1
|
Benslama A, Benbrahim F, Rym-Gadoum L, Gómez-Lucas I, Mordan-Vidal MM, Navarro-Pedreño J, Bech-Borrás J. Soil carbon storage under different types of arid land use in Algeria. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:330. [PMID: 39017950 PMCID: PMC11254982 DOI: 10.1007/s10653-024-02036-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 07/18/2024]
Abstract
This study aims to assess the amount of organic carbon stored in soils, as it is an intention of knowing the sustainable soil management, by using two common methods for determining soil organic matter (SOM), namely oxidation with acidified wet dichromate (Walkley-Black method-WB) and loss on ignition (LOI). The study was carried with soil samples collected from a depth of 0 to 30 cm in the Saharan arid region of Ghardaïa (Algeria), with different land uses: agricultural, forest and pastoral. The results obtained from the LOI and WB methods were subjected to statistical analysis, and the relations between both methods were tested to investigate their relationship. The mean percentage of SOM values were 1.86, 2.42, 1.54 by using LOI, but, lower values of 0.34, 0.33, 0.36 were determined by using WB method, for agricultural, forest and pastoral soils respectively. A weak linear relationship between the two analytical procedures was obtained (R2 of 0.19 and 0.13 for agricultural and forest soils), while a medium relationship (R2 = 0.65) was found for pastoral soils when using linear adjustment. However, the opposite behaviour was found when we use the logarithmic adjustment. The study outcomes indicated discrepancies in the measurements of SOM values between the two methods, been higher those estimated with LOI. Finally, in order to identify the best methodology to measure soil organic matter in arid soils, more research is required in these extreme arid regions as they are a gap in world soil organic matter maps.
Collapse
Affiliation(s)
- Abderraouf Benslama
- Laboratory of Valuation and Conservation of Arid Ecosystems (LVCEA), Department of Biology, Faculty of Sciences Natural and Life, Earth and Universe Sciences, University of Ghardaïa, BP455, 47000, Bounoura, Ghardaïa, Algeria
- Department of Agrochemistry and Environment, University Miguel Hernández of Elche, 03202, Elche, Spain
| | - Fouzi Benbrahim
- Higher Normal School of Ouargla, Hai Ennasr, BP 398, 30000, Ouargla, Algeria
| | - Lydia Rym-Gadoum
- Laboratory of Valuation and Conservation of Arid Ecosystems (LVCEA), Department of Biology, Faculty of Sciences Natural and Life, Earth and Universe Sciences, University of Ghardaïa, BP455, 47000, Bounoura, Ghardaïa, Algeria
| | - Ignacio Gómez-Lucas
- Department of Agrochemistry and Environment, University Miguel Hernández of Elche, 03202, Elche, Spain
| | | | - Jose Navarro-Pedreño
- Department of Agrochemistry and Environment, University Miguel Hernández of Elche, 03202, Elche, Spain
| | - Jaume Bech-Borrás
- Laboratory of Soil Sciences, Faculty of Biology, Plant Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Ma Y, Li M, Huo Y, Zhou Y, Jiang J, Xie J, He M. Differences in the degradation behavior of disinfection by-products in UV/PDS and UV/H 2O 2 processes and the effect of their chemical properties. CHEMOSPHERE 2023; 345:140457. [PMID: 37839744 DOI: 10.1016/j.chemosphere.2023.140457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
In this work, sixteen typical chlorinated and brominated aromatic disinfection by-products (DBPs) were selected as examples to investigate their different degradation mechanisms initiated by HO• and SO4•-. Addition reactions were the main mode of degradation of DBPs by HO•, while SO4•- dominated H-abstraction reactions and single electron transfer reactions. Chlorinated compounds had higher reactivity than brominated compounds. Furthermore, substituents with stronger electron-donating effects promoted the electrophilic reaction of DBPs with the two radicals. In addition, we developed a model based on the chemical properties LUMO, fmax-, and hardness for predicting the average reaction energy barriers for the initial reactions of DBPs with HO• and SO4•-. The model had good predictive performance for the difficulty of degradation of different DPBs by HO• and SO4•-, with R2 values of 0.85 and 0.87, respectively. Through the degradation efficiency simulation, we found that longer reaction times, higher oxidant concentrations and lower pollutant concentrations were more favorable for the removal of DBPs. The UV/PDS process showed better degradation of DBPs than the UV/H2O2 process. In addition, most degradation products of DBPs exhibited less toxicity to aquatic organisms than their parent compounds. This study provided theoretical guidance for the degradation and removal of other aromatic DBPs at the molecular level.
