1
|
Ma X, Wang Y, Chen S, Wu C, Wang W, Wang Y. Impact of mixed benzene site exposure on bioaccessibility in simulated lung fluids and health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138466. [PMID: 40339371 DOI: 10.1016/j.jhazmat.2025.138466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/26/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
Benzene series (BTEX) are predominant volatile organic compounds (VOCs) in petroleum production and downstream industrial sites, primarily enter human lungs via inhalation, posing significant health risks. To address the critical limitation of existing risk assessments that focus solely on individual components, this study investigated benzene and ethylbenzene based on contamination characteristics of petroleum refineries in Northwest China. An innovative in vitro membrane oxygenator system was developed to simulate single and mixed exposure scenarios at three soil concentrations: low (5 mg/kg), medium (10 mg/kg), and high (20 mg/kg), respectively. Health risk indices including inhalation risk (Inh), hazard quotient (HQ), and lifetime cancer risk (LCR) were calculated using bioaccessibility-adjusted parameters to precisely compare risk variations across exposure modes. Results demonstrated significant synergistic effects in gas-liquid mass transfer kinetics under mixed exposure (P < 0.05), the simulated lung fluid bioaccessibility of benzene and ethylbenzene was also significantly higher (P < 0.05), likely due to their intermolecular cosolvency. Risk assessment results indicated that Inh, HQ, and LCR indices in mixed exposure were significantly higher (P < 0.05) than in single exposure, with a concentration-dependent contribution to health risks. At low concentrations, benzene's health risk indices increased by 185 %-284 %, while ethylbenzene's increased by approximately 63 %-68 %, indicating a synergistic effect in mixed exposure scenarios. This study offers a new methodological basis for health risk assessment of BTEX mixed exposure at petrochemical sites.
Collapse
Affiliation(s)
- Xuemin Ma
- Engineering Research Center of Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Wang
- Engineering Research Center of Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shuhe Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changyong Wu
- Engineering Research Center of Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weipeng Wang
- Engineering Research Center of Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Urban and Rural Construction, Agricultural University of Hebei, Baoding 071001, China
| | - Yue Wang
- Engineering Research Center of Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Zhang Q, Xu X, Song C, Zhang D, Kong Y, Cui X. Effect of UV exposure and natural aging on the in vitro PAHs bioaccessibility associated with tire wear particles in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175751. [PMID: 39197782 DOI: 10.1016/j.scitotenv.2024.175751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Tire wear particles (TWP), as an emerging type of microplastics, are a significant source of contaminants in roadside soils due to their high concentration of pollutants, including polycyclic aromatic hydrocarbons (PAHs). This study explored the impact of ultraviolet (UV) exposure and natural aging on the in vitro bioaccessibility of PAHs associated with TWP in soil on a China-wide scale. Our findings suggested that UV exposure amplified the negative charge of TWP by 75 % and increased the hydrophobic groups on the particle surface. The bioaccessibility of 3- and 4-ring PAHs in TWP was significantly (p < 0.05) heightened by UV exposure. After 20 types of soils containing 2 % UV-exposed TWP underwent natural aging, the bioaccessibility of PAHs saw a significant decrease (p < 0.05) to 16-48 %, compared to 28-96 % in the unaged group. Soil pH and electrical conductivity (EC) were the two primary soil properties positively influencing the reduction of in vitro PAHs concentration and PAHs bioaccessibility. According to the prediction results, soils in southern China presented the highest potential region for the release of bioaccessible PAHs from TWP, highlighting the regional specificity of environmental impact. Our study provides valuable insights into the biological impact of PAHs associated with TWP on a regional scale, and offers scientific evidence for targeted soil risk management strategies.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinyan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chenzhuo Song
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dengke Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Chen R, Hu M, Cheng N, Shi R, Ma T, Wang W, Huang W. Prediction of the bioaccessibility and accumulation of cadmium in the soil-rice-human system based on optimized DGT and BCR coupled models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116509. [PMID: 38833979 DOI: 10.1016/j.ecoenv.2024.116509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Cadmium, as a typical heavy metal, has the potential to induce soil pollution and threaten human health through the soil-plant-human pathway. The conventional evaluation method based on the total content in soil cannot accurately represent the content migrated from the food chain to plants and the human body. Previous studies focused on the process of plant enrichment of heavy metals in soil, and very few studies directly predicted human exposure or risk through the labile state of Cd in soil. Hence, a relatively accurate and convenient prediction model of Cd release and translocation in the soil-rice-human system was developed. This model utilizes available Cd and soil parameters to predict the bioavailability of Cd in soil, as well as the in vitro bioaccessibility of Cd in cooked rice. The bioavailability of Cd was determined by the Diffusive Gradients in Thin-films technology and BCR sequential extraction procedure, offering in-situ quantification, which presents a significant advantage over traditional monitoring methods and aligns closely with the actual uptake of heavy metals by plants. The experimental results show that the prediction model based on the concentration of heavy metal forms measured by BCR sequential extraction procedure and diffusive gradients in thin-films technique can accurately predict the Cd uptake in rice grains, gastric and gastrointestinal phase (R2=0.712, 0.600 and 0.629). This model accurately predicts Cd bioavailability and bioaccessibility across the soil-rice-human pathway, informing actual human Cd intake, offering scientific support for developing more effective risk assessment methods.
