|
Dionisio D, Motheo AJ, Sáez C, Canizares P, Rodrigo MA. Coupling Ultrasound to the Electro‐Oxidation of Methyl Paraben Synthetic Wastewater: Effect of Frequency and Supporting Electrolyte. ChemElectroChem 2018. [DOI: 10.1002/celc.201801199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dawany Dionisio
- Department of Chemical Engineering Faculty of Chemical Sciences & TechnologiesUniversidad de Castilla – La Mancha Campus Universitario s/n 13071 Ciudad Real Spain
- São Carlos Institute of ChemistryUniversity of São Paulo P.O. Box 780 CEP 13560–970 São Carlos, SP Brazil
| | - Artur J. Motheo
- São Carlos Institute of ChemistryUniversity of São Paulo P.O. Box 780 CEP 13560–970 São Carlos, SP Brazil
| | - Cristina Sáez
- Department of Chemical Engineering Faculty of Chemical Sciences & TechnologiesUniversidad de Castilla – La Mancha Campus Universitario s/n 13071 Ciudad Real Spain
| | - Pablo Canizares
- Department of Chemical Engineering Faculty of Chemical Sciences & TechnologiesUniversidad de Castilla – La Mancha Campus Universitario s/n 13071 Ciudad Real Spain
| | - Manuel A. Rodrigo
- Department of Chemical Engineering Faculty of Chemical Sciences & TechnologiesUniversidad de Castilla – La Mancha Campus Universitario s/n 13071 Ciudad Real Spain
| |
Collapse
|
25
|
Chen J, Hartmann EM, Kline J, Van Den Wymelenberg K, Halden RU. Assessment of human exposure to triclocarban, triclosan and five parabens in U.S. indoor dust using dispersive solid phase extraction followed by liquid chromatography tandem mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2018; 360:623-630. [PMID: 30149349 DOI: 10.1016/j.jhazmat.2018.08.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 05/23/2023]
Abstract
Antimicrobials in indoor dust pose concerns due to their endocrine disrupting activities and potential promotion of antibiotic resistance. We adopted dispersive solid phase extraction (d-SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify antimicrobials in dust. The method showed favorable linearity (R2 >0.99), recovery (83-115%), and method detection limits (1.2-5.6 ng/g, dry weight). All seven analytes were found at median concentrations in ng/g in each of the 80 U.S. dust samples collected from athletic facilities and residential homes: methyl paraben (1920) > propyl paraben (965) > triclosan (390) > triclocarban (270) > ethyl paraben (195) > butyl paraben (80) > benzyl paraben (6). Triclosan levels in dust from athletic facilities were significantly higher than those in private homes (p < 0.05). Median estimated daily intake (EDI) of antimicrobials in ng/kg-body weight/d from dust ingestion was lowest for adults (1.9) and higher for more sensitive subpopulations, including infants (19.8), toddlers (23.6), children (11.8) and teenagers (4.6). This first application of d-SPE to the analysis of dust produced U.S. baseline data for triclosan and triclocarban levels in indoor dust just prior to the 2017 Federal ban on use of these trichlorinated aromatics in antiseptic soaps and related personal care products.
Collapse
Affiliation(s)
- Jing Chen
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, School of Sustainable Engineering and the Built Environment, Arizona State University, 781 E. Terrace Mall, Tempe, AZ, 85287, United States
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, United States
| | - Jeff Kline
- Biology and the Built Environment Center, College of Design, University of Oregon, Eugene, OR, 97403, United States
| | - Kevin Van Den Wymelenberg
- Biology and the Built Environment Center, College of Design, University of Oregon, Eugene, OR, 97403, United States
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, School of Sustainable Engineering and the Built Environment, Arizona State University, 781 E. Terrace Mall, Tempe, AZ, 85287, United States.
| |
Collapse
|
26
|
Kim S, Lee S, Shin C, Lee J, Kim S, Lee A, Park J, Kho Y, Moos RK, Koch HM, Kim S, Choi K. Urinary parabens and triclosan concentrations and associated exposure characteristics in a Korean population—A comparison between night-time and first-morning urine. Int J Hyg Environ Health 2018; 221:632-641. [DOI: 10.1016/j.ijheh.2018.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 01/17/2023]
|