Collapse
Affiliation(s)
- Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Jinchan Jiang
- Weihai Water Conservancy Service Center, Weihai, 264200, PR China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
3
|
An Z, Yang D, Li M, Huo Y, Jiang J, Zhou Y, Ma Y, Hou W, Zhang J, He M. Hydroxylation of some emerging disinfection byproducts (DBPs) in water environment: Halogenation induced strong pH-dependency. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131233. [PMID: 36948122 DOI: 10.1016/j.jhazmat.2023.131233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
In this work, the hydroxylation mechanisms and kinetics of some emerging disinfection byproducts (DBPs) have been systematically investigated through theoretical calculation methods. Five chlorophenols and eleven halogenated pyridinols were chosen as the model compounds to study their pH-dependent reaction laws in UV/H2O2 system. For the reactions of HO• with 37 different dissociation forms, radical adduct formation (RAF) was the main reaction pathway, and the reactivity decreased with the increase of halogenation degree. The kapp values (at 298 K) increased with the increase of pH from 0 to 10, and decreased with the increase of pH from 10 to 14. Compared with phenol, the larger the chlorination degree in chlorophenols was, the stronger the pH sensitivity of the kapp values; compared with chlorophenols, the pH sensitivity in halogenated pyridinols was further enhanced. As the pH increased from 2 to 10.5, the degradation efficiency increased at first and then decreased. With the increase of halogenation degree, the degradation efficiency range increased, the pH sensitivity increased, the optimal degradation efficiency slightly increased, and the optimal degradation pH value decreased. The ecotoxicity and bioaccumulation of most hydroxylated products were lower than their parental compounds. These findings provided meaningful insights into the strong pH-dependent hydroxylation of emerging DBPs on molecular level.
Collapse
Affiliation(s)
- Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wenlong Hou
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
4
|
Liu H, Meng Y, Li J, Wang X, Zhang T. Mechanistic insights into UV photolysis of carbamazepine and caffeine: Active species, reaction sites, and toxicity evolution. CHEMOSPHERE 2022; 308:136418. [PMID: 36126737 DOI: 10.1016/j.chemosphere.2022.136418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The pseudo-persistence of pharmaceutical and personal care products (PPCPs)in the aqueous environment may pose potential risks to human health and ecosystems. The UV disinfection in wastewater treatment plants is one of the essential processes before PPCPs enter the water environment, so it is crucial to elucidate the photolytic behavior and mechanism of PPCPs under UV radiation. In this work, carbamazepine (CBZ) and caffeine (CAF) were selected as typical pollutants to investigate the effect of water matrixes, humic acid, inorganic ions, and pH on the UV radiation performance. Hydroxyl radical (•OH) and singlet oxygen (1O2) were identified by quenching experiments and electron paramagnetic resonance (EPR) spectra as playing a dominant role in the degradation process. UPLC-TOF/MS was conducted to identify 13 and 14 possible intermediates of CBZ and CAF, respectively. Moreover, combining density functional theory (DFT) calculations (Frontier Molecular Orbital and Fukui index), hydroxylation, oxidation, and ring cleavage were proposed as the main degradation pathways of the contaminants, which occurred first at the C(7C), N(17 N) and O(18O) sites of CBZ and at the C(9C) site of CAF. The bio-acute toxicity experiment and the Ecological Structure-Activity Relationships (ECOSAR) program were performed to analyze and predict the toxicity of the intermediates of CBZ and CAF under UV radiation, respectively. The results showed that the acute toxicity of both solutions increased after UV radiation and followed with the combined toxicity. This work has great scientific value and practical environmental significance for evaluating the UV disinfection process and managing PPCPs in the aqueous environment.