Collapse
Affiliation(s)
- Rui Chen
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China.
| | - Miaomiao Hu
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Nuo Cheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Rongguang Shi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Tiantian Ma
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Wensheng Wang
- Bao Gang Group Environmental Engineering Research Institute, Baotou 014000, China
| | - Wenyang Huang
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
4
|
Dong H, Wu Z. Effects of Freeze-Thaw Cycles on Bioaccessibilities of Polycyclic Aromatic Hydrocarbons. TOXICS 2024; 12:413. [PMID: 38922093 PMCID: PMC11209114 DOI: 10.3390/toxics12060413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
The bioaccessibility of particle-bound hydrophobic organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs), and the factors influencing their re-release are crucial for assessing potential human health risks via inhalation and hand-mouth exposure. However, the mechanisms by which various factors affect the re-release of PAHs in body fluids, particularly in response to environmental changes like freeze-thaw cycles, remain unclear. To obtain a better understanding, an in vitro method was employed to investigate the re-release processes of PAHs from different soil types (ferrallitic soil and calcareous soil) in simulated body fluids (simulated lung fluid and simulated saliva) under varying freeze-thaw conditions (0, 15, and 30 cycles). The findings indicated that the bioaccessibilities of phenanthrene and pyrene decreased with the frequency of freeze-thaw cycles, which were constrained by soil nature and simulated body fluids compositions as well. Additionally, this study observed that the portion of reversible adsorption of PAHs declined after exposure to freeze-thaw cycles in a nonlinear manner, suggesting that the potential human health risk associated with PAHs could be mitigated due to the "aging effect" which occurred as PAHs became less bioaccessible over time. These results underscore the importance of considering the characteristics of pollutants, body fluids, and environmental media when conducting a precise assessment of the human health risks posed by such contaminants.
Collapse
Affiliation(s)
- Hui Dong
- School of Karst Science, Guizhou Normal University, Guiyang 550025, China;
| | - Ze Wu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
5
|
Chen XX, Li C, Selvaraj KK, Ji QS, Fang ZH, Yang SG, Li SY, Zhang LM, He H. Correlation analysis between the in vivo bioavailability and in vitro bioaccessibility of nitro PAHs in soil: Application of simplified FOREhST in vitro methods based on the Chinese pharmacopoeia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168722. [PMID: 38008317 DOI: 10.1016/j.scitotenv.2023.168722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
In this study, the relative bioavailability (RBA) of nitrated polycyclic aromatic hydrocarbons (NPAHs) in soil samples (n = 30) was assessed using an in vivo mouse model. Based on the correlation between the bioaccessibility data obtained from the Tenax improved traditional Fed ORganic Estimation human Simulation Test (FOREhST) in vitro method (TITF) and the bioavailability data obtained from in vivo experiments, the TITF method was further optimized and simplified by referring to the "Pharmacopoeia of the People's Republic of China: Volume IV, 2020" to adjust the formulation and parameters of the gastrointestinal fluid (GIF) in order to establish a simpler and lower cost in vitro method for the determination of the bioaccessibilities of NPAHs. The dose-accumulation relationship of the in vivo experiment showed that the linear dose-response was better in adipose tissue (R2 = 0.77-0.93), and the accumulation of NPAHs in adipose tissue was higher than that in kidney or liver tissue. Depending on the mouse adipose model, the NPAHs-RBA ranged from 1.88 % to 73.92 %, and a strongly significant negative relationship (R2 = 0.94, p < 0.05) was found between the NPAHs-RBA and Log Kow. The simplified experiment of the TITF showed that the composition of the GIF medium had a significant effect on the bioaccessibilities of NPAHs. The NPAH bioaccessibilities measured by the Tenax improved simplified FOREhST method (TISF) (9.0-36.5 %) were higher than that of the traditional FOREhST method (6.8-22.8 %) but significantly lower than that of the TITF method (16.8-55.2 %). With an increase in the bile concentration in the GIF (from 6 to 10 g/L), the bioaccessibilities of NPAHs increased from 9.0 to 36.5 % to 12.9-42.4 %. The accuracies of the four in vitro methods for predicting the bioavailabilities of NPAHs was in the following order: Tenax improved simplified FOREhST method with increased bile concentration (TITF-IB) (R2 = 0.54-0.87) ≈ TITF (R2 = 0.55-0.85) > TISF (R2 = 0.41-0.77) > FOREhST (R2 = 0.02-0.68). These results indicated that the simple in vitro method could also effectively predict the bioavailabilities of NPAHs.
Collapse
Affiliation(s)
- Xian-Xian Chen
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China; School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Chao Li
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Krishna Kumar Selvaraj
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Qing-Song Ji
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Zhi-Hong Fang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Shao-Gui Yang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Shi-Yin Li
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Li-Min Zhang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China.
| |
Collapse
|
6
|
Liu Y, Jiang S, Xiang Y, Lin F, Yue X, Li M, Xiao J, Cao H, Shi Y. In vivo-in vitro correlations (IVIVC) for the assessment of pyrethroid bioavailability in honey. Food Chem 2023; 429:136873. [PMID: 37459714 DOI: 10.1016/j.foodchem.2023.136873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023]
Abstract
Bioaccessibility/bioavailability is an important factor in assessing the potential human health risk via oral exposure. However, methods for accurately predicting the bioaccessibility/bioavailability of pesticide residues are still limited, preventing accurate measurements of actual exposure to pesticide residues. In this study, pyrethroid bioavailability in honey were analysed using a mouse bioassay and bioaccessibility via in vitro methods with Tenax extraction. The results demonstrated that the combined liver plus kidney data served as an appropriate biomarker to estimate the relative bioavailability. Notably, significant in vivo-in vitro correlations (IVIVC) were observed between bioavailability and bioaccessibility (R2 = 0.7898-0.9793). Estimation of the bioavailability of honey from different nectar plants using derived IVIVC confirmed that different contents and physicochemical properties might affect its bioavailability. The findings provide insight into assessing human exposure to pesticides based on bioavailability and can decrease the uncertainty about the assessment of the risk of dietary exposure to pesticides.
Collapse
Affiliation(s)
- Yuying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Siyuan Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yuxin Xiang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Fengxiang Lin
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Xingyu Yue
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Minkun Li
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China.
| |
Collapse
|
7
|
Li C, Xu S, Guan DX, Chen X, He H. Comparison of in vitro strategies for predicting Dichlorodiphenyltrichloroethane (DDT) and its metabolites bioavailability from soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114885. [PMID: 37030050 DOI: 10.1016/j.ecoenv.2023.114885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
In vitro strategies have widely been used to assess bioaccessibility of organic pollutants in soils. However, studies for comparing in vitro models with in vivo data are still limited. In this study, Dichlorodiphenyltrichloroethane (DDT) and its metabolites (called as DDTr) bioaccessibility in nine contaminated soils were measured using physiologically based extraction test (PBET), in vitro digestion model (IVD), and Deutsches Institut für Normung (DIN) with/without Tenax as an absorptive sink, and DDTr bioavailability was assessed using an in vivo mouse model. Whether or not Tenax was added, DDTr bioaccessibility significantly varied among three methods, suggesting that DDTr bioaccessibility depended on the in vitro method employed. Multiple linear regression analysis indicated that sink, intestinal incubation time and bile content are identified to be the dominant factors in controlling DDTr bioaccessibility. Comparison of in vitro and in vivo results demonstrated that DIN assay with Tenax (TI-DIN) provided the best prediction for DDTr bioavailability (r2 = 0.66, slope=0.78). After extending intestinal incubation time to 6 h or increasing bile content to 4.5 g/L (same to DIN assay) of the TI-PBET and TI-IVD assays, the in vivo-in vitro correlation will improved significantly, with r2 = 0.76 and slope= 1.4 for TI-PBET and r2 = 0.84 and slope= 1.9 for TI-IVD under 6 h intestinal incubation, and r2 = 0.59 and slope= 0.96 for TI-PBET and r2 = 0.51 and slope= 1.0 for TI-IVD under 4.5 g/L of bile content. The results suggest that it is essential to understand these key factors influencing bioaccessibility for the development of standardized in vitro methods, which helps to refine the risk assessment of human exposure to contaminants via soil ingestion.
Collapse
Affiliation(s)
- Chao Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China; School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Shen Xu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Dong-Xing Guan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianxian Chen
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
8
|
Chen XX, Li C, Cao XY, Selvaraj KK, Li HM, Zhu FX, Yang SG, Li SY, Zhang LM, He H. Bioaccessibility and bioavailability of NPAHs in soils using in vitro-in vivo assays: Comparison of laboratory and outdoor environmental aging effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161619. [PMID: 36649777 DOI: 10.1016/j.scitotenv.2023.161619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Aging process is one of the most important factors that markedly reduces bioaccessibility and bioavailability (bioac-bioav) of organic contaminants. However, only few data on comparison of the effects of laboratory artificial aging (LAA) and outdoor environmental aging (OEA) processes on nitrated polycyclic aromatic hydrocarbons (NPAHs) bioac-bioav are available. In the current study, oral bioac-bioav of NPAHs in LAA and OEA soils (aging time intervals: 0, 45, 90, 120 and 150 d) were measured by in vitro traditional Fed ORganic Estimation human Simulation Test (FOREhST) and Tenax improved FOREhST (TI-FOREhST) methods, and in vivo mouse model. Tenax significantly increased the bioaccessibility of NPAHs in freshly spiked and aging soils from 0.3-40.9 % to 15.6-95.3 %, and 0.3-40.9 % to 1.0-84.5 %, respectively. Aging significantly reduced the NPAHs bioaccessibility (from 36.5 % to 10.7 %, and 12.1 % to 5.1 % as measured by FOREhST and TI-FOREhST, respectively) and bioavailability (from 27.7 % to 9.9 %, as measured by mouse model). The changes in bioac-bioav were mainly observed within the first 120 d of aging. The statistical analyses of NPAHs bioac-bioav showed no significant difference (p > 0.05) among the aging time intervals in LAA and OEA soils, which demonstrated that the LAA can relatively represent the OEA. Determination of TOC content in LAA and OEA soil can intuitively reflect whether the difference of NPAHs bioac-bioav between two aging treatment groups is significant. The mean bioaccessibility of NPAHs in soil measured by TI-FOREhST (mean 20.6 %) is closer to the bioavailability measured by mouse model (mean 19.4 %), indicating that Tenax improved in vitro method is more reliable than traditional methods, to predict the bioavailability of NPAHs.
Collapse
Affiliation(s)
- Xian-Xian Chen
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Chao Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Xiao-Yu Cao
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Krishna Kumar Selvaraj
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Hui-Ming Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Feng-Xiao Zhu
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Shao-Gui Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Shi-Yin Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Li-Min Zhang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China.
| |
Collapse
|
9
|
Hu X, Yu Q, Gatheru Waigi M, Ling W, Qin C, Wang J, Gao Y. Microplastics-sorbed phenanthrene and its derivatives are highly bioaccessible and may induce human cancer risks. ENVIRONMENT INTERNATIONAL 2022; 168:107459. [PMID: 35964535 DOI: 10.1016/j.envint.2022.107459] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are ubiquitous in environmental media and human diets and can enrich organic contaminants, including polycyclic aromatic hydrocarbons (PAHs) and their derivatives. The bioaccessibilities and triggering cancer risks of MP-sorbed PAHs and PAH derivatives are closely linked with human health, which, however, were rarely focused on. This study explored the sorption behaviors of phenanthrene (PHE) and PHE derivatives on polyethylene (PE), polypropylene (PP), and polystyrene (PS) MPs, and assessed their bioaccessibilities in gastrointestinal fluids as well as their inducing human cancer risks. PE MPs harbored the highest sorption capacity, secondly the PP MPs, then the PS ones. Sorption of PHE and PHE derivatives on MPs was positively correlated with their hydrophobicities. The bioaccessibilities of sorbed PHE and PHE derivatives could reach 53.59 %±0.46 %-90.28 %±0.92 % in gastrointestinal fluids and 81.34 %±0.77 %-98.72 %±1.44 % in gastrointestinal fluids with the addition of Tenax (more close to the bioavailability). The hydrophobicities also controlled the bioaccessibilities of PHE and PHE derivatives in gastric fluids, and those in intestinal fluids with Tenax for PS MPs. The incremental lifetime cancer risk (ILCR) values for PHE, PHE-Cl, and PHE-NO2 on MPs at tested concentrations were all higher than the USEPA-suggested safety limit (10-6), and most of them were even higher than 10-4, which thus indicates serious cancer risks. This study promoted our understanding of the potential health threats posed by organic pollutant-bearing MPs in the environment.