Collapse
Affiliation(s)
- Hang Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuan Meng
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohui Wang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
5
|
Yang Q, Guo Y, Xu J, Wu X, He B, Blatchley ER, Li J. Photolysis of N-chlorourea and its effect on urea removal in a combined pre-chlorination and UV 254 process. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125111. [PMID: 33485223 DOI: 10.1016/j.jhazmat.2021.125111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/27/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Urea is one of the most important nitrogenous organic pollutants in water, and its removal attracts attention because of a growing concern related to water eutrophication. Urea has previously been considered to be largely unaffected by the UV-chlorine process. However, N-chlorourea, an intermediate of urea chlorination, has been shown to absorb ultraviolet radiation, and as such its photolysis is possible. Experiments were conducted to quantify the kinetics of N-chlorourea degradation under UV254 irradiation. The results showed that about 92% of N-chlorourea was degraded under UV254 irradiation. Ammonia and nitrate were detected as the primary nitrogen containing products of the photolysis of N-chlorourea. Solution pH ranging from 3.0 to 7.5 influenced the distribution of these products but not on the degradation rate. Based on these data, a possible pathway of photodegradation of N-chlorourea under UV254 is proposed. The degradation of urea was also achieved by the photolysis of N-chlorourea during the combined pre-chlorination and UV254 process. Insights gained in this study may be useful for exploring the potential of combined pre-chlorination and UV254 process on urea removal in water treatment.
Collapse
Affiliation(s)
- Qian Yang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Yang Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Jie Xu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Xingyi Wu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Bingying He
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, 550 Stadium Mall Drive, Purdue University, West Lafayette, IN 47907, USA; Division of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jing Li
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
6
|
Cao DJ, Wang JJ, Zhang Q, Wen YZ, Dong B, Liu RJ, Yang X, Geng G. Biodegradation of triphenylmethane dye crystal violet by Cedecea davisae. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 210:9-13. [PMID: 30419454 DOI: 10.1016/j.saa.2018.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
The present study focuses on the biodegradation of triphenylmethane dye crystal violet (CV) by Cedecea davisae. The degradation of CV was evaluated via ultraviolet absorbance at 254 nm (UV254) and chemical oxygen demand (COD) removal, and the kinetics was used to evaluate the degradation efficiency. Intermediate products were analyzed via UV-vis spectroscopy (UV), Fourier transform infrared spectroscopy (FTIR), and high-performance liquid chromatography (HPLC). Results showed that C. davisae was able to decolorize the CV, and the maximum decolorization ratio reached 97%. COD reduction was observed after decolorization, with average removal rates of >90% after 48 h. Moreover, 50% of UV254 can be removed after 14 h. The removal efficiency of CV by C. davisae followed first- and second-order reaction kinetics at temperature ranged from 20 °C to 40 °C and pH 4.0 to 6.0, respectively. By using UV, the peak representing the CV disappeared 14 h after CV decolorization, and the degradation of aromatic and naphthalene rings was attributed to the formation of a new metabolite. The FTIR spectra of metabolites showed that a new functional group of OH, CH, CH2, CH3, NH, CN, CN, or CO was produced. The chromatograms of HPLC recorded at 589 nm at retention time decreased and were not detected following incubation for 8 h by C. davisae.