Collapse
Affiliation(s)
- Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qing Yu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
10
|
Shi F, Ju J, Zhang X, Zheng R, Xiong F, Liu J. Evaluating the inhalation bioaccessibility of traffic-impacted particulate matter-bound PAHs in a road tunnel by simulated lung fluids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155046. [PMID: 35390378 DOI: 10.1016/j.scitotenv.2022.155046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the most highly concerned pollutants bound on traffic-impacted particulate matter (TIPM). The inhaled TIPM-bound PAHs risk has attracted much attention, whereas the inhalation bioaccessibility, a method to refine the exposure risk assessment, has not yet been extensively introduced in the exposure risk assessment. Thus, in vitro assays using artificial lung fluids including artificial lysosomal fluid (ALF), Gamble's solution (GS), and modified GS (MGS) were conducted to assess the inhalation bioaccessibility of USEPA 16 PAHs in TIPM collected from an expressway tunnel, the influence factors of PAHs' inhalation bioaccessibility were explored, and the exposure risk of TIPM-bound PAHs was estimated based on inhalation bioaccessibility. Results showed that the average PAHs concentrations were 30.5 ± 12.9 ng/m3, 36.2 ± 5.19 ng/m3, and 39.9 ± 4.31 ng/m3 in the tunnel inlet PM2.5, TSP, and tunnel center PM2.5, respectively. Phe, Flt, Pyr, Nap, Chr, BbF, and BkF were found as the dominant species in TSP and PM2.5, indicating a dominant contribution of PAHs from diesel-fueled vehicular emissions. The bioaccessible fractions measured for different PAH species in tunnel PM2.5 and TSP were highly variable, which can be attributed to PAHs' physicochemical properties, size, and carbonaceous materials of TIPM. The addition of Tenax into SLF as an "adsorption sink" can greatly increase PAHs' inhalation bioaccessibility, but DPPC has a limited effect on tunnel PM-bound PAHs' bioaccessibility. The incremental lifetime carcinogenic risk (ILCR) of tunnel inlet PM2.5-bound PAHs evaluated according to their total mass concentration exceeded the threshold (1.0 × 10-6) set by the USEPA, whereas the ILCRs estimated based on the inhalation bioaccessibility were far below the threshold. Hence, it is vitally important to take into consideration of pollutant's bioaccessibility to refine health risk assessment.
Collapse
Affiliation(s)
- Fengqiong Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingxue Ju
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Public Health, Hebei University, Baoding 071002, China
| | - Xian Zhang
- College of Public Health, Hebei University, Baoding 071002, China
| | - Ronggang Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feng Xiong
- JiangXi Gannan Highway Survey and Design Institute, Ganzhou 341000, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
11
|
Gao P, Shen X, Zhang X, Jiang C, Zhang S, Zhou X, Schüssler-Fiorenza Rose SM, Snyder M. Precision environmental health monitoring by longitudinal exposome and multi-omics profiling. Genome Res 2022; 32:1199-1214. [PMID: 35667843 PMCID: PMC9248886 DOI: 10.1101/gr.276521.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/18/2022] [Indexed: 11/24/2022]
Abstract
Conventional environmental health studies have primarily focused on limited environmental stressors at the population level, which lacks the power to dissect the complexity and heterogeneity of individualized environmental exposures. Here, as a pilot case study, we integrated deep-profiled longitudinal personal exposome and internal multi-omics to systematically investigate how the exposome shapes a single individual's phenome. We annotated thousands of chemical and biological components in the personal exposome cloud and found they were significantly correlated with thousands of internal biomolecules, which was further cross-validated using corresponding clinical data. Our results showed that agrochemicals and fungi predominated in the highly diverse and dynamic personal exposome, and the biomolecules and pathways related to the individual's immune system, kidney, and liver were highly associated with the personal external exposome. Overall, this data-driven longitudinal monitoring study shows the potential dynamic interactions between the personal exposome and internal multi-omics, as well as the impact of the exposome on precision health by producing abundant testable hypotheses.
Collapse
Affiliation(s)
- Peng Gao
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Xiaotao Shen
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Xinyue Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Chao Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sai Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| | | | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| |
Collapse
|
12
|
Li C, Xu S, Guan DX, Chen XX, He H. Assessment of DDT and its Metabolites Bioaccessibility in Historically Contaminated Soils Using Unfed and Fed in Vitro Methods. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:672-677. [PMID: 35039886 DOI: 10.1007/s00128-021-03420-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Bioaccessibility of hydrophobic organic contaminants (HOCs) from unintentional ingestion of soil is increasingly assessed with in vitro gastrointestinal models incorporating a sorption sink. In this study, the bioaccessibility of DDTs in contaminated soils (n = 11) was determined using "unfed" unified bioaccessibility method (UBM) and fed organic estimation human simulation test (FOREhST) with/without Tenax as an absorbent. By adding Tenax, the bioaccessibility of DDTs determined using UBM was significantly increased from 4.9-30.6% to 31.6-86.0%. In contrast, the bioaccessibility of DDTs determined using FOREhST without/with Tenax were similar with values of 20.0-60.9% vs 31.5-47.6%, implying that the influence of food components on the absorption efficiency of the sink should not be overlooked. Much high fraction of DDTs (bioaccessibility: 11.7-24.8%) remained in FOREhST supernatant after Tenax collection, suggesting that prediction of bioavailability through bioaccessibility obtained by absorbent needs to be treated with caution when bioaccessibility is determined using a "fed state" in vitro method.
Collapse
Affiliation(s)
- Chao Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Shen Xu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Dong-Xing Guan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xian-Xian Chen
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
13
|
Ali M, Song X, Ding D, Wang Q, Zhang Z, Tang Z. Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118686. [PMID: 34920044 DOI: 10.1016/j.envpol.2021.118686] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/20/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Systemic studies on the bioremediation of co-contaminated PAHs and heavy metals are lacking, and this paper provides an in-depth review on the topic. The released sources and transport of co-contaminated PAHs and heavy metals, including their co-occurrence through formation of cation-π interactions and their adsorption in soil are examined. Moreover, it is investigated that co-contamination of PAHs and heavy metals can drive a synergistic positive influence on bioremediation through enhanced secretion of extracellular polymeric substances (EPSs), production of biosynthetic genes, organic acid and enzymatic proliferation. However, PAHs molecular structure, PAHs-heavy metals bioavailability and their interactive cytotoxic effects on microorganisms can exert a challenging influence on the bioremediation under co-contaminated conditions. The fluctuations in bioavailability for microorganisms are associated with soil properties, chemical coordinative interactions, and biological activities under the co-contaminated PAHs-heavy metals conditions. The interactive cytotoxicity caused by the emergence of co-contaminants includes microbial cell disruption, denaturation of DNA and protein structure, and deregulation of antioxidant biological molecules. Finally, this paper presents the emerging strategies to overcome the bioavailability problems and recommends the use of biostimulation and bioaugmentation along with the microbial immobilization for enhanced bioremediation of PAHs-heavy metals co-contaminated sites. Better knowledge of the bioremediation potential is imperative to improve the use of these approaches for the sustainable and cost-effective remediation of PAHs and heavy metals co-contamination in the near future.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Da Ding
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Chen X, Li H, Kong X, Cheng X, Li C, He H, Selvaraj KK, Yang S, Li S, Zhang L. Evaluating the adsorption performance of Tenax TA® in different containers: An isolation tool to study the bioaccessibility of nitro-PAHs in spiked soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150429. [PMID: 34844299 DOI: 10.1016/j.scitotenv.2021.150429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The improved in vitro gastrointestinal simulation methods, with the addition of the adsorption sink, are considered as a promising tool for predicting the bioaccessibility of contaminants. However, the problem associated with the recovery of the adsorption sink from the complex matrix needs more understand. Although previous studies tried to solve this shortcoming by using the containers (a vessel to hold the adsorption sink), there is no systematic comparison study on the impact of containers on bioaccessibility till now, especially for nitro-polycyclic aromatic hydrocarbons (nitro-PAHs). In order to understand the problem, commonly used containers in previous studies (dialysis bags and stainless-steel screen) were selected and deployed in the Fed Organic Estimation Human Simulation Test (FOREhST) method to compare the effects of these containers on the bioaccessibility of nitro-PAHs desorbed from the five different types of soils into the gastrointestinal fluid (GIF). Results showed that in order to maintain a constant sorptive gradient for the high molecular weight (MW) nitro-PAHs, 0.25 g of Tenax TA® were required in FOREhST. Compared with Tenax TA® encapsulated in dialysis bag (Tenax-EDBG), the use of Tenax TA® encapsulated in dissolution basket (Tenax-EDBT) significantly increased the bioaccessibility of nitro-PAHs in the soil from 5.6-31.4% to 17.2-70.6%, due to the better diffusion performance. The bioaccessibility of nitro-PAHs by FOREhST extraction with Tenax-EDBT showed a significant negative correlation with soil total organic carbon (TOC), whereas a weak correlation with pH. This study provides the researchers with a more standardized in vitro method to quantify the bioaccessibility of PAHs and their derivatives in soil.
Collapse
Affiliation(s)
- Xianxian Chen
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Huiming Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Xiangcheng Kong
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Chao Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, PR China.
| | - Krishna Kumar Selvaraj
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
15
|
Abstract
Human health is regulated by complex interactions among the genome, the microbiome, and the environment. While extensive research has been conducted on the human genome and microbiome, little is known about the human exposome. The exposome comprises the totality of chemical, biological, and physical exposures that individuals encounter over their lifetimes. Traditional environmental and biological monitoring only targets specific substances, whereas exposomic approaches identify and quantify thousands of substances simultaneously using nontargeted high-throughput and high-resolution analyses. The quantified self (QS) aims at enhancing our understanding of human health and disease through self-tracking. QS measurements are critical in exposome research, as external exposures impact an individual's health, behavior, and biology. This review discusses both the achievements and the shortcomings of current research and methodologies on the QS and the exposome and proposes future research directions.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Peng Gao
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA;
| |
Collapse
|
16
|
Lu M, Li G, Yang Y, Yu Y. A review on in-vitro oral bioaccessibility of organic pollutants and its application in human exposure assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142001. [PMID: 32892057 DOI: 10.1016/j.scitotenv.2020.142001] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Generally, human oral exposure assessments of contaminants have not considered the absorption factor in the human gastrointestinal tract, thus overestimating human exposure and associated health risk. Currently, more researchers are adding the absorption factor into human exposure assessment, and bioaccessibility measured by in-vitro methods is generally replacing bioavailability for estimation because of the cheap and rapid determination. However, no single unified in-vitro method is used for bioaccessibility measurement of organic pollutants, although several methods have been developed for these pollutants and have shown good in vitro-in vivo correlation between bioaccessibility and bioavailability. The present review has focused on the development of in-vitro methods, validation of these methods through in-vivo assays, determination of factors influencing bioaccessibility, application of bioaccessibility in human exposure assessment, and the challenges faced. Overall, most in-vitro methods were validated using bioavailability, and better in vitro-in vivo correlations were obtained when absorption sinks were added to the digestion solution to mimic dynamic absorption of organic chemicals by small intestine. Incorporating bioaccessibility into the estimation of human exposure by oral ingestion significantly decreases the estimated exposure dose. However, more investigations on bioaccessibility of hydrophobic organic compounds are urgently needed because many challenges for in-vitro methods remain to be overcome.