Collapse
Affiliation(s)
- De-Ju Cao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Jun-Jie Wang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Qian Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Yi-Zheng Wen
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Bei Dong
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Ren-Jing Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Xun Yang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Geng Geng
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, People's Republic of China
| |
Collapse
|
7
|
Zhang A, Jia A, Park M, Li Y, Snyder SA. Genotoxicity assay and potential byproduct identification during different UV-based water treatment processes. CHEMOSPHERE 2019; 217:176-182. [PMID: 30415116 DOI: 10.1016/j.chemosphere.2018.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
Formation of genotoxic byproducts during different ultraviolet (UV) -related water/wastewater treatment processes (including medium pressure (MP) UV oxidation, LP UV oxidation, chlorination, biological activated carbon (BAC) treatment, H2O2 oxidation, and two or more combined processes) was investigated by Ames fluctuation test using Salmonella strains TA98 and TA100 with and without rat liver enzyme extract S9. Byproducts responsible for genotoxicity were identified. The results showed that MP UV can induce mutagenicity and LP UV treatment does not induce mutagenicity. H2O2 oxidation could degrade part of genotoxic compounds. Compared with chlorination, BAC treatment is more effective in removing genotoxicity. Mutagenicity was found mostly in samples tested with TA100 instead of TA98, especially with TA100 without S9, indicating that guanosine and/or cytosine adducts contribute to mutation or toxicological effects in MP UV treated samples. Potential genotoxic byproducts were selected, most of which were nitrogenous organic compounds with more than 10 carbon atoms. Nitrosamines and histidine were excluded from potential genotoxic candidates. The results could contribute to evaluation of mutagenicity of various UV-based water treatment processes.
Collapse
Affiliation(s)
- Ai Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, People's Republic of China; School of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Ai Jia
- Department of Chemical & Environmental Engineering, University of Arizona, Tucson, AZ 85721, United States
| | - Minkyu Park
- Department of Chemical & Environmental Engineering, University of Arizona, Tucson, AZ 85721, United States
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, People's Republic of China.
| | - Shane A Snyder
- Department of Chemical & Environmental Engineering, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
8
|
Blatchley Iii ER, Cullen JJ, Petri B, Bircher K, Welschmeyer N. The Biological Basis for Ballast Water Performance Standards: "Viable/Non-Viable" or "Live/Dead"? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8075-8086. [PMID: 29927584 DOI: 10.1021/acs.est.8b00341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The shipping industry is critical to international commerce; however, contemporary shipping practices involve uptake and discharge of ballast water, which introduces the potential for transfer of nonindigenous, invasive species among geographically distinct habitats. To counteract this hazard, regulations for ballast water management have been implemented by the International Maritime Organization (IMO) and by regulatory agencies such as the United States Coast Guard (USCG). IMO and USCG discharge standards are numerically identical, but involve different definitions of treatment end points, which are based on fundamentally different biological assays for quantification of ballast water treatment effectiveness. Available assays for quantification of the responses of organisms in the 10-50 μm size range include vital stains based on fluorescein diacetate (FDA), sometimes used in combination with 5-chloromethylfluorescein diacetate (CMFDA), observations of motility, and the most probable number dilution culture method (MPN). The mechanisms and implications of these assays are discussed relative to the Type Approval process, which quantitatively evaluates compliance with ballast water discharge standards (BWDSs) under controlled shipboard and land-based tests. For antimicrobial processes that accomplish treatment by preventing subsequent replication of the target species, the FDA/CMFDA and MPN methods can yield dramatically different results. An important example of a treatment process that is affected by the choice of assay is ultraviolet (UV) irradiation. Results of laboratory and field experiments have demonstrated UV-based technologies to be effective for accomplishing the objectives of ballast water treatment (inactivation of cellular reproduction), when the MPN assay is used as the basis for evaluation. The FDA, CMFDA, motility, and MPN methods are subject to well recognized sources of error; however, the MPN method is based on a response that is consistent with the objectives of ballast water management as well as the mechanism of action of UV-based inactivation. Complementary assays are available for use in compliance testing; however, the development of relevant indicative tests remains as a research priority. Historical lessons learned from applications of vital stains (and other indirect methods) for quantification of microbial responses to UV irradiation in other settings also support the use of assays that provide a direct measure of growth and reproduction, such as MPN. Collectively, these observations point to the use of MPN assays as the standard for type testing, especially when UV-based treatment is employed.