Collapse
Affiliation(s)
- Meijuan Lu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Yan Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
17
|
Portet-Koltalo F, Gardes T, Debret M, Copard Y, Marcotte S, Morin C, Laperdrix Q. Bioaccessibility of polycyclic aromatic compounds (PAHs, PCBs) and trace elements: Influencing factors and determination in a river sediment core. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121499. [PMID: 31685316 DOI: 10.1016/j.jhazmat.2019.121499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Organic matter (OM), clays, sand or time are factors possibly influencing the bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs) from sediments. An experimental design was performed to monitor and quantify this process. The bioaccessible fraction, linked to the rapidly-desorbing fraction (Frap) of contaminants, was assessed through a non-exhaustive extraction using a carboxymethyl-β-cyclodextrin polymer. OM content was the most influential factor as regards Frap. Clay percentage was a slightly influential factor for PAHs while the interaction sand × OM was a slightly influential factor for PCBs. Frap was also determined in a sediment core collected from Martot's Pond (France). The higher the PAH/PCB concentration in this sediment, the higher the bioaccessible fraction. The relationship between a lower bioaccessibility and a higher number of PAHs cycles or PCB chlorines was linear. OM content impacted on Frap only for PAHs. Sequential extractions of some trace elements were also performed to evaluate their mobility. Cu, Cr, Pb, Ni were the less bioaccessible. A great part of As, Cd and Zn was found in the most bioaccessible sediment fractions. The 40-65 cm section might be considered as the most negatively impacting on the aquatic fauna, due to Cd and Zn high bioaccessible concentrations.
Collapse
Affiliation(s)
- F Portet-Koltalo
- Normandie University, UNIROUEN, COBRA Laboratory UMR CNRS 6014, 55 rue Saint Germain, 27000 Evreux, France.
| | - T Gardes
- Normandie University, UNIROUEN, COBRA Laboratory UMR CNRS 6014, 55 rue Saint Germain, 27000 Evreux, France; Normandie University, UNIROUEN, M2C Laboratory UMR 6143, FR CNRS 3730 SCALE, Bâtiment Blondel, Place Emile Blondel, 76821 Mont Saint Aignan Cedex, France.
| | - M Debret
- Normandie University, UNIROUEN, M2C Laboratory UMR 6143, FR CNRS 3730 SCALE, Bâtiment Blondel, Place Emile Blondel, 76821 Mont Saint Aignan Cedex, France.
| | - Y Copard
- Normandie University, UNIROUEN, M2C Laboratory UMR 6143, FR CNRS 3730 SCALE, Bâtiment Blondel, Place Emile Blondel, 76821 Mont Saint Aignan Cedex, France.
| | - S Marcotte
- Normandie University, UNIROUEN, COBRA Laboratory UMR CNRS 6014, 55 rue Saint Germain, 27000 Evreux, France.
| | - C Morin
- Normandie University, UNIROUEN, COBRA Laboratory UMR CNRS 6014, 55 rue Saint Germain, 27000 Evreux, France.
| | - Q Laperdrix
- Normandie University, UNIROUEN, COBRA Laboratory UMR CNRS 6014, 55 rue Saint Germain, 27000 Evreux, France.
| |
Collapse
|
18
|
Zhang R, Han D, Jiang L, Zhong M, Liang J, Xia T, Zhao Y. Derivation of site-specific remediation goals by incorporating the bioaccessibility of polycyclic aromatic hydrocarbons with the probabilistic analysis method. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121239. [PMID: 31574384 DOI: 10.1016/j.jhazmat.2019.121239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/30/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Incorporating bioaccessibility into human health risk assessment is recognized as a valid way to reduce the conservative properties of conventional results, where the total concentration of a contaminant analysed by exhaustive chemical extraction is applied. Taking a coke production site in Beijing as an example, a mild chemical extraction technology was employed to profile the bioaccessibility of benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene (IcP) and dibenz[ah]anthracene (DBA) in soils. The results that were regressed using two bi-phase desorption models (Karickhoff and Weibull) revealed that the rapid desorption fractions of BaP, IcP and DBA, which are taken for bioaccessible fractions, were basically less than half of the total contents in the soils. Probabilistic analysis (PA) was carried out with pre-set distributions of the exposure parameters to characterize the uncertainty in the assessment. The results incorporating bioaccessibility and PA were several times higher than the generic remediation goals which equal to national screening levels, and orders of magnitude higher than the baselines of the region and nation. The results of the Weibull fit were finally recommended as site-specific remediation goals (SSRGs) (10.59 mg/kg, 95.48 mg/kg and 9.24 mg/kg). Over-remediation was avoided while contributing to considerable economic and environmental benefits.
Collapse
Affiliation(s)
- Ruihuan Zhang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modelling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Dan Han
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modelling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Lin Jiang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modelling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China.
| | - Maosheng Zhong
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modelling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China.
| | - Jing Liang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modelling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - TianXiang Xia
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modelling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Ying Zhao
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modelling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| |
Collapse
|
19
|
Gao P, da Silva EB, Townsend T, Liu X, Ma LQ. Emerging PAHs in urban soils: Concentrations, bioaccessibility, and spatial distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:800-805. [PMID: 30921713 DOI: 10.1016/j.scitotenv.2019.03.247] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 05/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic contaminants, with soil being the most important sink. This study determined the concentrations, bioaccessibility and spatial distributions of 6 emerging PAHs in Orlando and Tampa urban soils. They included 3 carcinogenic (anthanthrene, 7H-benzo[c]fluorene, and dibenzo[a,l]pyrene: 3cPAHs) and 3 non-carcinogenic (dibenzo[a,e]pyrene, dibenzo[a,i]pyrene and dibenzo[a,h]pyrene) PAHs. Based on benzo[a]pyrene-equivalent, the 7 USEPA priority cPAHs (7cPAHs) and 3cPAHs in Orlando soils averaged 452 and 7387 μg kg-1, and Tampa soils 802 and 4943 μg kg-1, respectively, with ∑3cPAHs being 6-16 times greater than ∑7cPAHs. Based on ArcGIS maps, the concentrations of ∑3cPAHs in commercial sites, business district and heavy-traffic areas were higher. The concentrations of ∑3cPAHs have not been reported, but they had significant impacts on risk assessment of urban soils due to their high relative potency factor. However, their bioaccessibility based on n-butanol extraction in soils of both cities were low, averaging 3.4-7.4%. Therefore, to accurately assess the risk of soils contaminated with PAHs, emerging cPAHs together with USEPA 7cPAHs and their bioaccessibility need to be considered.
Collapse
Affiliation(s)
- Peng Gao
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China; Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - Evandro B da Silva
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China; Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - Timothy Townsend
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, United States
| | - Xue Liu
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China.
| | - Lena Q Ma
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China; Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
20
|
Wang B, Jin Z, Xu X, Zhou H, Yao X, Ji F. Effect of Tenax addition amount and desorption time on desorption behaviour for bioavailability prediction of polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:427-434. [PMID: 30243162 DOI: 10.1016/j.scitotenv.2018.09.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
In this work, Tenax consecutive extractions of polycyclic aromatic hydrocarbons (PAHs) were conducted in two spiked sediments to investigate the influence of different Tenax addition amounts and desorption times on the rapidly desorbing fraction of PAHs, and to determine a reliable method for estimating PAHs bioavailability. The results indicated that a large Tenax addition amount has a positive effect on the desorption of PAHs from sediments. The desorption amounts of target PAHs compounds (3-ring phenanthrene and 4-ring fluoranthene) increased as the Tenax: sediment ratios increased from 0.25 to 2 in two spiked sediments. The highest desorption percentages of phenanthrene and fluoranthene were 48.91% and 34.70% for Jialing industrial park sediment, and 43.36% and 33.24% for Huanghuayuan bridge sediment, respectively. The results of desorption kinetics were suitably fitted with first order three-compartment model to estimate the rapidly desorbing fraction, Moreover, the Tenax: sediment ratio of 1 and desorption time of 24 h were found to be suitable for the desorption of phenanthrene and fluoranthene from sediments. The PAHs in sediments were biodegraded well by the bacterial strain J1-q. Comparing the maximum biodegraded amount of target PAHs in 30 days and the desorbed fraction over 400 h, the results showed that Tenax had better correlation with the high molecular weight fluoranthene than with the low molecular weight phenanthrene.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Zhaoxia Jin
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Xiaoyi Xu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China.
| | - Hang Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Xuewen Yao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Fangying Ji
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| |
Collapse
|
21
|
Kang Y, Zeng D, Man YB, Liu J, Yang Y, Li S, Situ K, Xiong W, Zeng L, Zhang Q, Luo J, Pan W, Jiang F, Wong MH. Comparison of sorption kinetics of PAHs by sorptive sinks and caco-2 cell and the correlation between bioaccessibility and bioavailability of PAHs in indoor dust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:170-178. [PMID: 30021174 DOI: 10.1016/j.scitotenv.2018.07.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Sorptive sinks are extensively used in the bioaccessibility of organic contaminants, but their suitability for simulating the intestinal cell is seldom reported. In the present study, the sorption efficiency of PAHs by sorptive sinks including silica, poly(ethylene-co-vinyl acetate) (polyE), tenax, and C18 were compared with that by caco-2 cells. The elimination rate constants of phenanthrene, fluoranthene, pyrene, benzo(a)pyrene by caco-2 cell were 0.0417 ± 0.006 min-1, 0.0411 ± 0.0074 min-1, 0.0362 ± 0.006 min-1, and 0.0526 ± 0.0037 min-1, respectively, which were more closely to that of silica and polyE compared to other materials. This indicated that these materials might be the preferable sorptive sinks to simulate absorption of PAHs by intestinal cells. The bioaccessibility of phenanthrene, fluoranthene, pyrene, benzo(a)pyrene in indoor dust ranged from 15.5-43.5%, 9.10-38.8%, 10.0-37.9%, and 6.00-21.9%, respectively, based on physiologically based extraction test (PBET) and the sorptive sinks added in the intestinal solution led to 1.17 to 8.47-fold enhancement of bioaccessibility. The correlation of in vivo PAHs relative bioavailability (RBA) and in vitro digestion bioaccessibility with or without the sorptive sinks of indoor dust were measured, and the results indicated that silica and polyE were more likely to predict PAHs RBA of indoor dust, which was consistent with the results of sorption kinetics assay. The present results indicate that silica and polyE have the potential to simulate caco-2 cell and the inclusion of these materials in the PBET is likely to predict PAHs RBA in indoor dust. Capsule: Silica and polyE were more likely to simulate absorption of PAHs by intestinal cells, and to predict PAHs RBA of indoor dust.
Collapse
Affiliation(s)
- Yuan Kang
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China.
| | - Diya Zeng
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China.
| | - Jing Liu
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Yang Yang
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Shuwei Li
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Kaiqiao Situ
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Wei Xiong
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Lixuan Zeng
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Qiuyun Zhang
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Jiwen Luo
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Weijian Pan
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Feng Jiang
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006,People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China; School of Environment, Jinan University, Guangzhou, People's Republic of China.