Collapse
Affiliation(s)
- Ernest R Blatchley Iii
- Lyles School of Civil Engineering and Division of Environmental & Ecological Engineering , Purdue University , 550 Stadium Mall Drive , West Lafayette , Indiana 47907 , United States
| | - John J Cullen
- Department of Oceanography , Dalhousie University , P.O. Box 15000, Halifax , Nova Scotia B3H 4R2 , Canada
| | - Brian Petri
- Trojan Technologies , 3020 Gore Road , London , Ontario N5 V 4T7 , Canada
| | - Keith Bircher
- Calgon Carbon Corporation , 3000 GSK Drive , Moon Township , Pennsylvania 15108 , United States
| | - Nicholas Welschmeyer
- Moss Landing Marine Laboratories , 8272 Moss Landing Rd. , Moss Landing California 95039 , United States
| |
Collapse
|
9
|
Zhang T, Xu B, Wang A, Cui C. Degradation kinetics of organic chloramines and formation of disinfection by-products during chlorination of creatinine. CHEMOSPHERE 2018; 195:673-682. [PMID: 29289012 DOI: 10.1016/j.chemosphere.2017.12.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Organic chloramines can interfere with the measurement of effective combined chlorine in chlorinated water and are potential intermediate products of highly toxic disinfection by-products (DBPs). In order to know more about the degradation and transformation of organic chloramines, a typical organic chloramine precursor creatinine was selected for investigation and a corresponding individual organic chloramine chlorocreatinine was prepared in this study. The preparation condition of chlorocreatinine by chlorination was established as chlorine/creatinine = 1 M/M, reaction time = 2 h and pH = 7.0. Then the degradation kinetics of chlorocreatinine during further chlorination was studied, and a second-order rate constant of 1.16 (±0.14) M-1 s-1 was obtained at pH 7.0. Solution pH significantly influenced the degradation rate, and the elementary rate constants of chlorocreatinine with HOCl+H+, HOCl, OCl- and chlorocreatinine- with OCl- were calculated as 2.43 (±1.55) × 104 M-2 s-1, 1.05 (±0.09) M-1 s-1, 2.86 (±0.30) M-1 s-1 and 3.09 (±0.24) M-1 s-1, respectively. Besides, it was found that chlorocreatinine could be further converted into several C-DBPs (chloroform and trichloroacetone) and N-DBPs (dichloroacetonitrile (DCAN) and trichloronitromethane (TCNM)) during chlorination. The total yield of DBPs increased obviously with increasing pH, especially for TCNM. In addition, the presence of humic acid in creatinine solution could increase the formation of DCAN obviously during chlorination. Based on the UPLC-Q-TOF-MS analysis, the conversion pathways of chlorocreatinine were proposed. Several kinds of intermediate products were also identified as organic chloramines and some of them could even exist stably during the further chlorination.