| |
Collapse
|
22
|
Hao Z, Wang C, Yan Z, Jiang H, Xu H. Magnetic particles modification of coconut shell-derived activated carbon and biochar for effective removal of phenol from water. CHEMOSPHERE 2018; 211:962-969. [PMID: 30119027 DOI: 10.1016/j.chemosphere.2018.08.038] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
The separation and recovery of pollutant-loaded magnetic carbon materials from organic contaminated environment is recently concerned, but the change of sorption ability and mechanism of activated carbon and biochar caused by magnetic particles modification still need to be explored. Here, the magnetic modification of two coconut shell-, coal-derived activated carbon and one biochar, and its effect on the removal of phenol from water were investigated. Magnetic activated carbon (MAC) and magnetic biochar (MBC) were prepared by co-precipitation. The increase of mass magnetic susceptibilities and energy dispersive X-ray spectroscopy (EDX) analysis showed that magnetic particles were successfully coated on the surface of virgin carbonaceous materials (VCMs). Magnetic modification enhanced the surface area and pore volume of activated carbon, and preserved those structure properties of biochar. Magnetic activated carbon had lower adsorption rates (10.641 g mg-1·min-1) than virgin activated carbon (20.575 g mg-1·min-1) while magnetic biochar exhibited higher adsorption rate (0.618 g mg-1·min-1) compared with virgin biochar (0.040 g mg-1·min-1), which were related to mass transport process. Data from Langmuir model results suggested that maximum adsorption capacities of three carbon adsorbents were increased by magnetic modification. The enhanced removal of phenol after magnetizing process may attribute to the increase of specific surface area and pore volume. Among VCMs/MCCs, magnetic coconut shell-derived carbon material with 951.84 m2/g surface area exhibited the most organic contaminant sorption performance. This finding gives insight into the adsorption mechanism of magnetic AC/BC for phenol, and provides a guidance to choose the appropriate magnetic composites to remove the organic contaminant effectively.
Collapse
Affiliation(s)
- Zheng Hao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zaisheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
23
|
Chen Y, Zhang J, Zhang F, Liu X, Zhou M. Contamination and health risk assessment of PAHs in farmland soils of the Yinma River Basin, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:383-390. [PMID: 29579669 DOI: 10.1016/j.ecoenv.2018.03.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/28/2018] [Accepted: 03/06/2018] [Indexed: 05/27/2023]
Abstract
The concentration, composition, sources and incremental lifetime cancer risk of farmland soil polycyclic aromatic hydrocarbons (PAHs) of the Yinma River Basin were analyzed. In 2016, the total concentration of 16 PAHs ranged from 491.65 to 1007.73 ng/g in May, from 427.31 to 781.38 ng/g in August and from 580.40 to 999.40 ng/g in November, respectively. Levels of seven potentially carcinogenic PAHs generally accounted for 33-36.7% of total 16 PAHs in three seasons, and the PAHs contained two to six rings, mainly Fla, Pyr, and Chr. The correlation analysis suggested that the soil organic matter (SOM) was no correlation with PAHs except for August, and there were no significant relationship between the pH and total PAHs. Isomer ratios indicated that the soil PAHs in the farmland of the Yinma River Basin was determined to be the combustion of coal, biomass, and petroleum. The toxic equivalent (BaPeq) concentrations ranged from 15.2 to 133 ng BaPeq g-1 in three seasons. The 95th percentiles of incremental lifetime cancer risk (ILCR) due to human exposure to farmland soil PAHs of the Yinma River Basin was (1.36 × 10-6) in May, (1.00 × 10-6) in August, and (1.18 × 10-6) in November for children, (1.10 × 10-6) in May, (8.15 × 10-7) in August, and (9.58 × 10-7) in November for adolescence and (1.61 × 10-6) in May, (4.22 × 10-6) in August and (1.40 × 10-6) in November for adulthood. The result indicated a moderate carcinogenic risk and the risk of exposure to farmland soil PAHs was pervasive for residents. This investigation might provide useful information on human exposure to PAHs in soil of the Yinma River Basin, and is valuable for policy makers and scientists.
Collapse
Affiliation(s)
- Yanan Chen
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
| | - Jiquan Zhang
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China.
| | - Feng Zhang
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
| | - Xingpeng Liu
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
| | - Mo Zhou
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
24
|
Kademoglou K, Williams AC, Collins CD. Bioaccessibility of PBDEs present in indoor dust: A novel dialysis membrane method with a Tenax TA® absorption sink. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:1-8. [PMID: 29175617 DOI: 10.1016/j.scitotenv.2017.11.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/26/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Human uptake of flame retardants (FRs) such as polybrominated diphenyl ethers (PBDEs) via indoor dust ingestion is commonly considered as 100% bioaccessible, leading to potential risk overestimation. Here, we present a novel in vitro colon-extended physiologically-based extraction test (CE-PBET) with Tenax TA® as an absorptive "sink" capable to enhance PBDE gut bioaccessibility. A cellulose-based dialysis membrane (MW cut-off 3.5kDa) with high pH and temperature tolerance was used to encapsulate Tenax TA®, facilitating efficient physical separation between the absorbent and the dust, while minimizing re-absorption of the ingested PBDEs to the dust particles. As a proof of concept, PBDE-spiked indoor dust samples (n=3) were tested under four different conditions; without any Tenax TA® addition (control) and with three different Tenax TA® loadings (i.e. 0.25, 0.5 or 0.75g). Our results show that in order to maintain a constant sorptive gradient for the low MW PBDEs, 0.5g of Tenax TA® are required in CE-PBET. Tenax TA® inclusion (0.5g) resulted in 40% gut bioaccessibility for BDE153 and BDE183, whereas greater bioaccessibility values were seen for less hydrophobic PBDEs such as BDE28 and BDE47 (~60%). When tested using SRM 2585 (n=3), our new Tenax TA® method did not present any statistically significant effect (p>0.05) between non-spiked and PBDE-spiked SRM 2585 treatments. Our study describes an efficient method where due to the sophisticated design, Tenax TA® recovery and subsequent bioaccessibility determination can be simply and reliably achieved.
Collapse
Affiliation(s)
- Katerina Kademoglou
- Soil Research Centre, Department of Geography and Environmental Science, University of Reading, Whiteknights Campus, RG6 6DW Reading, UK.
| | - Adrian C Williams
- School of Pharmacy, University of Reading, Whiteknights Campus, RG6 6AD Reading, UK
| | - Chris D Collins
- Soil Research Centre, Department of Geography and Environmental Science, University of Reading, Whiteknights Campus, RG6 6DW Reading, UK.
| |
Collapse
|