Collapse
Affiliation(s)
- Tianyang Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Anqi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
10
|
Yang M, Wu B, Li Q, Xiong X, Zhang H, Tian Y, Xie J, Huang P, Tan S, Wang G, Zhang L, Zhang S. Feasibility of the UV/AA process as a pretreatment approach for bioremediation of dye-laden wastewater. CHEMOSPHERE 2018; 194:488-494. [PMID: 29232642 DOI: 10.1016/j.chemosphere.2017.11.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 06/07/2023]
Abstract
Biodegradability and toxicity are two important indexes in considering the feasibility of a chemical process for environmental remediation. The acetylacetone (AA) mediated photochemical process has been proven as an efficient approach for dye decolorization. Both AA and its photochemical degradation products had a high bioavailability. However, the biocompatibility and ecotoxicology of the UV/AA treated solutions are unclear yet. In the present work, we evaluated the biocompatibility and toxicity of the UV/AA treated solutions at both biochemical and organismal levels. The biodegradability of the treated solution was evaluated with the ratio of 5-d biological oxygen demand (BOD5) to chemical oxygen demand (COD) and a 28-d activated sludge assay (Zahn-Wellens tests). The UV/AA process significantly improved the biodegradability of the tested dye solutions. Toxicity was assessed with responses of microorganisms (microbes in activated sludge and Daphnia magna) and plants (bok choy, rice seed, and Arabidopsis thaliana) to the treated solutions, which showed that the toxicity of the UV/AA treated solutions was lower or comparable to that of the UV/H2O2 counterparts. The results are helpful for us to determine whether the UV/AA process is applicable to certain wastewaters and how the UV/AA process could be effectively combined into a sequential chemical-biological water treatment.
Collapse
Affiliation(s)
- Minghui Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bingdang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qiuhao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaofeng Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Haoran Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yu Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jiawen Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ping Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Suo Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Guodong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Li Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
11
|
Chai Q, Hu A, Qian Y, Ao X, Liu W, Yang H, Xie YF. A comparison of genotoxicity change in reclaimed wastewater from different disinfection processes. CHEMOSPHERE 2018; 191:335-341. [PMID: 29045934 DOI: 10.1016/j.chemosphere.2017.10.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
Effluents before disinfection from four wastewater reclamation plants were treated with chlorine (Cl2), ozone (O3), chlorine dioxide (ClO2), medium-pressure ultraviolet (MPUV) and four different combinations of the above, to evaluate the effect of disinfection processes on the genotoxicity removal by the SOS/umu test. Results showed that the genotoxicity increased after MPUV irradiation (10-100 mJ/cm2), but declined when adopting other disinfection processes. The effectiveness of genotoxicity reduction by five chemical disinfectants was identified as: O3 > pre-ozonation with Cl2 ≈ ClO2 > combination of ClO2 and Cl2 > Cl2. The sequential combination of MPUV, Cl2 and O3 reduced the genotoxicity to a level similar to the source water. The influence of differential disinfection process varied on iodinated wastewater, which is closely related to the competitive reactions between disinfectants, iodine and dissolved organic matters. The removal of genotoxic pollutants and the formation of genotoxic disinfection by-products are the two major factors that lead to the change in genotoxicity during disinfection.
Collapse
Affiliation(s)
- Qiwan Chai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Allen Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yukun Qian
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiuwei Ao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenjun Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hongwei Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Environmental Engineering Programs, The Pennsylvania State University, Middletown, PA 17057, USA
| |
Collapse
|
12
|
Bao Y, Qu Y, Huang J, Cagnetta G, Yu G, Weber R. First assessment on degradability of sodium p-perfluorous nonenoxybenzene sulfonate (OBS), a high volume alternative to perfluorooctane sulfonate in fire-fighting foams and oil production agents in China. RSC Adv 2017. [DOI: 10.1039/c7ra09728j] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
First report on biotic and abiotic degradability assessment of the fluorinated surfactants OBS.
Collapse
Affiliation(s)
- Yixiang Bao
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC)
- Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC)
- School of Environment
- POPs Research Center
- Tsinghua University
| | - Yingxi Qu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC)
- Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC)
- School of Environment
- POPs Research Center
- Tsinghua University
| | - Jun Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC)
- Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC)
- School of Environment
- POPs Research Center
- Tsinghua University
| | - Giovanni Cagnetta
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC)
- Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC)
- School of Environment
- POPs Research Center
- Tsinghua University
| | - Gang Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC)
- Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC)
- School of Environment
- POPs Research Center
- Tsinghua University
| | - Roland Weber
- POPs Environmental Consulting
- D-73527 SchwäbischGmünd
- Germany
| |
Collapse
|